Большой взрыв и возраст вселенной кратко. Утверждение теории большого взрыва

Зрелище ночного звездного неба, усыпанного звездами, завораживает любого человека, чья душа еще не обленилась и не зачерствела вконец. Таинственная глубина Вечности распахивается перед изумленным человеческим взором, вызывая раздумья об изначальном, о том, откуда все началось...

Большой взрыв и происхождение вселенной

Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной - так называемой теории большого взрыва . В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну "точку", имевшую необычайно высокую температуру, а затем эта "точка" взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь. При этом Расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.

Есть и другая теория происхождения Вселенной. Согласно ей, происхождение Вселенной, всего мироздания, жизни и человека есть разумный творческий акт, осуществленный Богом, творцом и вседержителем, природа которого непостижима человеческим разумом. "Убежденные" материалисты обычно склонны осмеивать эту теорию, но так как в нее в той или иной форме верит половина человечества, мы не имеем права обойти ее молчанием.

Объясняя происхождение Вселенной и человека с механистической позиций, трактуя Вселенную как продукт материи, чье развитие подчиняется объективным законам природы, сторонники рационализма, как правило, отрицают нефизические факторы, особенно тогда, когда речь идет о существовании некоего Всемирного или Космического разума, так как это "ненаучно". Научным же следует считать то, что можно описать с помощью математических формул.

Одна из самых больших проблем, стоящих перед сторонниками теории большого взрыва, как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически. Согласно базовым теориям большого взрыва , первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название "феномена".

Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема "феномена" обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о "феномене" говорят как о вещи, недопустимой с научной точки зрения. Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р. Эллис, профессор математики университета в Кейптауне, в своей книге "Длинная шкала структуры пространство-время" указывают: "Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад. Однако отправной пункт теории возникновения Вселенной - так называемый "феномен" - находится за гранью известных законов физики". Тогда приходится признать, что во имя обоснования "феномена", этого краеугольного камня теории большого взрыва , необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.

"Феномен", как и любой другой отправной пункт "начала Вселенной", включающий в себя что-то, что невозможно описать научными, категориями, остается открытым вопросом. Однако возникает следующий вопрос: откуда появился сам "феномен", как он образовался? Ведь проблема "феномена" - это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами - если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности "феномена", то все равно останется вопрос: как образовалась Вселенная?

В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию "пульсирующей Вселенной". По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о "начале мира". Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации. Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге "Первые три минуты" указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций. Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, "пульсирующая Вселенная" имеет конец, а значит, имеет и начало...

И снова мы упираемся в проблему начала. Дополнительные хлопоты создает общая теория относительности Эйнштейна. Главной проблемой этой теории является то, что она не рассматривает время таким, каким мы его знаем. В эйнштейновской теории время и пространство объединены в четырехмерный пространственновременной континуум. Для него невозможно описать предмет, как занимающий определенное место в определенное время. Релятивистское описание предмета определяет его пространственное и временное положение как единое целое, растянутое от начало до конца существования предмета. Например, человек оказался бы изображенным как единое целое на всем пути своего развития от эмбриона до трупа. Такие конструкции носят название "пространственно-временных червей".

Но если мы "пространственно-временные черви", значит, мы являемся только заурядной формой материи. То, что человек разумное существо, при этом не учитывается. Определяя человека как "червя", теория относительности не принимает во внимание наше индивидуальное восприятие прошлого, настоящего и будущего, а рассматривает ряд отдельных случаев, объединенных пространственно-временным существованием. В действительности-то мы знаем, что мы существуем лишь в сегодняшнем дне, в то время как прошлое существует только в нашей памяти, а будущее - в нашем воображении. А это означает, что все концепции "начала Вселенной", построенные на теории относительности, не учитывают восприятие времени человеческим сознанием. Впрочем, само время еще мало изучено.

Анализируя альтернативные, немеханистические концепции возникновения Вселенной, Джон Гриббин в книге "Белые боги" подчеркивает, что в последние годы имеет место "серия взлетов творческого воображения мыслителей, которых сегодня мы уже не называем ни пророками, ни ясновидящими". Одним из таких творческих взлетов стала концепция "белых дыр", или квазаров, которые в потоке первичного вещества "выплевывают" из себя целые галактики. Другая обсуждающаяся в космологии гипотеза - идея так называемых пространственно-временных туннелей, так называемых "космических каналов". Эта мысль впервые была высказана в 1962 году физиком Джоном Уилером в книге "Геометродинамика", в которой исследователь сформулировал возможность надпространственных, необыкновенно быстрых межгалактических путешествий, которые при движении со скоростью света заняли бы миллионы лет. Некоторые версии концепции "надпространственных каналов" рассматривают возможность перемещения с их помощью в прошлое и будущее, а также в другие вселенные и измерения.

Бог и большой взрыв

Как видим, теория "большого взрыва" подвергается атакам со всех сторон, что вызывает законное неудовольствие у ученых, стоящих на ортодоксальных позициях. Одновременно в научных публикациях все чаще можно натолкнуться на косвенное или прямое признание существования надприродных сил, неподвластных науке. Возрастает число ученых, в том числе крупных математиков и физиков-теоретиков, которые убеждены в существовании Бога или высшего Разума. К числу таких ученых принадлежат, например, лауреаты Нобелевской премии Джордж Уэйлд и Уильям Маккри. Известный советский ученый, доктор наук, физик и математик О.В. Тупицын первым из отечественных ученых сумел математически доказать, что Вселенная, а вместе с ней и человек, сотворены Разумом, неизмеримо более могущественным, чем наш, - то есть Богом.

