Что значит разложить на многочлены. Разложение на множители. Примеры

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Yandex.RTB R-A-339285-1

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей (x - x i) , i = 1 , 2 , … , n , тогда P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 1) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 3) x 2 + p x + q , где x 2 + p x + q = (x - x 1) (x - x 2) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на (x - s) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) + P n (s) , где Q n - 1 (x) является многочленом со степенью n - 1 .

Следствие из теоремы Безу

Когда корень многочлена P n (x) считается s , тогда P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a (x - x 1) (x - x 2) , где x 1 и x 2 - это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4 x 2 - 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = (- 5) 2 - 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 - 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 - 5 x + 1 = 4 x - 1 4 x - 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x - 1 4 x - 1 = 4 x 2 - x - 1 4 x + 1 4 = 4 x 2 - 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3 x 2 - 7 x - 11 .

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 - 7 x - 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 - 7 x - 11 = 0 D = (- 7) 2 - 4 · 3 · (- 11) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 - D 2 · 3 = 7 - 181 6

Отсюда получаем, что 3 x 2 - 7 x - 11 = 3 x - 7 + 181 6 x - 7 - 181 6 .

Пример 3

Произвести разложение многочлена 2 x 2 + 1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = - 1 2 x 1 = - 1 2 = 1 2 · i x 2 = - 1 2 = - 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x - 1 2 · i x + 1 2 · i .

Пример 4

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Решение

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 - 4 · 1 · 1 = - 35 9 x 1 = - 1 3 + D 2 · 1 = - 1 3 + 35 3 · i 2 = - 1 + 35 · i 6 = - 1 6 + 35 6 · i x 2 = - 1 3 - D 2 · 1 = - 1 3 - 35 3 · i 2 = - 1 - 35 · i 6 = - 1 6 - 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x - - 1 6 + 35 6 · i x - - 1 6 - 35 6 · i = = x + 1 6 - 35 6 · i x + 1 6 + 35 6 · i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на (x - x 1) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x = = x (a n x n - 1 + a n - 1 x n - 2 + . . . + a 1)

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 - x на множители.

Решение

Видим, что x 1 = 0 - это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 - x = x (4 x 2 + 8 x - 1)

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x - 1 . Найдем дискриминант и корни:

D = 8 2 - 4 · 4 · (- 1) = 80 x 1 = - 8 + D 2 · 4 = - 1 + 5 2 x 2 = - 8 - D 2 · 4 = - 1 - 5 2

Тогда следует, что

4 x 3 + 8 x 2 - x = x 4 x 2 + 8 x - 1 = = 4 x x - - 1 + 5 2 x - - 1 - 5 2 = = 4 x x + 1 - 5 2 x + 1 + 5 2

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа - 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х = 2 и х = - 3 – это корни исходного многочлена, который можно представить как произведение вида:

f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x 3 + 5 x 2 + 9 x + 9) = = (x - 2) (x + 3) (x 2 + 2 x + 3)

Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x + 3) (x 2 + 2 x + 3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f (x) = 2 x 3 + 19 x 2 + 41 x + 15 .

Решение

Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что

4 f (x) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g (y)

Когда получившаяся функция вида g (y) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60

Перейдем к вычислению функции g (y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g (1) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g (- 1) = (- 1) 3 + 19 · (- 1) 2 + 82 · (- 1) + 60 = - 4 g (2) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g (- 2) = (- 2) 3 + 19 · (- 2) 2 + 82 · (- 2) + 60 = - 36 g (3) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g (- 3) = (- 3) 3 + 19 · (- 3) 2 + 82 · (- 3) + 60 = - 42 g (4) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g (- 4) = (- 4) 3 + 19 · (- 4) 2 + 82 · (- 4) + 60 = - 28 g (5) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g (- 5) = (- 5) 3 + 19 · (- 5) 2 + 82 · (- 5) + 60

Получаем, что у = - 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = - 5 2 - это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .

