Цифровой регулятор громкости на транзисторе. Регулятор громкости с электронным управлением. О сбоях регулятора и ошибочном решении

Для меня стало неожиданностью, что наиболее горячие споры при обсуждении моей предыдущей статьи касались в первую очередь возможности применения цифровых сопротивлений в качестве регулятора громкости аудиосигнала в HiFi аппаратуре. Для того чтобы внести в этот вопрос ясность я решил посвятить отдельную статью детальному разбору схемотехники высококачественного регулятора громкости с цепями подавления импульсных помех переключения на основе VDAC AD9252. Кроме схемотехники вы также сможете под катом познакомиться с достигнутыми характеристиками.

Тем, кто не читал мою вчерашнюю статью, в которой разбирались общие вопросы, касающихся цифровых сопротивлений настоятельно рекомендую . Во первых, лучше поймёте о чём собственно идёт речь ниже, а во вторых если вас заинтересовала сегодняшняя тема, то и в ней найдёте интересный для себя материал.

Для того чтобы привести обещанные примеры реальных схем программно управляемых преобразователей величин, перестраиваемых фильтров и других электронных узлов параметры которых можно менять с помощью цифрового сопротивления придётся писать третью статью. Постараюсь сделать это в ближайшем будущем, а пока предлагаю исследовать тянет ли регулятор громкости собранный на основе топового прибора от ADI на применения в HiFi аппаратуре ну хотя бы низшего ценового сегмента.

Представляю попытку создать регулятор громкости на основе одной их топовых микросхем цифровых регуляторов производства ADI, претендующий на звание Hi-Fi.

Для начала приведу общие характеристики, которые удалось выжать. Низкие гармонические искажения. Нормализованная передаточная характеристка. Динамический диапазон регулировки уровня громкости составляет 46 dB. Кроме этого, существует возможность функции MUTE с ослаблением сигнала на 130 dB. В данный режим регулятор входит после перехода регулятора AD5292 в shutdown режим, путём подачи специальной команды. Ну и конечно имеется специальная схема для уменьшения влияния эффекта возникновения режущих слух импульсных помех в момент переключения уровня громкости. Данный эффект наибольшим образом даёт о себе знать именно в логарифмических усилителях потому, что их громкость может меняться скачком в очень широком диапазоне. Для сведения помехи при переключении уровня громкости к минимуму, это переключение необходимо производить при переходе сигнала через ноль.

Регулятор может работать с входным сигналом уровнем вплоть до ±14 вольт (10 V RMS), что обеспечивает хорошие шумовые характеристики. Максимальный ток нагрузки по выходу 20 мА. Управление по SPI интерфейсу. Интерфейс подсоединения микросхемы к управляющему микроконтроллеру не показан, так как является стандартным.

Схема и принцип её работы


Сигнал с входного повторителя поступает на регулятор уровня AD5292 c логарифмической характеристикой. Часть сигнала ответвляется от основного с помощью делителя напряжения на резисторах R4 и R5, нагруженного на ОУ AD8541, который выступает в роли динамической нагрузки формирующей искусственную землю на уровне 1.81 В. Далее сигнал поступает на компараторы U3 и U4, которые формируют “окно” шириной всего в 13 милливольт в районе перехода сигнала через ноль. В момент прохода сигнала через ноль логическим элементом U5A формируется низкий уровень.

Для того, чтобы переключить уровень громкости необходимо записать новые данные в буферный регистр и подать отрицательный фронт на вход SYNC U6. Когда после записи кода мы подаём низкий уровень на нижний вход U5B, он транслируется в уровень переключения значения цифрового сопротивления только в момент прохождения аудиосигнала через “окно ” компараторов. Обратите внимание, что для повышения точности работы вся схема работает только по постоянному току.

Для получения максимально комфортной для уха характеристики регулировки громкости средний вывод цифрового сопротивления шунтируется резистором R8. В результате получаем нормализованную характеристику передачи сигнала, изображённую на рисунке ниже.

Иллюстрация работы схемы уменьшения импульсных помех

Давайте для начала посмотрим что происходит при переключении уровня сопротивления в отключенной схемой подавления импульсных помех.

Вот так выглядит переходной процесс в момент включения звука, который произошёл во время, помеченное нулём.