Нельзя спорить, пишет в своих "Тетрадях" О. В. Тупицын, что жизнь, в том числе разумная, - это всегда строго упорядоченный процесс. В основе жизни лежит порядок, система законов, по которым движется материя. Смерть - это, напротив, беспорядок, хаос и, как следствие, разрушение материи. Без воздействия извне, причем воздействия разумного и целенаправленного, никакой порядок невозможен - тут же начинается процесс разрушения, означающий смерть. Без понимания этого, а значит, без признания идеи Бога науке никогда не суждено открыть первопричину Вселенной, возникшей из праматерии в результате строго упорядоченных процессов или, как называет их физика, фундаментальных законов. Фундаментальных - это значит основных и неизменных, без которых существование мира было бы вообще невозможным.

Однако современному человеку, особенно воспитанному на атеизме, очень трудно включить Бога в систему своего мировоззрения - в силу неразвитой интуиции и полного отсутствия понятия о Боге. Что ж, тогда, приходится верить в большой взрыв ...

Ответ на вопрос «Что такое Большой Взрыв?» может быть получен в ходе долгой дискуссии, поскольку занимает не мало времени. Я же попытаюсь объяснить эту теорию вкратце и по существу. Итак, теория «Большого Взрыва» постулирует, что наша Вселенная внезапно возникла приблизительно 13,7 миллиардов лет назад (из ничего появилось все). И происшедшее тогда до сих пор влияет на то, как и каким образом все во Вселенной взаимодействует друг с другом. Рассмотрим ключевые моменты теории.

Что было до Большого Взрыва?

Теория Большого Взрыва включает очень интересное понятие — сингулярность. Держу пари, это заставляет вас задаться вопросом: что это такое - сингулярность? Астрономы, физики и другие ученые также задаются этим вопросом. Сингулярности, как полагают, есть в ядрах черных дыр. Черная дыра - это область интенсивного гравитационного давления. Это давление, в соответствии с теорией, настолько интенсивно, что вещество сжимается, пока у него не появляется бесконечная плотность. Эту бесконечную плотность и называют сингулярностью . Наша Вселенная, как предполагают, началась как одна из этих бесконечно маленьких, бесконечно горячих и бесконечно плотных сингулярностей. Однако мы еще не подошли к самому Большому Взрыву. Большой Взрыв - это момент, в котором эта сингулярность внезапно «взорвалась» и начала расширяться и создала нашу Вселенную.

Теория «Большого Взрыва» казалось бы подразумевает, что время и пространство существовали прежде, чем возникла наша Вселенная. Однако Стивен Хокинг, Джордж Эллис и Роджер Пенроз (и др.) развивали в конце 1960-х теорию, которая пыталась объяснить, что время и пространство не существовали до расширения сингулярности. Другими словами, ни время, ни пространство не существовали, пока не существовала Вселенная.

Что произошло после Большого Взрыва?

Момент Большого Взрыва — это момент начала времени. После Большого Взрыва, но задолго до первой секунды (10 -43 секунды), космос переживает сверхбыстрое инфляционное расширение, увеличившись в 1050 раз за долю секунды.

Затем расширение замедляется, но первая секунда еще не наступила (еще только 10 -32 секунды). В этот момент Вселенная представляет собой кипящий «бульон» (с температурой 10 27 °C) из электронов, кварков и других элементарных частиц.

Быстрое остывание космоса (до 10 13 °C) позволяет кваркам объединяться в протоны и нейтроны. Тем не менее первая секунда еще не наступила (еще только 10 -6 секунды).

На 3 минуте, слишком горячие для объединения в атомы, заряженные электроны и протоны препятствуют испусканию света. Вселенная представляет собой сверхгорячий туман (10 8 °C).

Через 300 000 лет Вселенная остывает до 10 000 °C, электроны с протонами и нейтронами образуют атомы, в основном водорода и гелия.

Спустя 1 млрд. лет после Большого Взрыва, когда температура Вселенной достигла -200 °C, водород и гелий формируют гигантские «облака», которые впоследствии станут галактиками. Появляются первые звезды.

Теория Большого взрыва сейчас считается столь же несомненной, как и система Коперника. Однако вплоть до второй половины 1960-х она отнюдь не пользовалась всеобщим признанием, и не только потому, что многие ученые с порога отрицали саму идею расширения Вселенной. Просто у этой модели имелся серьезный конкурент.

Через 11 лет космология как наука сможет отмечать свой столетний юбилей. В 1917 году Альберт Эйнштейн осознал, что уравнения общей теор ии относительности позволяют вычислять физически разумные модели мироздания. Классическая механика и теор ия гравитации такой возможности не дают: Ньютон пытался построить общую картину Вселенной, однако при всех раскладах она неизбежно схлопывалась под действием силы тяготения.

Эйнштейн решительно не верил в начало и конец мироздания и поэтому придумал вечно существующую статичную Вселенную. Для этого ему понадобилось ввести в свои уравнения особую компоненту, которая создавала "антитяготение" и тем самым формально обеспечивала стабильность мироустройства. Это дополнение (так называемый космологический член) Эйнштейн считал неэлегантным, уродливым, но все же необходимым (автор ОТО зря не поверил своему эстетическому чутью - позднее было доказано, что статичная модель неустойчива и поэтому физически бессмысл енна).