Решение

Запишем и получим:

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 (2 x 2 + 14 x + 6) = = 2 x + 5 2 (x 2 + 7 x + 3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.

x 2 + 7 x + 3 = 0 D = 7 2 - 4 · 1 · 3 = 37 x 1 = - 7 + 37 2 x 2 = - 7 - 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 - 37 2 x + 7 2 + 37 2

Отсюда следует, что

2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 - 37 2 x + 7 2 + 37 2

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x 4 + 4 x 3 - x 2 - 8 x - 2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , - 1 , 2 и - 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

1 4 + 4 · 1 3 - 1 2 - 8 · 1 - 2 = - 6 ≠ 0 (- 1) 4 + 4 · (- 1) 3 - (- 1) 2 - 8 · (- 1) - 2 = 2 ≠ 0 2 4 + 4 · 2 3 - 2 2 - 8 · 2 - 2 = 26 ≠ 0 (- 2) 4 + 4 · (- 2) 3 - (- 2) 2 - 8 · (- 2) - 2 = - 6 ≠ 0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 4 + 4 x 3 - 2 x 2 + x 2 - 8 x - 2 = = (x 4 - 2 x 2) + (4 x 3 - 8 x) + x 2 - 2 = = x 2 (x 2 - 2) + 4 x (x 2 - 2) + x 2 - 2 = = (x 2 - 2) (x 2 + 4 x + 1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x 2 - 2 = 0 x 2 = 2 x 1 = 2 x 2 = - 2 ⇒ x 2 - 2 = x - 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 - 4 · 1 · 1 = 12 x 1 = - 4 - D 2 · 1 = - 2 - 3 x 2 = - 4 - D 2 · 1 = - 2 - 3 ⇒ x 2 + 4 x + 1 = x + 2 - 3 x + 2 + 3

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 2 - 2 x 2 + 4 x + 1 = = x - 2 x + 2 x + 2 - 3 x + 2 + 3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x 4 + 3 x 3 - x 2 - 4 x + 2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = = (x 4 + x 3) + (2 x 3 + 2 x 2) + (- 2 x 2 - 2 x) - x 2 - 2 x + 2 = = x 2 (x 2 + x) + 2 x (x 2 + x) - 2 (x 2 + x) - (x 2 + 2 x - 2) = = (x 2 + x) (x 2 + 2 x - 2) - (x 2 + 2 x - 2) = (x 2 + x - 1) (x 2 + 2 x - 2)

После разложения на множители получим, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = x 2 + x - 1 x 2 + 2 x - 2 = = x + 1 + 3 x + 1 - 3 x + 1 2 + 5 2 x + 1 2 - 5 2

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x - 2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3

На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .

Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 .

После применения разности квадратов, получим

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3 = = x + 1 - 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3

Пример 12

Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .

Решение

Займемся преобразованием выражения. Получаем, что

x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 - 2 = (x + 2) 3 - 2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x 3 + 6 x 2 + 12 x + 6 = = (x + 2) 3 - 2 = = x + 2 - 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 - 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .

Решение

По условию видно, что необходимо произвести замену y = x 3 . Получаем:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

Корни полученного квадратного уравнения равны y = - 2 и y = - 3 , тогда

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 - 2 3 x + 4 3 x + 3 3 x 2 - 3 3 x + 9 3

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Многочлен представляет собой выражение, состоящее из суммы одночленов. Последние являются произведением константы (числа) и корня (или корней) выражения в степени k. В таком случае говорят о многочлене степени k. Разложение многочлена предполагает трансформацию выражения, при которой на смену слагаемых приходят множители. Рассмотрим основные способы проведения такого рода преобразования.

Метод разложения многочлена путем выделения общего множителя

Данный способ основывается на закономерностях распределительного закона. Так, mn + mk = m * (n + k).

  • Пример: разложите 7y 2 + 2uy и 2m 3 – 12m 2 + 4lm.

7y 2 + 2uy = y * (7y + 2u),

2m 3 – 12m 2 + 4lm = 2m(m 2 – 6m + 2l).

Однако, множитель, присутствующий обязательно в каждом многочлене может найтись не всегда, поэтому данный способ не является универсальным.

Метод разложения многочлена на базе формул сокращенного умножения

Формулы сокращенного умножения справедливы для многочлена любой степени. В общем виде выражение-преобразование выглядит следующим образом:

u k – l k = (u – l)(u k-1 + u k-2 * l + u k-3 *l 2 + … u * l k-2 + l k-1), где k является представителем натуральных чисел.

Наиболее часто на практике применяются формулы для многочленов второго и третьего порядков:

u 2 – l 2 = (u – l)(u + l),

u 3 – l 3 = (u – l)(u 2 + ul + l 2),

u 3 + l 3 = (u + l)(u 2 – ul + l 2).

  • Пример: разложите 25p 2 – 144b 2 и 64m 3 – 8l 3 .

25p 2 – 144b 2 = (5p – 12b)(5p + 12b),

64m 3 – 8l 3 = (4m) 3 – (2l) 3 = (4m – 2l)((4m) 2 + 4m * 2l + (2l) 2) = (4m – 2l)(16m 2 + 8ml + 4l 2).


