Что наблюдается в результате дифракции. Дифракция и дисперсия света. Не путать

Дифракция и дисперсия - такие красивые и похожие слова, которые звучат как музыка для ушей физика! Как все уже догадались, сегодня мы говорим уже не о геометрической оптике, а о явлениях, обусловленных именно волновой природой света .

Дисперсия света

Итак, в чем заключается явление дисперсии света? В мы рассмотрели закон преломления света. Тогда мы не задумывались, а точнее - не вспоминали о том, что свет (электромагнитная волна) имеет определенную длину. Давайте вспомним:

Свет – электромагнитная волна. Видимый свет – это волны, имеющие длину в интервале от 380 до 770 нанометров.

Так вот, еще старина Ньютон заметил, что показатель преломления зависит от длины волны. Другими словами, красный свет, падая на поверхность и преломляясь, отклонится на другой угол, нежели желтый, зеленый и так далее. Эта зависимость и называется дисперсией .

Пропуская белый свет через призму, можно получить спектр, состоящий из всех цветов радуги. Это явление напрямую объясняется дисперсией света. Раз показатель преломления зависит от длины волны, значит, он зависит и от частоты. Соответственно, скорость света для разных длин волн в веществе также будет различна

Дисперсия света – зависимость скорости света в веществе от частоты.

Где применяется дисперсия света? Да повсюду! Это не только красивое слово, но и красивое явление. Дисперсия света в быту, природе, технике и искусстве. Вот, например, дисперсия красуется на обложке альбома группы Pink Floyd.

Дифракция света

Перед дифракцией нужно сказать про ее "подругу" - интерференцию . Ведь интерференция и дифракция света - это явления, которые наблюдаются одновременно.

Интерференция света – это когда две когерентные световые волны при наложении усиливают друг друга или наоборот ослабляют.

Волны является когерентными , если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Будет результирующая волна усилена (интерференционный максимум) или наоборот ослаблена (интерференционный минимум) - зависит от разности фаз колебаний. Максимумы и минимумы при интерференции чередуются, образуя интерференционную картину.

Дифракция света – еще одно проявления волновых свойств. Казалось бы, луч света всегда должен распространяться по прямой. Но нет! Встречая препятствие, свет отклоняется от первоначального направления как бы огибая преграду. Какие условия необходимы для наблюдения дифракции света? Собственно, это явление наблюдается на предметах любых размеров, но на больших предметах его наблюдать трудно и почти невозможно. Лучше всего это удается сделать на препятствиях, сопоставимых по размерам с длиной волны. В случае со светом - это очень маленькие препятствия.

Дифракцией света называется явление отклонения света от прямолинейного направления при прохождении вблизи преграды.

Дифракция проявляется не только для света, но и для других волн. Например, для звуковых. Или для волн на море. Отличный пример дифракции – это то, как мы слышим песню группы Пинк Флойд из проезжающей мимо машины, когда сами стоим за углом. Если бы звуковая волна распространялась прямо, она бы просто не достигла наших ушей, и мы бы стояли в полной тишине. Согласитесь, скучно. Зато с дифракцией гораздо веселее.

Для наблюдения явления дифракции используется специальный прибор – дифракционная решетка . Дифракционная решетка представляет собой систему препятствий, которые по размеру сопоставимы с длиной волны. Это специальные параллельные штрихи, выгравированные на поверхности металлической или стеклянной пластины. Расстояние между краями соседних щелей решетки называется периодом решетки или ее постоянной.

Что происходит со светом при прохождении дифракционной решетки? Попадая на решетку и встречая препятствие, световая волна проходит через систему прозрачных и непрозрачных областей, в результате чего разбивается на отдельные пучки когерентного света, которые после дифракции интерферируют друг с другом. Каждая длина волны отклоняется при этом на определенный угол, и происходит разложение света в спектр. В результате мы наблюдаем дифракцию света на решетке

Формула дифракционной решетки:

Здесь d – период решетки, фи – угол отклонения света после прохождения решетки, k – порядок дифракционного максимума, лямбда – длина волны.

Сегодня мы узнали, в чем чем заключается явления дифракции и дисперсии света. В курсе оптики очень сильно распространены задачи по теме интерференция, дисперсия и дифракция света. Авторы учебников очень любят подобные задачи. Чего нельзя сказать о тех, кому приходится их решать. Если Вы хотите легко справиться с заданиями, разобраться в теме, а заодно и сэкономить время, обратитесь к . Они помогут Вам справиться с любой задачей!