У модели Эйнштейна быстро появились конкуренты - модель мира без материи Виллема де Ситтера (1917), замкнутые и открытые нестационарные модели Александра Фридмана (1922 и 1924). Но эти красивые конструкции до поры оставались чисто математическими упражнениями. Чтобы рассуждать о Вселенной в целом не умозрительно, надо хотя бы знать, что существуют миры, расположенные за пределами звездного скопления, в котором находится Солнечная система и мы вместе с нею. А космология получила возможность искать опору в астрономических наблюдениях лишь после того, как в 1926 году Эдвин Хаббл опубликовал работу "Внегалактические туманности", где впервые было дано описание галактик как самостоятельных звездных систем, не входящих в состав Млечного пути.

Сотворение Вселенной заняло вовсе не шесть дней – основная доля работы была завершена гораздо раньше. Вот его примерная хронология.

0. Большой взрыв.

Планковская эра: 10-43 с. Планковский момент. Происходит отделение гравитационного взаимодействия. Размер Вселенной в этот момент равен 10-35 м (т.н. Планковская длина). 10-37 с. Инфляционное расширение Вселенной.

Эра великого объединения: 10-35 с. Разделение сильного и электрослабого взаимодействий. 10-12 с. Отделение слабого взаимодействия и окончательное разделение взаимодействий.

Адронная эра: 10-6 с. Аннигиляция протон-антипротонных пар. Кварки и антикварки перестают существовать, как свободные частицы.

Лептонная эра: 1 с. Формируются ядра водорода. Начинается ядерный синтез гелия.

Эра нуклеосинтеза: 3 минуты. Вселенная состоит на 75% из водорода и на 25% из гелия, а также следовых количеств тяжелых элементов.

Радиационная эра: 1 неделя. К этому времени излучение термализуется.

Эра вещества: 10 тыс. лет. Вещество начинает доминировать во Вселенной. 380 тыс. лет. Ядра водорода и электроны рекомбинируют, Вселенная становится прозрачной для излучения.

Звездная эра: 1 млрд. лет. Формирование первых галактик. 1 млрд. лет. Образование первых звезд. 9 млрд. лет. Образование Солнечной системы. 13,5 млрд. лет. Текущий момент

Разбегание галактик

Этот шанс был быстро реализован. До бельгийца Жоржа Анри Леметра, изучавшего астрофизику в Массачусетсcком технологическом институте, дошли слухи, что Хаббл вплотную подошел к революционному открытию - доказательству разбегания галактик. В 1927 году, вернувшись на родину, Леметр опубликовал (а в последующие годы уточнил и развил) модель Вселенной, образовавшейся в результате взрыва сверхплотной материи, расширяющейся в соответствии с уравнениями ОТО. Он математически доказал, что их радиальная скорость должна быть пропорциональна расстоянию от Солнечной системы. Годом позже к этому же выводу независимо пришел принстонский математик Хауард Робертсон.

А в 1929 году Хаббл получил ту же самую зависимость экспериментально, обработав данные по удаленности двадцати четырех галактик и величине красного смещения приходящего от них света. Пятью годами позже Хаббл и его ассистент-наблюдатель Милтон Хьюмасон привели новые доказательства справедливости этого вывода, осуществив мониторинг очень тусклых галактик, лежащих на крайней периферии наблюдаемого космоса. Предсказания Леметра и Робертсона полностью оправдались, и космология нестационарной Вселенной, казалось бы, одержала решительную победу.

Непризнанная модель

Но все же астрономы не спешили кричать ура. Модель Леметра позволяла оценить продолжительность существования Вселенной - для этого нужно было лишь выяснить численную величину константы, входящей в уравнение Хаббла. Попытки определить эту константу приводили к заключению, что наш мир возник всего лишь около двух миллиардов лет назад. Однако геологи утверждали, что Земля много старше, да и астрономы не сомневались, что в космосе полным-полно звезд более почтенного возраста. У астрофизиков тоже были собственные основания для недоверия: процентный состав распределения химических элементов во Вселенной на основе леметровской модели (впервые эту работу в 1942 году проделал Чандрасекар) явно противоречил реальности.

Скепсис специалистов объяснялся и философскими причинами. Астрономическое сообщество только-только свыклось с мыслью, что перед ним распахнулся бесконечный мир, населенный множеством галактик. Казалось естественным, что в своих основах он не изменяется и существует вечно. А теперь ученым предлагалось признать, что Космос конечен не только в пространстве, но и во времени (к тому же эта идея наводила на мысль о божественном творении). Поэтому леметровская теор ия долго оставалась не у дел. Впрочем, еще худшая судьба постигла модель вечно осциллирующей Вселенной, пред-ложенную в 1934 году Ричардом Толманом. Она вообще не получила серьезного признания, а в конце 1960-х годов была отвергнута как математически некорректная.

Акции "раздувающегося мира" не слишком повысились и после того, как в начале 1948 года Джордж Гамов и его аспирант Ральф Алфер построили новую, более реалистичную версию этой модели. Вселенная Леметра родилась из взрыва гипотетического "первичного атома", который явно выходил за рамки представлений физиков о природе микромира.