Метод разложения многочлена – группировка слагаемых выражения

Данный метод некоторым образом перекликается с техникой выведения общего множителя, но имеет некоторые отличия. В частности, перед тем, как выделять общий множитель, следует произвести группировку одночленов. В основе группирования лежат правила сочетательного и переместительного законов.

Все одночлены, представленные в выражении разбиваются на группы, в каждой из которых выносится общее значение такое, что второй множитель будет одинаковым во всех группах. В общем виде подобный способ разложения можно представить в виде выражения:

pl + ks + kl + ps = (pl + ps) + (ks + kl) ⇒ pl + ks + kl + ps = p(l + s) + k(l + s),

pl + ks + kl + ps = (p + k)(l + s).

  • Пример: разложите 14mn + 16ln – 49m – 56l.

14mn + 16ln – 49m – 56l = (14mn – 49m) + (16ln – 56l) = 7m * (2n – 7) + 8l * (2n – 7) = (7m + 8l)(2n – 7).


Метод разложения многочлена – формирование полного квадрата

Данный способ является одним из наиболее эффективных в ходе разложения многочлена. На первоначальном этапе необходимо определить одночлены, которые можно “свернуть” в квадрат разности или суммы. Для этого используется одно из соотношений:

(p – b) 2 = p 2 – 2pb + b 2 ,

  • Пример: разложите выражение u 4 + 4u 2 – 1.

Выделим среди его одночленов слагаемые, которые образуют полный квадрат: u 4 + 4u 2 – 1 = u 4 + 2 * 2u 2 + 4 – 4 – 1 =

= (u 4 + 2 * 2u 2 + 4) – 4 – 1 = (u 4 + 2 * 2u 2 + 4) – 5.

Завершаете преобразование, используя правила сокращенного умножения: (u 2 + 2) 2 – 5 = (u 2 + 2 – √5)(u 2 + 2 + √5).

Т.о. u 4 + 4u 2 – 1 = (u 2 + 2 – √5)(u 2 + 2 + √5).


Частично использовать разложение на множители разность степеней мы уже умеем - при изучении темы «Разность квадратов» и «Разность кубов» мы научились представлять как произведение разность выражений, которые можно представить как квадраты или как кубы некоторых выражений или чисел.

Формулы сокращенного умножения

По формулам сокращенного умножения:

разность квадратов можно представить как произведение разности двух чисел или выражений на их сумму

Разность кубов можно представить как произведение разности двух чисел на неполный квадрат суммы

Переход к разности выражений в 4 степени

Опираясь на формулу разности квадратов, попробуем разложить на множители выражение $a^4-b^4$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n*m}$

Тогда можно представить:

$a^4={{(a}^2)}^2$

$b^4={{(b}^2)}^2$

Значит, наше выражение можно представить, как $a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2$

Теперь в первой скобке мы вновь получили разность чисел, значит вновь можно разложить на множители как произведение разности двух чисел или выражений на их сумму: $a^2-b^2=\left(a-b\right)(a+b)$.

Теперь вычислим произведение второй и третьей скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат. Для этого сначала первый член первого многочлена - $a$ - умножим на первый и второй член второго (на $a^2$ и $b^2$),т.е. получим $a\cdot a^2+a\cdot b^2$, затем второй член первого многочлена -$b$- умножим на первый и второй члены второго многочлена (на $a^2$ и $b^2$),т.е. получим $b\cdot a^2 + b\cdot b^2$ и составим сумму получившихся выражений

$\left(a+b\right)\left(a^2+b^2\right)=a\cdot a^2+a\cdot b^2+ b \cdot a^2 + b\cdot b^2 = a^3+ab^2+a^2b+b^3$

Запишем разность одночленов 4 степени с учетом вычисленного произведения:

$a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2={(a}^2-b^2)(a^2+b^2)$=$\ \left(a-b\right)(a+b)(a^2+b^2)\ $=

Переход к разности выражений в 6 степени

Опираясь на формулу разности квадратов попробуем разложить на множители выражение $a^6-b^6$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n\cdot m}$

Тогда можно представить:

$a^6={{(a}^3)}^2$

$b^6={{(b}^3)}^2$

Значит, наше выражение можно представить, как $a^6-b^6={{(a}^3)}^2-{{(b}^3)}^2$

В первой скобке мы получили разность кубов одночленов, во второй сумму кубов одночленов, теперь вновь можно разложить на множители разность кубов одночленов как произведение разности двух чисел на неполный квадрат суммы $a^3-b^3=\left(a-b\right)(a^2+ab+b^2)$

Исходное выражение принимает вид

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)$

Вычислим произведение второй и третье скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат.