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями, т.е. световые волны огибают препятствия, но при условии, что размеры последних сравнимы с длиной световой волны. Для красного света длина волны составляет λкр≈8∙10 -7 м, а для фиолетового - λ ф ≈4∙10 -7 м. Явление дифракции наблюдается на расстояниях l от препятствия , где D – линейный размер препятствия, λ - длина волны. Итак, для наблюдения явления дифракции необходимо выполнять определенные требования к размерам препятствий, расстояниям от препятствия до источника света, а также к мощности источника света. На рис. 1 приведены фотографии дифракционных картин от различных препятствий: а) тонкой проволочки, б) круглого отверстия, в) круглого экрана.


Рис. 1

Для решения дифракционных задач – отыскания распределения на экране интенсивностей световой волны, распространяющейся в среде с препятствиями, - применяются приближенные методы, основанные на принципах Гюйгенса и Гюйгенса-Френеля.

Принцип Гюйгенса: каждая точка S 1 , S 2 ,…,S n фронта волны AB (рис. 2) является источником новых, вторичных волн. Новое положение фронта волны A 1 B 1 через время
представляет собой огибающую поверхность вторичных волн.

Принцип Гюйгенса-Френеля: все вторичные источники S 1 , S 2 ,…,S n , расположенные на поверхности волны, когерентны между собой, т.е. имеют одинаковую длину волны и постоянную разность фаз. Амплитуда и фаза волны в любой точке М пространства является результатом интерференции волн, излучаемых вторичными источниками (рис. 3).


Рис. 2

Рис. 3

Прямолинейное распространение луча SM (рис. 3), испущенного источником S в однородной среде, объясняется принципом Гюйгенса-Френеля. Все вторичные волны, излучаемые вторичными источниками, находящимися на поверхности фронта волны АВ, гасятся в результате интерференции, кроме волн от источников, расположенных на малом участке сегмента ab , перпендикулярно к SM. Свет распространяется вдоль узкого конуса с очень малым основанием, т.е. практически прямолинейно.

Дифракционная решетка.

На явлении дифракции основано устройство замечательного оптического прибора – дифракционной решетки. Дифракционной решеткой в оптике называется совокупность большого числа препятствий и отверстий, сосредоточенных в ограниченном пространстве, на которых происходит дифракция света.

Простейшей дифракционной решеткой является система из N одинаковых параллельных щелей в плоском непрозрачном экране. Хорошая решетка изготавливается с помощью специальной делительной машины, наносящей на специальной пластинке параллельные штрихи. Число штрихов доходит до нескольких тысяч на 1мм; общее число штрихов превышает 100000 (рис. 4).

Рис.5

Рис. 4

Если ширина прозрачных промежутков (или отражающих полос) b, а ширина непрозрачных промежутков (или рассеивающих свет полос) a , то величина d=b+a называется постоянной (периодом) дифракционной решетки (рис. 5).

По принципу Гюйгенса-Френеля каждый прозрачный промежуток (или щель) является источником когерентных вторичных волн, способных интерферировать друг с другом. Если на дифракционную решетку перпендикулярно к ней падает пучок параллельных лучей света, то под углом дифракции φ на экране Э (рис. 5), расположенном в фокальной плоскости линзы, будет наблюдаться система дифракционных максимумов и минимумов, полученная в результате интерференции света от различных щелей.

Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим для этого волны, распространяющиеся в направлении, определяемом углом φ (рис. 5). Разность хода между волнами от краев соседних щелей равна длине отрезка DK=d∙sinφ . Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга.

Главные максимумы при дифракции на решетке наблюдаются под углом φ, удовлетворяющими условию d∙sinφ=mλ , где m=0,1,2,3… называется порядком главного максимума. Величина δ=DK=d∙sinφ является оптической разностью хода между сходственными лучами BM и DN , идущими от соседних щелей.

Главные минимумы на дифракционной решетке наблюдаются под такими углами φ дифракции, для которых свет от разных частей каждой щели полностью гасится в результате интерференции. Условие главных максимумов совпадает с условием ослабления на одной щели d∙sinφ=nλ (n=1,2,3…).

Дифракционная решетка является одним из простейших достаточно точных устройств для измерения длин волн. Если период решетки известен, то определение длины волны сводится к измерению угла φ, соответствующего направлению на максимум.

Чтобы наблюдать явления, обусловленные волновой природой света, в частности, дифракцию необходимо использовать излучение, обладающее высокой когерентностью и монохроматичностью, т.е. лазерное излучение. Лазер является источником плоской электромагнитной волны.

В ряде случаев, в особенности при изготовлении оптических систем , разрешающая способность ограничивается не дифракцией, а аберрациями , как правило, возрастающими при увеличении диаметра объектива. Отсюда происходит известное фотографам явление увеличения до определённых пределов качества изображения при диафрагмировании объектива.