Гамовскую теор ию долгое время называли вполне академично - "динамическая эволюционирующая модель". А словосочетание "Большой взрыв", как ни странно, ввел в оборот не автор этой теор ии и даже не ее сторонник. В 1949 году продюсер научных программ BBC Питер Ласлетт предложил Фреду Хойлу подготовить серию из пяти лекций. Хойл блистал перед микрофоном и мгновенно приобрел множество поклонников среди радиослушателей. В последнем выступлении он заговорил о космологии, рассказал о своей модели и под конец решил свести счеты с конкурентами. Их теор ия, сказал Хойл, "основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время... Эта идея Большого взрыва кажется мне совершенно неудовлетворительной". Вот так впервые и появилось это выражение. На русский его можно перевести и как "Большой хлопок", что, вероятно, точнее соответствует уничижительному смысл у, который вложил в него Хойл. Через год его лекции были опубликованы, и новый термин пошел гулять по свету

Джордж Гамов и Ральф Алфер предположили, что Вселенная вскоре после рождения состояла из хорошо известных частиц - электронов, фотонов, протонов и нейтронов. В их модели эта смесь была нагрета до высоких температур и плотно упакована в крохотном (по сравнению с нынешним) объеме. Гамов с Алфером показали, что в этом супергорячем супе происходит термоядерный синтез, в результате которого образуется основной изотоп гелия, гелий-4. Они даже вычислили, что уже через несколько минут материя переходит в равновесное состояние, в котором на каждое ядро гелия приходится примерно десяток ядер водорода.

Такая пропорция вполне соответствовала астрономическим данным о распределении легких элементов во Вселенной. Эти выводы вскоре подтвердили Энрико Ферми и Энтони Туркевич. Они к тому же установили, что процессы термоядерного синтеза обязаны порождать немного легкого изотопа гелия-3 и тяжелые изотопы водорода - дейтерий и тритий. Сделанные ими оценки концентрации этих трех изотопов в космическом пространстве тоже совпадали с наблюдениями астрономов.

Проблемная теор ия

Но астрономы-практики продолжали сомневаться. Во-первых, оставалась проблема возраста Вселенной, которую теор ия Гамова решить не могла. Увеличить продолжительность существования мира можно было, только доказав, что галактики разлетаются много медленней, чем принято считать (в конечном счете так и произошло, причем в немалой степени с помощью наблюдений, выполненных в Паломарской обсерватории, но уже в 1960-е годы).

Во-вторых, гамовская теор ия забуксовала на нуклеосинтезе. Объяснив возникновение гелия, дейтерия и трития, она не смогла продвинуться к более тяжелым ядрам. Ядро гелия-4 состоит из двух протонов и двух нейтронов. Все было бы хорошо, если бы оно могло присоединить протон и превратиться в ядро лития. Однако ядра из трех протонов и двух нейтронов или двух протонов и трех нейтронов (литий-5 и гелий-5) крайне неустойчивы и мгновенно распадаются. Поэтому в природе существует лишь стабильный литий-6 (три протона и три нейтрона). Для его образования путем прямого синтеза необходимо, чтобы с ядром гелия одновременно слились и протон, и нейтрон, а вероятность этого события крайне мала. Правда, в условиях высокой плотности материи в первые минуты существования Вселенной подобные реакции все же изредка происходят, что и объясняет очень малую концентрацию древнейших атомов лития.

Природа приготовила Гамову еще один неприятный сюрприз. Путь к тяжелым элементам мог бы лежать и через слияние двух ядер гелия, но эта комбинация тоже нежизнеспособна. Объяснить происхождение элементов тяжелее лития никак не удавалось, и в конце 1940-х годов это препятствие казалось непреодолимым (сейчас мы знаем, что они рождаются только в стабильных и взрывающихся звездах и в космических лучах, но Гамову это не было известно).

Впрочем, у модели "горячего" рождения Вселенной оставалась в запасе еще одна карта, которая со временем стала козырной. В 1948 году Алфер и другой ассистент Гамова, Роберт Герман, пришли к выводу, что космос пронизан микроволновым излучением, возникшим спустя 300 тысяч лет после первичного катаклизма. Однако радиоастрономы не проявили интереса к этому прогнозу, и он так и остался на бумаге.

Появление конкурента

Гамов и Алфер изобрели свою "горячую" модель в столице США, где с 1934 году Гамов преподавал в университете имени Джорджа Вашингтона. Многие продуктивные идеи возникли у них под умеренную выпивку в баре "Маленькая Вена" на Пенсильвания-авеню неподалеку от Белого дома. А если этот путь к построению космологической теор ии кое-кому кажется экзотичным, что можно сказать об альтернативе, появившейся на свет под влиянием фильма ужасов?

Фред Хойл: Расширение Вселенной происходит вечно! Вещество рождается в пустоте самопроизвольно с такой скоростью, что средняя плотность Вселенной остается постоянной

В доброй старой Англии, в университетском Кембридже, после войны обосновались трое замечательных ученых - Фред Хойл, Герман Бонди и Томас Голд. Перед этим они работали в радиолокационной лаборатории британских ВМФ, где и подружились. Хойлу, англичанину из Йоркшира, к моменту капитуляции Германии еще не исполнилось и 30, а его приятелям, уроженцам Вены, стукнуло по 25. Хойл и его друзья в свою "радарную эру" отводили душу в беседах о проблемах мироздания и космологии. Все трое невзлюбили модель Леметра, но закон Хаббла приняли всерьез, а потому отвергли и концепцию статичной Вселенной. После войны они собирались у Бонди и обсуждали те же проблемы. Озарение снизошло после просмотра кинострашилки "Мертвые в ночи". Ее главный герой Уолтер Крейг попал в замкнутую событийную петлю, которая в конце картины возвратила его в ту же ситуацию, с которой все и началось. Фильм с такой фабулой может длиться бесконечно (как стишок о попе и его собаке). Тут-то Голд и сообразил, что Вселенная может оказаться аналогом этого сюжета - одновременно изменяющейся и неизменной!

Друзья сочли идею безумной, но потом решили, что в ней что-то есть. Объединенными усилиями они превратили гипотез у в связную теор ию. Бонди с Голдом дали ее общее изложение, а Хойл в отдельной публикации "Новая модель расширяющейся Вселенной" - математические расчеты. За основу он взял уравнения ОТО, но дополнил их гипотетическим "полем творения" (Creation field, С-поле), обладающим отрицательным давлением. Нечто в этом роде через 30 лет появилось в инфляционных космологических теор иях, что Хойл подчеркивал с немалым удовольствием.