$(a^2+ab+b^2)(a^3+b^3)=a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5$

Запишем разность одночленов 6 степени с учетом вычисленного произведения:

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)$

Разложение на множители разности степеней

Проанализируем формулы разности кубов, разности $4$ степеней, разности $6$ степеней

Мы видим, что в каждом из данных разложений присутствует некоторая аналогия, обобщая которую получим:

Пример 1

Разложить на множители ${32x}^{10}-{243y}^{15}$

Решение: Сначала представим каждый одночлен как некоторый одночлен в 5 степени:

\[{32x}^{10}={(2x^2)}^5\]\[{243y}^{15}={(3y^3)}^5\]

Используем формулу разности степеней

Рисунок 1.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Разложение многочленов на множители – это тождественное преобразование, в результате которого многочлен преобразуется в произведение нескольких сомножителей – многочленов или одночленов.

Существует несколько способов разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобку.

Это преобразование основывается на распределительном законе умножения: ac + bc = c(a + b). Суть преобразования заключается в том, чтобы выделить в двух рассматриваемых компонентах общий множитель и «вынести» его за скобки.

Разложим на множители многочлен 28х 3 – 35х 4 .

Решение.

1. Находим у элементов 28х 3 и 35х 4 общий делитель. Для 28 и 35 это будет 7; для х 3 и х 4 – х 3 . Иными словами, наш общий множитель 7х 3 .

2. Каждый из элементов представляем в виде произведения множителей, один из которых
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х.

3. Выносим за скобки общий множитель
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х = 7х 3 (4 – 5х).

Способ 2. Использование формул сокращенного умножения. «Мастерство» владением этим способом состоит в том, чтобы заметить в выражении одну из формул сокращенного умножения.

Разложим на множители многочлен х 6 – 1.

Решение.

1. К данному выражению мы можем применить формулу разности квадратов. Для этого представим х 6 как (х 3) 2 , а 1 как 1 2 , т.е. 1. Выражение примет вид:
(х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1).

2. К полученному выражению мы можем применить формулу суммы и разности кубов:
(х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Итак,
х 6 – 1 = (х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Способ 3. Группировка. Способ группировки заключается в объединение компонентов многочлена таким образом, чтобы над ними было легко совершать действия (сложение, вычитание, вынесение общего множителя).

Разложим на множители многочлен х 3 – 3х 2 + 5х – 15.

Решение.

1. Сгруппируем компоненты таким образом: 1-ый со 2-ым, а 3-ий с 4-ым
(х 3 – 3х 2) + (5х – 15).

2. В получившемся выражении вынесем общие множители за скобки: х 2 в первом случае и 5 – во втором.
(х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3).

3. Выносим за скобки общий множитель х – 3 и получаем:
х 2 (х – 3) + 5(х – 3) = (х – 3)(х 2 + 5).

Итак,
х 3 – 3х 2 + 5х – 15 = (х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3) = (х – 3) ∙ (х 2 + 5).

Закрепим материал.

Разложить на множители многочлен a 2 – 7ab + 12b 2 .

Решение.

1. Представим одночлен 7ab в виде суммы 3ab + 4ab. Выражение примет вид:
a 2 – (3ab + 4ab) + 12b 2 .

Раскроем скобки и получим:
a 2 – 3ab – 4ab + 12b 2 .

2. Сгруппируем компоненты многочлена таким образом: 1-ый со 2-ым и 3-ий с 4-ым. Получим:
(a 2 – 3ab) – (4ab – 12b 2).

3. Вынесем за скобки общие множители:
(a 2 – 3ab) – (4ab – 12b 2) = а(а – 3b) – 4b(а – 3b).

4. Вынесем за скобки общий множитель (а – 3b):
а(а – 3b) – 4b(а – 3b) = (а – 3 b) ∙ (а – 4b).

Итак,
a 2 – 7ab + 12b 2 =
= a 2 – (3ab + 4ab) + 12b 2 =
= a 2 – 3ab – 4ab + 12b 2 =
= (a 2 – 3ab) – (4ab – 12b 2) =
= а(а – 3b) – 4b(а – 3b) =
= (а – 3 b) ∙ (а – 4b).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.