При распространении излучения в оптически неоднородных средах дифракционные эффекты заметно проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3-4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики . С другой стороны, если размер неоднородностей среды сравним с длиной волны, в таком случае дифракция проявляет себя в виде эффекта рассеяния волн.

Изначально явление дифракции трактовалось как огибание волной препятствия , то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях - как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру ;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Энциклопедичный YouTube

  • 1 / 5

    В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.

    Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

    Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

    Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика , градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

    Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

    Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики .

    При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде , которое дифракцией не является.

    Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации , в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

    Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

    Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

    Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

    Частные случаи дифракции

    Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля , либо плоской волны на щели или системе отверстий - дифракция Фраунгофера

    Дифракция на щели

    В качестве примера рассмотрим дифракционную картину, возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса .

    Рассмотрим монохроматическую плоскую волну с амплитудой Ψ ′ {\displaystyle \Psi ^{\prime }} с длиной волны λ {\displaystyle \lambda } , падающую на экран с щелью ширины a {\displaystyle a} .

    Ψ = ∫ s l i t i r λ Ψ ′ e − i k r d s l i t {\displaystyle \Psi =\int \limits _{slit}{\frac {i}{r\lambda }}\Psi ^{\prime }e^{-ikr}\,dslit}

    пусть (x′,y′,0) - точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от x ′ = − a / 2 {\displaystyle x^{\prime }=-a/2} до + a / 2 {\displaystyle +a/2} ), и бесконечна в y направлении ([ y ′ = − ∞ {\displaystyle y"=-\infty } , ∞ {\displaystyle \infty } ]).

    Расстояние r от щели определяется как:

    r = (x − x ′) 2 + y ′ 2 + z 2 {\displaystyle r={\sqrt {\left(x-x^{\prime }\right)^{2}+y^{\prime 2}+z^{2}}}} r = z (1 + (x − x ′) 2 + y ′ 2 z 2) 1 2 {\displaystyle r=z\left(1+{\frac {\left(x-x^{\prime }\right)^{2}+y^{\prime 2}}{z^{2}}}\right)^{\frac {1}{2}}}

    Дифракция на отверстии

    Дифракция звука и ультразвуковая локация

    Дифракция радиоволн и радиолокация

    Исследованием дифракции радиоволн занимается геометрическая теория дифракции

    Дифракционная решётка

    Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

    Дифракция рентгеновских лучей

    Дифракция света на ультразвуке

    Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается

    Цель работы: ознакомление с дифракционными картинами различных типов; определение ширины прямоугольной щели при изучении явления дифракции в монохроматическом свете; определение длин волн красного и фиолетового света.

    Приборы и принадлежности: дифракционная решетка, экран со щелью, линейка с делениями, осветитель, штатив; установка РМС 3.

    Теоретические сведения

    Явление дифракции состоит в отклонении света от прямолинейного распространения в среде с резкими неоднородностями в виде краев непрозрачных и прозрачных тел, узких отверстий, выступов и т.д., в результате чего свет проникает в область геометрической тени, и происходит интерференционное перераспределение интенсивности света. Под дифракцией следует понимать любое отклонение от прямолинейного распространения лучей, если только оно не является следствием обычных законов геометрической оптики – отражения и преломления. Явление дифракции объясняется волновыми свойствами света с использованием принципа Гюйгенса-Френеля.

    Основные положения этого принципа:

      Каждый элемент волновой поверхности, которой достигла в данный момент световая волна, служит источником вторичных волн, амплитуда которых пропорциональна площади элемента.

      Вторичные волны, созданные элементами одной и той же по­верхности, когерентны и при наложении могут интерферировать.

      Излучение максимально в направлении внешней нормали к элементу поверхности. Амплитуда сферической волны убывает с расстоянием от источника. Излучают только открытые участки волновой поверхности.

    Этот принцип дает возможность утверждать отступления от пря­молинейного распространения в случае любой преграды. Рассмотрим случай падения плоской волны (параллельного пучка света) на преграду в виде отверстия MN в непрозрачной пластине (рис. 2.1).

    элементарные волны в момент времени t 2 , определяет волновой фронт с поверхностью П 2 .

    Из рис. 2.1 видно, что световые лучи, будучи перпендикулярны волновому фронту, отклоняются от своего первоначального направления и попадают в область геометрической тени.

    Решить задачу о дифракции света – значит исследовать вопросы, относящиеся к интенсивности результирующей световой волны в различных направлениях. Основным вопросом при этом исследовании является изучение интерференции света, при которой налагающиеся волны могут не только усиливаться, но и ослабляться. Одним из важных случаев дифракции является дифракция в параллельных лучах. Она используется при рассмотрении действия оптических приборов (дифракционная решетка, оптические инструменты, и т. д.). Дифракционная решетка в простейшем случае представляет собой стеклянную прозрачную пластинку, на которой нанесены штрихи равной ширины на одинаковом расстоянии друг от друга. Такая решетка может быть использована в спектральной установке обычного типа вместо призмы как диспергирующая система. Чтобы легче было разобраться в довольно сложном физическом явлении интерференции дифрагированных пучков света на Nщелях решетки, рассмотрим вначале дифракцию на одной, затем на двух щелях и, наконец, запишем выражение дляNщелей. Чтобы упростить расчёт, используем метод зон Френеля.