Космология стабильного состояния

Новая модель вошла в историю науки как Космология стабильного состояния (Steady State Cosmology). Она провозгласила полное равноправие не только всех точек пространства (это было у Эйнштейна), но и всех моментов времени: Вселенная расширяется, но начала не имеет, поскольку всегда остается подобной себе самой. Голд назвал это утверждение совершенным космологическим принципом. Геометрия пространства в этой модели остается плоской, как и у Ньютона. Галактики разбегаются, однако в космосе "из ничего" (точнее, из поля творения) появляется новое вещество, причем с такой интенсивностью, что средняя плотность материи остается неизменной. В соответствии с известным тогда значением постоянной Хаббла Хойл вычислил, что в каждом кубометре пространства в течение 300 тысяч лет рождается всего одна частица. Сразу снимался вопрос, почему приборы не регистрируют эти процессы, - они слишком медленны по человеческим меркам. Новая космология не испытывала никаких трудностей, связанных с возрастом Вселенной, этой проблемы для нее просто не существовало.

Для подтверждения своей модели Хойл предложил воспользоваться данными о пространственном распределении молодых галактик. Если С-поле равномерно творит материю повсюду, то средняя плотность таких галактик должна быть примерно одинаковой. Напротив, модель катаклизмического рождения Вселенной предсказывает, что на дальней границе наблюдаемого космоса эта плотность максимальна - оттуда к нам приходит свет еще не успевших состариться звездных скоплений. Хойловский критерий был совершенно разумным, однако в то время проверить его не представлялось возможным из-за отсутствия достаточно мощных телескопов.

Триумф и поражение

Больше 15 лет соперничающие теор ии сражались почти на равных. Правда, в 1955 году английский радиоастроном и будущий нобелевский лауреат Мартин Райл обнаружил, что плотность слабых радиоисточников на космической периферии больше, чем около нашей галактики. Он заявил, что эти результаты несовместимы с Космологией стабильного состояния. Однако через несколько лет его коллеги пришли к выводу, что Райл преувеличил различия плотностей, так что вопрос остался открытым.

Но на двадцатом году жизни хойловская космология стала быстро увядать. К этому времени астрономы доказали, что постоянная Хаббла на порядок меньше прежних оценок, что позволило поднять предполагаемый возраст Вселенной до 10-20 млрд. лет (современная оценка - 13,7 млрд. лет ± 200 млн.). А в 1965 году Арно Пензиас и Роберт Вильсон зарегистрировали предсказанное Алфером и Германом излучение и тем самым сразу привлекли к теор ии Большого взрыва великое множество сторонников.

Вот уже сорок лет эта теор ия считается стандартной и общепризнанной космологической моделью. У нее есть и конкуренты разных возрастов, но вот теор ию Хойла всерьез никто больше не принимает. Ей не помогло даже открытие (в 1999 году) ускорения разлета галактик, о возможности которого писали и Хойл, и Бонди с Голдом. Ее время бесповоротно ушло.

Анонсы новостей

Представление о развитии Вселенной закономерно привело постановке проблемы начала эволюции (рождения) Вселенной и ее

конца (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная образовалась в результате гигантского взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенбер-га вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 10 61 г, сжать до плотности 10 94 г/см 3 , то оно займет объем около 10 -33 см 3 . Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной

Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые

частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока вакуум находится в равновесном состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые занимают в долг у вакуума энергию на короткий промежуток времени, чтобы родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда же вакуум по какой-либо причине в некоторой исходной точке (сингулярности) возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом» нашего мира.

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство. В это время идет безудержное раздувание «пузырей пространства», зародышей одной или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами. Один из них стал зародышем нашей Метагалактики.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает невообразимо малый промежуток времени - до 10 - 33 с после «начала». Он называется инфляционным периодом. За это время размеры Вселенной увеличились в 10 50 раз, от миллиардной доли размера протона до размеров спичечного коробка.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда

распад завершается, отталкивание исчезает, заканчивается и инфляция. А энергия, связанная в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 10 27 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной

Сразу после Большого взрыва Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 10 27 К, которые свободно превращались друг в друга. В этом сгустке существовали только гравитационное и большое (Великое) взаимодействия. Потом Вселенная стала расширяться, одновременно ее плотность и температура уменьшались. Дальнейшая эволюция Вселенной происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой - усложнением ее структур. Этапы эволюции Вселенной различаются характеристиками взаимодействия элементарных частиц и называются эрами. Самые важные изменения заняли менее трех минут.

Адронная эра продолжалась 10 -7 с. На этом этапе температура понижается до 10 13 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 10 10 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза - соединение протонов и нейтронов (их было примерно в 8 раз мень-

ше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» - что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

Величие и многообразие окружающего мира способно поразить любое воображение. Все объекты и предметы, окружающие человека, другие люди, различные виды растений и животных, частицы, которые можно увидеть только с помощью микроскопа, а также непостижимые звездные скопления: все они объединены понятием «Вселенная».

Теории возникновения Вселенной разрабатывались человеком издавна. Несмотря на отсутствие даже начального понятия о религии или науке, в пытливых умах древних людей возникали вопросы о принципах мироустройства и о том, каково положение человека в том пространстве, которое его окружает. Сколько существует теорий возникновения Вселенной сегодня, сложно и сосчитать, некоторые из них изучаются передовыми учеными с мировыми именами, другие - откровенно фантастические.