    Дифракция на одной щели . Рассмотрим дифракцию в параллельных лучах на одной щели. Тип дифракции, при котором рассматривается дифракционная картина, образованная параллельными лучами, получил название дифракции в параллельных лучах, или дифракции Фраунгофера. Щель представляет собой прямоугольное отверстие в непрозрачной пластине, причем одна из сторон намного больше другой. Меньшая сторона называется шириной щелиа . Такая щель является препятствием для световых волн, и на ней можно наблюдать дифракцию. В лабораторных условиях дифракция на щели отчетливо наблюдается, если ширина щелиа сравнима по величине с длиной световой волны. Пусть монохроматическая световая волна падает нормально к плоскости щели ширинойa (расстояние АВ). За щелью установлены собирающая линза и экран, помещённый в фокальной плоскости линзы. Схема представлена на рис. 2.2.

    Согласно принципу Гюйгенса, каждая точка фронта волны, дошедшей до щели, является новым источником колебаний, причём фазы этих волн одинаковы, так как при нормальном падении света плоскость щели совпадает с плоскостью волнового фронта. Рассмотрим лучи монохроматического света от точек, лежащих на фронте АВ, направление распространения которых составляет угол с нормалью. Опустим из точки А перпендикуляр АС на направление луча, распространяющегося из точки В. Тогда, распространяясь дальше от АС, лучи не изменят разность хода. Разностью хода лучей является отрезок ВС. Для расчёта интерференции этих лучей применим метод зон Френеля.

    Разделим отрезок ВС на отрезки длиной . На ВС уложитсяzтаких трезков:

    Проведя из концов этих отрезков линии, параллельные АС, до встречи с АВ, разобьем фронт волны в щели на ряд полосок одинаковой ширины, количество которых равно z. Они и являются зонами Френеля, так как соответствующие точки этих полосок являются источниками волн, дошедших до точки наблюдения М по данному направлению с взаимной разностью хода. Амплитуды волн от полосок будут одинаковы, потому что фронт плоский и площади их равны. Согласно теории зон Френеля, лучи от двух соседних зон гасят друг друга, так как фазы их противоположны. Тогда при чётном числе зон Френеля (z=2m, гдеm– целое число,m=1,2,3...), укладывающихся в щели, в точке М будет минимум дифракции, а при нечётном (z=(2m+1)) – максимум. Уравнение (1) тогда запишем следующим образом:

    Распределение интенсивности в дифракционной картине от одной щели показано на рис. 2.3. По оси абсцисс отложено расстояние от нулевого максимума вдоль экрана, на котором располагается спектральная картина.

    Дифракция на двух щелях . Для увеличения интенсивности и более чёткого разделения цветов пользуются не одной щелью, а дифракционной решёткой, которая представляет собой ряд параллельных щелей одинаковой шириныa , разделенных между собой непрозрачными промежутками ширинойb . Суммаa + b = d называется периодом или постоянной дифракционной решетки.

    Для того чтобы найти распределение освещенности на экране в случае решетки, необходимо учесть не только интерференцию волн, вышедших из каждой отдельной щели, но и взаимную интерференцию волн, пришедших в данную точку экрана из соседних щелей. Допустим, что имеется всего две щели. Монохроматическая волна падает нормально к плоскости щелей. Когда в щели укладывается четное число зон Френеля, выполняется условие минимума для щели. Поскольку для каждой щели выполняется условие минимума, то и для всей решетки тоже. Следовательно, условие минимума, для решетки совпадает с условием минимума для щели, оно называется условием главного минимума, и имеет вид:

    .

    Рассмотрим случай, когда в щели укладывается нечетное число зон Френеля. При этом в каждой щели останется по одной нескомпенсированной зоне Френеля, в которой все источники света колеблются в одной фазе. Эти нескомпенсированные лучи, прошедшие через одну из щелей, будут интерферировать с нескомпенсированными лучами, прошедшими через другую щель. Выберем два произвольно направленных луча (рис. 2.4), исходящих из соответствующих точек соседних щелей и падающих в одну точку на экране. Их интерференцию определяет разность хода BC=d sin. ЕслиBC= , то в точке М свет усилен. Уравнение

    определяет главные максимумы. Если, , то в точке М свет ослаблен. Уравнение

    является условием добавочных минимумов, появившихся вследствие наличия второй щели.