Космология и ее предмет

Современная космология - наука о структуре и развитии Вселенной - рассматривает вопрос о ее происхождении как одну из интереснейших и до сих пор недостаточно изученных загадок. Природа процессов, способствовавших возникновению звезд, галактик, солнечных систем и планет, их развитие, источник появления Вселенной, а также ее размеры и границы: все это лишь краткий перечень изучаемых современными учеными вопросов.

Поиски ответов на основополагающую загадку об образовании мира привели к тому, что сегодня существуют различные теории возникновения, существования, развития Вселенной. Волнение специалистов, ищущих ответы, строящих и проверяющих гипотезы, оправдано, ведь достоверная теория рождения Вселенной раскроет для всего человечества вероятность существования жизни в других системах и планетах.

Теории возникновения Вселенной имеют характер научных концепций, отдельных гипотез, религиозных учений, философских представлений и мифов. Их все условно разделяют на две основные категории:

  1. Теории, в соответствии с которыми Вселенная создана творцом. Иначе говоря, их суть в том, что процесс создания Вселенной был осознанным и одухотворенным действием, проявлением воли
  2. Теории возникновения Вселенной, построенные на основе научных факторов. Их постулаты категорически отвергают как существование творца, так и возможность осознанного создания мира. Такие гипотезы зачастую основаны на том, что называется принципом заурядности. Они предполагают вероятность наличия жизни не только на нашей планете, но и на других.

Креационизм - теория создания мира Творцом

Как следует из названия, креационизм (творение) - это религиозная теория возникновения Вселенной. Это мировоззрение основано на концепции создания Вселенной, планеты и человека Богом или Творцом.

Идея длительное время являлась доминирующей, вплоть до конца XIX века, когда ускорился процесс накопления знаний в самых разных сферах науки (биология, астрономия, физика), а также широко распространилась эволюционная теория. Креационизм стал своеобразной реакцией христиан, придерживающихся консервативных взглядов на совершающиеся открытия. Доминирующая в то время идея только усилила противоречия, существующие между религиозной и другими теориями.

Чем отличаются научные и религиозные теории

Главные отличия между теориями различных категорий заключаются прежде всего в терминах, которые используют их приверженцы. Так, в научных гипотезах вместо творца - природа, а взамен сотворения - происхождение. Наряду с этим существуют вопросы, которые сходным образом освещены разными теориями или даже полностью продублированы.

Теории возникновения Вселенной, относящиеся к противоположным категориям, по-разному датируют само ее появление. Например, по данным самой распространенной гипотезы (теории большого взрыва), Вселенная образовалась около 13 млрд лет назад.

В противовес этому, религиозная теория возникновения Вселенной приводит совершенно другие цифры:

  • В соответствии с христианскими источниками, возраст Вселенной, созданной Богом, на момент рождения Иисуса Христа составлял 3483-6984 лет.
  • Индуизм предполагает, что нашему миру ориентировочно 155 трлн лет.

Кант и его космологическая модель

Вплоть до XX века большинство ученых придерживались мнения о бесконечности Вселенной. Этим качеством они характеризовали время и пространство. Кроме того, по их мнению, Вселенная обладала статичностью и однородностью.

Идею о безграничности Вселенной в пространстве выдвинул Исаак Ньютон. Развитием этого предположения занимался который разработал теорию об отсутствии также и временных границ. Продвинувшись дальше, в теоретических предположениях, Кант распространил бесконечность Вселенной на число возможных биологических продуктов. Этот постулат значил, что в условиях древнего и огромного мира без конца и начала может существовать неисчислимое количество возможных вариантов, в результате которых реально появление любого биологического вида.

На основании о возможном возникновении жизненных форм была позднее разработана теория Дарвина. Наблюдения за звездным небом и результаты расчетов астрономов подтвердили космологическую модель Канта.

Размышления Эйнштейна

В начале XX века Альбертом Эйнштейном была опубликована собственная модель Вселенной. Согласно его теории относительности, во Вселенной одновременно происходят два противоположных процесса: расширение и сжимание. Однако он соглашался с мнением большинства ученых о стационарности Вселенной, поэтому им было введено понятие космической силы отталкивания. Ее воздействие призвано уравновешивать притяжение звезд и прекращать процесс движения всех небесных тел для сохранения статичности Вселенной.

Модель Вселенной - по Эйнштейну - имеет определенный размер, но границы при этом отсутствуют. Такое сочетание осуществимо только при искривлении пространства таким образом, как это происходит в сфере.

Характеристиками пространства такой модели становятся:

  • Трехмерность.
  • Замыкание самого себя.
  • Однородность (отсутствие центра и края), в которой равномерно располагаются галактики.

А. А. Фридман: Вселенная расширяется

Создатель революционной расширяющейся модели Вселенной, А. А. Фридман (СССР) построил свою теорию на основании уравнений, характеризующих общую теорию относительности. Правда, общепринятым мнением в научном мире того времени была статичность нашего мира, поэтому на его работы не было обращено должного внимания.

Через несколько лет астрономом Эдвином Хабблом было сделано открытие, давшее подтверждение идеям Фридмана. Было обнаружено удаление галактик от находящегося рядом Млечного пути. Вместе с тем неопровержимым стал факт сохранения пропорциональности скорости их движения расстоянию между ними и нашей галактикой.

Это открытие объясняет постоянное «разбегание» звезд и галактик по отношению друг к другу, что приводит к выводу о расширении мироздания.

В конечном счете выводы Фридмана были признаны Эйнштейном, впоследствии он упоминал о заслугах советского ученого как основателя гипотезы о расширении Вселенной.