    Если b a , то ширина основной части дифракционной картины от двух щелей остаётся прежней. Большая часть энергии сосредоточена в пределах центрального максимума. Пунктиром показано распределение интенсивности для одной щели. Еслиb a дифракционная картина будет несколько сужена. Приb =0 получаются пики, которые в 2 раза уже, так как имеется не две щели ширинойa , а одна щель шириной 2a .

    Дифракция на N щелях . Расчет дифракционной картины на дифракционной решетке довольно сложен с математической точки зрения, но в принципе ничем не отличается от рассмотрения дифракции на двух щелях. Следует учесть, что в случае дифракции на двух щелях появляется некоторое число дополнительных максимумов и минимумов. При наличии третьей щели, их число возрастает, так как необходимо учесть вклад в дифракционную картину от каждой щели. По мере роста числа щелей на дифракционной решетке растет число дополнительных максимумов и минимумов. Условие главных максимумов и минимумов для дифракционной решетки остаётся тем же самым, что и для двух щелей:

    ,m=0,1,2… (главные максимумы), (2.2)

    ,m=1,2,3… (главные минимумы), (2.3)

    а дополнительные минимумы определяются условием:

    ,m=0,1,2… (2.4)

    Если дифракционная решетка состоит из Nщелей, то условием главных максимумов является условие (2.2), а главных минимумов условие (2.3).

    Условие дополнительных минимумов:

    где N- общее число щелей решетки (m=1, 2,…,N-1,N+1,…, 2N-1, 2N+1,…). В формуле (2.5)mпринимает все целочисленные значения, кроме 0,N, 2N, т. е. кроме тех, при которых условие (2.5) переходит в (2.2).

    Сравнивая формулы (2.2) и (2.5), видим, что число главных максимумов в Nраз меньше общего числа дополнительных минимумов. Действительно, число (или порядок) дополнительных минимумов, отвечающих углу, получается из формулы (2.2) следующим:

    а общее число дополнительных минимумов, как видно из формулы (2.5),

    откуда следует .

    Таким образом, между двумя главными максимумами находится (N-1) дополнительных минимумов, разделенных побочными максимумами. Вклад этих побочных максимумов в общую дифракционную картину невелик, так как интенсивность их мала и быстро убывает по мере удаления от главного максимума данного порядка. Поскольку с увеличением числа штрихов решетки все большее количество световой энергии проходит через нее и одновременно происходит увеличение числа дополнительных максимумов и минимумов. Это означает, что главные максимумы становятся более узкими и яркость их возрастает, то есть возрастает разрешающая способность решетки.

    Если на решетку падает свет, содержащий ряд спектральных компонентов, то в соответствии с формулой (2.2), главные максимумы для разных компонентов образуются под разными углами. Таким образом, решетка разлагает свет в спектр.

    Характеристиками решетки как спектрального прибора является угловая дисперсия и разрешающая способность.

    Угловой дисперсией называется величина
    , где
    - угловое расстояние между двумя спектральными линиями, отличающимися по длине волны на
    . Дифференцируя формулу (2), получим:

    Разрешающей способностью называется величина
    , где
    - наименьшая разность длин волн двух спектральных линий, которые видны в спектре раздельно.

    Согласно критерию Релея две близкие линии считают разрешенными (видны раздельно), в том случае, если интенсивность в промежутке между ними составляет не более 80% от интенсивности максимума, т.е. I=0,8I 0 , гдеI 0 – интенсивность главного максимума,I– интенсивность промежутка между двумя соседними максимумами (рис. 2.6).

    Из условия Релея следует:

    т.е. разрешающая способность решетки растет с увеличением числа щелей Nи зависит от порядка спектра.

    ЗАДАНИЕ 1. Определение длин волн красного и фиолетового света.

    Экспериментальная установка состоит из штатива, на котором закреплена горизонтально расположенная линейка с делениями, дифракционная решетка, экран со щелью (для получения узкого пучка света) и осветитель. Используемая в работе дифракционная решетка имеет на 1 мм 100 штрихов, т.е. период решетки d =0,01 мм. Луч света, проходя через узкую щель, а затем дифракционную решетку, попадает на хрусталик глаза, который играет роль двояковыпуклой линзы. В дальнейшем распространении изображение спектров и шкалы с делениями на экране со щелью доходит до сетчатки глаза. Таким образом мы видим изображение спектров на шкале.

    Из условия максимума m-го порядка для дифракционной решетки выражается длина волны:

    где d – период дифракционной решетки, sin φ – синус угла, при котором наблюдается данная линия в спектре, m – порядок спектра, в котором наблюдается линия.

    Углы φ m , под которыми наблюдаются линии в спектрах, являются малыми, поэтому sin φ m ≈ tg φ m . Используя это условие, получим:

    Формула (2.6) является рабочей для определения длины волны наблюдаемой линии в спектре m-го порядка.

    Порядок выполнения работы

      Включить осветитель.

      Установить экран со щелью на расстояние L от дифракционной решетки.

      Приблизить глаз к решетке на удобное расстояние (по обе стороны от щели на черном фоне шкалы должны быть видны дифракционные спектры). При этом глаз должен находиться на близком расстоянии от решетки (рис. 2.7).

      По шкале экрана определить положение красных и фиолетовых линий S в спектрах 1-го и 2-го порядка, расположенных справа и слева от щели для различных расстояний L (L=15 см, 20 см, 25 см). Результаты измерений занести в табл. 1.

    Таблица 1

    Порядок спектра m

      Вычислить tgφ по формуле:

    .

      По формуле (2.6) вычислить длины волн красного и фиолетового света для спектров различных порядков и для разных расстояний L.

      Вычислить среднее арифметическое значение длины волны для красного и фиолетового света по формуле:

    ,

    где n – число измерений.

    .

    ,

    где t α (n) – коэффициент Стьюдента, α=0,95, t 0,95 (6)=2,6.

    λ= ±Δλ, нм; α=0,95.

    ЗАДАНИЕ 2. Определение длины волны излучения при дифракции на щели.

    Описание лабораторной установки

    Объект МОЛ-1 представляет собой тонкий стеклянный диск с непрозрачным покрытием и прозрачными структурами, расположенными в трех рядах: ряд А – двойные щели, ряд В – круглые отверстия, ряд С – одиночные щели. Общее количество щелей в ряде С составляет 16. Излучение от лазера направляется на нужную структуру на поверхности объекта МОЛ-1. На экране при этом наблюдается соответствующая дифракционная картина.

    Из условия минимума m-го порядка для щели выражается длина волны излучения:

    где а – ширина щели, sin φ – синус угла, при котором наблюдается минимум, m – порядок минимума.

    Углы φ m , под которыми наблюдаются минимумы, являются малыми, поэтому sin φ m ≈ tg φ m . Используя это условие, получим:

    Формула (2.7) является рабочей для определения длины волны излучения лазера.

    Порядок выполнения работы

      Согласно табл. 2 выбрать щели для изучения в ряде С – не менее трех (по указанию преподавателя).

    Таблица 2

      Включить лазер. Установить щель на расстояние L до экрана. Регулируя юстировочные винты, добиться нужного направления излучения на исследуемую щель в ряде С на тест – объекте МОЛ-1. Получить четкую дифракционную картину.

      Закрепить на экране чистый лист бумаги. Отметить на нем расстояния S от середины центрального максимума до середины минимумов первого, второго и третьего порядков вправо и влево от центрального максимума (т.е. для порядков m=±1, ±2, ±3). Измерить расстояние L.

      Сняв лист, тщательно измерить линейкой отмеченные расстояния S. Результаты измерений занести в табл. 3.

    Таблица 3

    S СРЕДНЕЕ

    .

      Вычислить tgφ по формуле:

      Вычислить среднее арифметическое значение длины волны по формуле:

    ,

    где n – число измерений.

      Вычислить оценку средней квадратичной ошибки по формуле:

    .

      Вычислить границу случайной погрешности по формуле:

    ,

    где t α (n) – коэффициент Стьюдента, α=0,95, t 0,95 (9)=2,31.

      Записать окончательный результат в виде:

    λ= ±Δλ, нм; α=0,95.

    Контрольные вопросы

      Какие волны называются когерентными?

      В чем заключаются явления интерференции и дифракции света?

      Что называют волновым фронтом, волновой поверхностью?

      В чем заключается метод зон Френеля?

      Сформулируйте принцип Гюйгенса – Френеля.

      Нарисуйте и объясните дифракционные картины, получаемые от одной щели и от дифракционной решетки при освещении их монохроматическим и белым светом.

      Объясните возникновение главного максимума, главного минимума и дополнительного минимума при дифракции на решетке. Записать их формулы.

      Как изменится вид дифракционной картины от решетки, если источник света заменить монохроматическим?

      Расскажите о применении дифракции в науке и технике.

    ЛАБОРАТОРНАЯ РАБОТА № 3

    Л 3 -4

    Дифракция света

    Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшое отверстие в экранах и т.д.

    Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

    Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

    Различают два вида дифракции. Если источник света S и точка наблюденияP расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точкуP , образуют практически параллельные пучки, говорят одифракции в параллельных лучах или одифракции Фраунгофера . В противном случае говорят одифракции Френеля . Дифракцию Фраунгофера можно наблюдать, поместив за источником светаS и перед точкой наблюденияP по линзе так, чтобы точкиS иP оказались в фокальной плоскости соответствующей линзы (рис.).