Нельзя сказать, что существуют противоречия между этой теорией и общей теорией относительности, однако при расширении Вселенной должен был быть изначальный импульс, спровоцировавший разбегание звезд. По аналогии со взрывом, идея получила название «Большой взрыв».

Стивен Хокинг и антропический принцип

Результатом расчетов и открытий Стивена Хокинга стала антропоцентричная теория возникновения Вселенной. Ее создатель утверждает, что существование планеты, настолько хорошо подготовленной для жизни человека, не может быть случайным.

Теория возникновения Вселенной Стивена Хокинга предусматривает также постепенное испарение черных дыр, потерю ими энергии и испускание излучения Хокинга.

В результате поиска доказательств были выделены и проверены более 40 характеристик, соблюдение которых необходимо для развития цивилизации. Американским астрофизиком Хью Россом была произведена оценка вероятности подобного ненамеренного совпадения. Результатом оказалась цифра 10 -53 .

Наша Вселенная включает триллион галактик, по 100 миллиардов звезд в каждой. По произведенным учеными расчетам, общее количество планет должно составлять 10 20 . Эта цифра на 33 порядка меньше рассчитанной ранее. Следовательно, ни одна из планет во всех галактиках не может сочетать условия, которые подошли бы для самопроизвольного возникновения жизни.

Теория большого взрыва: возникновение Вселенной из ничтожно малой частицы

Ученые, поддерживающие теорию большого взрыва, разделяют гипотезу, в соответствии с которой мироздание является последствием грандиозного взрыва. Главным постулатом теории становится утверждение о том, что до этого события все элементы нынешней Вселенной были заключены в частице, имевшей микроскопические размеры. Находясь внутри нее, элементы характеризовались сингулярным состоянием, при котором такие показатели, как температура, плотность и давление не могут быть измерены. Они бесконечны. На материю и энергию в этом состоянии не воздействуют законы физики.

Происшедшего 15 миллиардов лет назад, называют возникшую внутри частицы нестабильность. Разлетевшиеся мельчайшие элементы положили начало тому миру, который мы знаем сегодня.

Вначале Вселенная была туманностью, образованной мельчайшими частицами (мельче атома). Затем, соединяясь, они сформировали атомы, которые послужили основой звездных галактик. Ответ на вопросы о том, что было до взрыва, а также, что стало его причиной, являются важнейшими из задач этой теории возникновения Вселенной.

Таблица схематически изображает этапы формирования мироздания после большого взрыва.

Состояние Вселенной Временная ось Предполагаемая температура
Расширение (инфляция) От 10 -45 до10 -37 секунд Больше 10 26 К
Появляются кварки и электроны 10 -6 с Больше 10 13 К
Образованы протоны и нейтроны 10 -5 с 10 12 К
Возникают ядра гелия, дейтерия и лития От 10 -4 с до 3 мин От 10 11 до 10 9 К
Образованы атомы 400 тыс. лет 4000 К
Газовое облако продолжает расширяться 15 млн лет 300 К
Зарождаются первые звезды и галактики 1 млрд лет 20 К
Взрывы звезд провоцируют формирование тяжелых ядер 3 млрд лет 10 К
Прекращается процесс рождения звезд 10-15 млрд лет 3 К
Энергия всех звезд истощается 10 14 лет 10 -2 К
Черные дыры истощаются и рождаются элементарные частицы 10 40 лет -20 К
Завершается испарение всех черных дыр 10 100 лет От 10 -60 до 10 -40 К

Как следует из приведенных выше данных, Вселенная продолжает расширяться и охлаждаться.

Постоянное увеличение расстояния между галактиками - основной постулат: то, чем отличается теория большого взрыва. Возникновение Вселенной таким способом может быть подтверждено найденными доказательствами. Также существуют и основания для ее опровержения.

Проблематика теории

Учитывая то, что теория большого взрыва не является доказанной на практике, не вызывает удивления то, что существует несколько вопросов, на которые она не в состоянии дать ответ:

  1. Сингулярность. Этим словом обозначено состояние Вселенной, сжатой до одной точки. Проблемой теории большого взрыва становится невозможность описания процессов, происходящих в материи и пространстве в таком состоянии. Общий закон относительности здесь неприменим, поэтому составить математическое описание и уравнения для моделирования нельзя.
    Принципиальная невозможность получения ответа на вопрос об изначальном состоянии Вселенной дискредитирует теорию с самого начала. Ее научно-популярные изложения предпочитают замалчивать или упоминать лишь вскользь эту сложность. Однако для ученых, работающих над тем, чтобы подвести математическую базу под теорию большого взрыва, такое затруднение признано главным препятствием.
  2. Астрономия. В этой сфере теория большого взрыва сталкивается с тем, что не может описать процесс происхождения галактик. Исходя из современных версий теорий, возможно предсказать то, как появляется однородное облако газа. При этом его плотность к нынешнему времени должна составлять около одного атома на кубический метр. Для получения чего-то большего не обойтись без корректировки исходного состояния Вселенной. Недостаток информации и практического опыта в этой сфере становятся серьезными препятствиями на пути дальнейшего моделирования.

Также существует несоответствие в показателях расчетной массы нашей галактики и теми данными, которые получены при изучении скорости ее притяжения к Судя по всему, вес нашей галактики в десять раз больше, чем предполагали ранее.