    Принципиально дифракция Фраунгофера не отличается от дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра , гдеb – характерный размер препятствия,l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина,– длина волны. Если

    Явление дифракции качественно объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Для монохроматической волны волновая поверхность есть поверхность, на которой колебания совершаются в одинаковой фазе.

    Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис.). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. огибает края отверстия.

    Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности на фронте волны. Из повседневного опыта известно, что в большом числе случаев лучи света не отклоняются от их прямолинейного распространения. Так, предметы, освещенные точечным источником света, дают резкую тень. Таким образом, принцип Гюйгенса нуждается в дополнении, позволяющем определять интенсивность волны.

    Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса-Френеля , световая волна, возбуждаемая каким-либо источникомS , может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых малыми элементами некоторой замкнутой поверхности, охватывающей источникS . Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому источники вторичных волн действуют синфазно. В аналитическом виде для точечного источника этот принцип записывается в виде

    , (1) гдеE – световой вектор, включающий в себя временную зависимость
    ,k – волновое число,r – расстояние от точкиP на поверхности S до точкиP ,K – коэффициент, зависящий от ориентации площадки по отношению к источнику и точкеP . Правомерность формулы (1) и вид функцииK устанавливается в рамках электромагнитной теории света (в оптическом приближении).

    В том случае, когда между источником S и точкой наблюденияP имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. На поверхности непрозрачных экранов амплитуды вторичных источников считаются равными нулю; в области отверстий амплитуды источников такие же, как при отсутствии экрана (так называемое приближение Кирхгофа).

    Метод зон Френеля. Учет амплитуд и фаз вторичных волн позволяет в принципе найти амплитуду результирующей волны в любой точке пространства и решить задачу о распространении света. В общем случае расчет интерференции вторичных волн по формуле (1) довольно сложный и громоздкий. Однако ряд задач можно решить, применив чрезвычайно наглядный прием, заменяющий сложные вычисления. Метод этот получил название методазон Френеля .

    Суть метода разберем на примере точечного источника света S . Волновые поверхности представляют собой в этом случае концентрические сферы с центром в S .Разобьем изображенную на рисунке волновую поверхность на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точкиP отличаются на
    . Обладающие таким свойством зоны называютсязонами Френеля . Из рис. видно, что расстояниеот внешнего края – m -й зоны до точкиP равно

    , гдеb – расстояние от вершины волновой поверхностиO до точкиP .

    Колебания, приходящие в точку P от аналогичных точек двух соседних зон (например, точек, лежащих в середине зон или у внешних краев зон), находятся в противофазе. Поэтому колебания от соседних зон будут взаимно ослаблять друг друга и амплитуда результирующего светового колебания в точкеP

    , (2) где,, … – амплитуды колебаний, возбуждаемых 1-й, 2-й, … зонами.

    Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты. Обозначив площадь этого сегмента через, найдем, что, площадьm -й зоны Френеля равна
    . Из рисунка видно, что. После несложных преобразований, учитывая
    и
    , получим

    . Площадь сферического сегмента и площадьm -й зоны Френеля соответственно равны

    ,
    . (3) Таким образом, при не слишком большихm площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точкеP тем меньше, чем больше уголмежду нормальюn к поверхности зоны и направлением наP , т.е. действие зон постепенно убывает от центральной к периферийным. Кроме того, интенсивность излучения в направлении точкиP уменьшается с ростомm и вследствие увеличения расстояния от зоны до точкиP . Таким образом, амплитуды колебаний образуют монотонно убывающую последовательность

    Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при
    и
    число зон достигает~10 6 . Это означает, что амплитуда убывает очень медленно и поэтому можно приближенно считать

    . (4) Тогда выражение (2) после перегруппировки суммируется

    , (5) так как выражения в скобках, согласно (4), равны нулю, а вклад последнего слагаемого ничтожно мал. Таким образом, амплитуда результирующих колебаний в произвольной точкеP определяется как бы половинным действием центральной зоны Френеля.

    При не слишком больших m высота сегмента
    , поэтому можно считать, что
    . Подставив значение для, получим для радиуса внешней границыm -й зоны

    . (6) При
    и
    радиус первой (центральной) зоны
    . Следовательно, распространение света отS кP происходит так, как если бы световой поток шел внутри очень узкого канала вдольSP , т.е. прямолинейно.

    Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонная пластинка – в простейшем случае стеклянная пластинка, состоящая из системы чередующихся прозрачных и непрозрачных концентрических колец, с радиусами зон Френеля заданной конфигурации. Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянииb от точки наблюдения), то результирующая амплитуда будет больше, чем при полностью открытом волновом фронте.

    Дифракция Френеля на круглом отверстии. Дифракция Френеля наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, в данном случае экрана с отверстием. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути экран с отверстием. Дифракционная картина наблюдается на экране, параллельном экрану с отверстием. Ее вид зависит от расстояния между отверстием и экраном (для данного диаметра отверстия). Проще определить амплитуду световых колебаний в центре картины. Для этого разобьем открытую часть волновой поверхности на зоны Френеля. Амплитуда колебания, возбуждаемая всеми зонами равна

    , (7) где знак плюс отвечает нечетнымm и минус – четнымm .

    Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в центральной точке будет больше, чем при свободном распространении волны; если четное то амплитуда (интенсивность) будет равна нулю. Например, если отверстие открывает одну зону Френеля, амплитуда
    , то интенсивность (
    ) больше в четыре раза.

    Расчет амплитуды колебания на внеосевых участках экрана более сложен, так как соответствующие зоны Френеля частично перекрываются непрозрачным экраном. Качественно ясно, что дифракционная картина будет иметь вид чередующихся темных и светлых колец с общим центром (если m четное, то в центре будет темное кольцо, еслиm нечетное – то светлое пятно), причем интенсивность в максимумах убывает с расстоянием от центра картины. Если отверстие освещается не монохроматическим светом, а белым светом, то кольца окрашены.

    Рассмотрим предельные случаи. Если отверстие открывает лишь часть централь­ной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает. Если отверстие открывает большое число зон, то
    и амплитуда в центре
    , т.е. такая же, как и при полностью открытом волновом фронте; чередование светлых и темных колец происходит лишь в очень узкой области на границе геометрической тени. Фактически дифракционная картина не наблюдается, и распространение света, по сути, является прямолинейным.

    Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути диск (рис.). Дифракционная картина, наблюдаемая на экране, является центрально симметричной. Определим амплитуду световых колебаний в центре. Пусть диск закрываетm первых зон Френеля. Тогда амплитуда колебаний равна

    или
    , (8) так как выражения, стоящие в скобках, равны нулю. Следовательно, в центре всегда наблюдается дифракционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами. При небольшом числе закрытых зон амплитуда
    мало отличается от. Поэтому интенсивность в центре будет почти такая же, как при отсутствии диска. Изменение освещенности экрана с расстоянием от центра картины изображено на рис.

    Рассмотрим предельные случаи. Если диск закрывает лишь небольшую часть центральной зоны Френеля, он совсем не отбрасывает тени – освещенность экрана всюду остается такой же, как при отсутствии диска. Если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только в узкой области на границе геометрической тени. В этом случае
    , так что светлое пятно в центре отсутствует, и освещенность в области геометрической тени практически всюду равна нулю. Фактически дифракционная картина не наблюдается, и распространение света является прямолинейным.

    Дифракция Фраунгофера на одной щели. Пусть плоская монохроматическая волна падает нормально плоскости узкой щели ширинойa . Оптическая разность хода между крайними лучами, идущими от щели в некотором направлении

    .

    Разобьем открытую часть волновой поверхности в плоскости щели на зоны Френеля, имеющие вид равновеликих полос, параллельных щели. Так как ширина каждой зоны выбирается такой, чтобы разность хода от краев этих зон была равна
    , то на ширине щели уместится
    зон. Амплитуды вторичных волн в плоскости щели будут равны, так как зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Фазы колебаний от пары соседних зон Френеля отличаются на, поэтому, суммарная амплитуда этих колебаний равна нулю.

    Если число зон Френеля четное, то

    , (9а) и в точкеB наблюдается минимум освещенности (темный участок), если же число зон Френеля нечетное, то

    (9б) и наблюдается близкая к максимуму освещенность, соответствующей действию одной нескомпенсированной зоны Френеля. В направлении
    щель действует, как одна зона Френеля, и в этом направлении наблюдается наибольшая освещенность, точкесоответствует центральный или главный максимум освещенности.

    Расчет освещенности в зависимости от направления дает

    , (10) где– освещенность в середине дифракционной картины (против центра линзы),– освещенность в точке, положение которой определяется направлением. График функции (10) изображен на рис. Максимумы освещенности соответствуют значениям, удовлетворяющие условиям

    ,
    ,
    и т.д. Вместо этих условий для максимумов приближенно можно пользоваться соотношением (9б), дающим близкие значения углов. Величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и следующих максимумов относятся как

    и т.д., т.е. основная часть световой энергии, прошедшей через щель, сосредоточена в главном максимуме.

    Сужение щели приводит к тому, что центральный максимум расплывается, а его освещенность уменьшается. Наоборот, чем щель шире, тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При
    в центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.