Космология и квантовая физика

Сегодня нет космологических теорий, которые не опирались бы на квантовую механику. Ведь она занимается описанием поведения атомных и Отличие квантовой физики от классической (излагаемой Ньютоном) в том, что вторая наблюдает и описывает материальные объекты, а первая предполагает исключительно математическое описание самого наблюдения и измерения. Для квантовой физики материальные ценности не представляют предмета исследований, здесь сам наблюдатель выступает частью исследуемой ситуации.

Исходя из этих особенностей, квантовая механика испытывает затруднения с описанием Вселенной, ведь наблюдатель - это часть Вселенной. Однако, говоря о возникновении мироздания, невозможно представить посторонних наблюдателей. Попытки разработать модель без участия постороннего наблюдателя были увенчаны квантовой теорией возникновения Вселенной Дж. Уилера.

Ее суть в том, что в каждый момент времени происходит расщепление Вселенной и образование бесконечного количества копий. В итоге каждая из параллельных Вселенных может быть наблюдаема, а наблюдатели могут видеть все квантовые альтернативы. При этом изначальный и новые миры реальны.

Инфляционная модель

Основной задачей, которую призвана решить теория инфляции, становится поиск ответа на вопросы, оставшиеся неосвещенными теорией большого взрыва и теорией расширения. А именно:

  1. По какой причине Вселенная расширяется?
  2. Что представляет собой большой взрыв?

С этой целью инфляционная теория возникновения Вселенной предусматривает экстраполяцию расширения на нулевой момент времени, заключение всей массы Вселенной в одной точке и образование космологической сингулярности, которая часто именуется большим взрывом.

Очевидной становится неактуальность общей теории относительности, которая не может быть применена в этот момент. В результате для разработки более общей теории (или «новой физики») и решения проблемы космологической сингулярности можно применить только теоретические методы, вычисления и выводы.

Новые альтернативные теории

Несмотря на успешность модели космической инфляции, есть ученые, которые выступают против, называя ее несостоятельной. Их основным аргументом становится критика предлагаемых теорией решений. Противники утверждают, что полученные решения оставляют некоторые детали упущенными, иначе говоря, вместо решения проблемы начальных значений, теория лишь искусно их драпирует.

Альтернативой становятся несколько экзотических теорий, идея которых основана на формировании начальных значений до большого взрыва. Новые теории возникновения Вселенной кратко можно описать следующим образом:

  • Теория струн. Ее приверженцы предлагают, кроме привычных четырех измерений пространства и времени, ввести дополнительные измерения. Они могли бы играть роль на ранних этапах Вселенной, а в данный момент находиться в компактифицированном состоянии. Отвечая на вопрос о причине их компактификации, ученые предлагают ответ, гласящий, что свойством суперструн является Т-дуальность. Поэтому струны «наматываются» на дополнительные измерения и их размер ограничивается.
  • Теория бран. Ее также называют М-теорией. В соответствии с ее постулатами, в начале процесса образования Вселенной существует холодное статичное пятимерное пространство-время. Четыре из них (пространственные) имеют ограничения, или стены - три-браны. Наше пространство выступает одной из стен, а вторая является скрытой. Третья три-брана размещена в четырехмерном пространстве, ее ограничивают две граничные браны. Теория рассматривает столкновение третьей браны с нашей и высвобождение большого количества энергии. Именно эти условия становятся благоприятными для появления большого взрыва.
  1. Циклические теории отрицают уникальность большого взрыва, утверждая, что Вселенная переходит из одного состояния в другое. Проблемой подобных теорий становится возрастание энтропии, согласно второму закону термодинамики. Следовательно, длительность предыдущих циклов была меньшей, а температура вещества - существенно выше, чем при большом взрыве. Вероятность этого чрезвычайно мала.

Независимо от того, сколько существует теорий возникновения Вселенной, только две из них выдержали проверку временем и преодолели проблему всевозрастающей энтропии. Они были разработаны учеными Стейнхардтом-Тюроком и Баум-Фрэмптоном.

Эти относительно новые теории возникновения Вселенной выдвинуты в 80-х годах прошлого века. Они имеют немало последователей, которые разрабатывают модели на ее основе, занимаются поиском доказательств достоверности и работают над устранением противоречий.

Теория струн

Одна из наиболее популярных среди теории возникновения Вселенной - Прежде чем перейти к описанию ее идеи, необходимо разобраться с понятиями одного из ближайших конкурентов, стандартной модели. Она предполагает, что материю и взаимодействия можно описать как определенный набор частиц, делящихся на несколько групп:

  • Кварки.
  • Лептоны.
  • Бозоны.

Эти частицы являются, по сути, кирпичиками мироздания, так как они настолько малы, что их нельзя разделить на составляющие.

Отличительной чертой теории струн становится утверждение о том, что такие кирпичики являются не частицами, а ультрамикроскопическими струнами, совершающими колебания. При этом, колебаясь на различной частоте, струны становятся аналогами различных частиц, описанных в стандартной модели.

Для понимания теории следует осознать, что струны не являются никакой материей, это энергия. Следовательно, теория струн заключает, что все элементы Вселенной состоят из энергии.

Хорошей аналогией может служить огонь. При взгляде на него создается впечатление его материальности, однако его нельзя осязать.

Космология для школьников

Теории возникновения Вселенной коротко изучают в школах на уроках астрономии. Учащимся описывают основные теории о том, как был образован наш мир, что происходит с ним теперь и как он будет развиваться в дальнейшем.

Целью уроков становится ознакомление детей с природой формирования элементарных частиц, химических элементов и небесных тел. Теории возникновения Вселенной для детей сводят к изложению теории большого взрыва. Преподаватели используют наглядный материал: слайды, таблицы, постеры, иллюстрации. Их основной задачей становится пробуждение у детей интереса к миру, который их окружает.