Для случая переключения звука с одного значения на другое всё может выглядеть ещё хуже.

На следующей картинке изображён результат работы нашей помехогасящей схемы при переходе от большей громкости к меньшей.

Характеристики регулятора

Теперь давайте посмотрим на другие характеристики, которых удалось достичь в нашем регуляторе.

Как справедливо указал уважаемый в комментариях к моей предыдущей статье качество звука достаточно сильно зависит от уровня нечётных гармоник сигнала в усилительном тракте. Для того чтобы показать как на них влияет наш цифровой регулятор давайте рассмотрим результат FFT преобразований сигнала частотой 1 КГц проходящего через схему при “движке потенциометра” установленным в крайнее вернее положение - т. е. коэффициент передачи равен единице.

На мой взгляд характеристики весьма достойные, уровень третьей гармоники ушёл ниже-100 дб, пятой вообще не видно невооружённым глазом. Интересно что скажут наши эксперты по звуку.

Следующий график я привожу специально для хаброюзера извиняюсь за выражение проевшего мне мозг в комментариях к прошлой статье. Надеюсь теперь мы согласитесь со мной, уважаемый, что сопротивление не только 10, но даже 20 килоомного резистора не изменяется на величины порядка десяти процентов на частотах от нуля до 20 КГц при любом выставленном сопротивлении! Фаза сигнала меняется, но на мой взгляд весьма незначительно.

На частоте 1 КГц наша схема обеспечивает общий уровень искажения сигнала на уровне -93 дБ. Зависимость собственного уровня шумов схемы и нелинейных искажений от частоты сигнала при коэффициенте передачи усилителя равном единице изображена на графике ниже.

Вариант схемы для любителей компромиссов.

На этом закончим исследование нашей схемы, а в качестве бонуса предлагаю её упрощённый вариант, с несколько худшими характеристиками, зато с более доступной элементной базой.

А вот осциллограмма процесса переключения уровня громкости на весьма высокой частоте. Как видите без нелинейных искажений в момент переключения не обошлось, но никаких режущих ухо выбросов нет и в помине!

Спасибо дочитавшим до конца. Попробую испытать Ваше терпение чуть дольше. Поскольку я не являюсь специалистом в области «чистого прозрачного звука» и мне трудно оценить качество описанного дивайса, прошу высказать своё мнение в виде ответа на вопрос или в комментариях.

Когда встает вопрос что поставить на вход УНЧ для управления звуком? Решений много можно установить сдвоенный резистор или счетверённый регулятор, а если звуковых каналов намного больше можно применить электронные регуляторы громкости на специализированных микросхемах, но это будет достаточно дорого. Но существуют и простые способы решения этой проблемы.


Принцип работы обоих схем заключается в том, что как только на базу транзистора поступает положительный потенциал через резистор, транзистор открывается и шунтирует вход УНЧ - громкость на его выходе снижается.


Главная особенность схемы - регулятор громкости запоминает уровень последней даже после выключения питания.

Маленькая полезная схема, позволяющая настраивать громкость крутилкой. Вставляется в USB порт, подходит для операционных систем Windows и Андройд. Для андройда есть один недостаток - не работает кнопка MUTING. Драйвера ставить не нужно.


Основа схемы USB экнкодера микроконтроллера ATtiny85 прошивка к нему и печатная плата лежит по ссылке выше. Печатная плата достаточно миниатюрная, чуть больше площади корпуса энкодера.

Прошивки в архиве две, одна под схему выше, другая немного подпилена для увеличение громкости в левую сторону (в случае если энкодер расположить с противоположной стороны печатной платы). Фьюзы также в архиве, читаем в статье.

Микросборка позволяет регулировать громкость цифровым методом. Настройка уровня осуществляется не переменным резистором как в выше рассмотренных схемах, а при помощи специализированной микросхемы. Конструкция состоит из одной микросборки DS1669 и двух кнопок. Первая увеличивает громкость (S1), а другая снижает (S2).

Микросборка представляет собой типовой двухканальный цифровой регулятор громкости с кнопочным управлением. Увеличение уровня громкости осуществляется нажатием на кнопку SB1, а снижение - SB2. Нажатие на SB3 отменяет действия кнопок SB 1 и SB2 и переводит работу LC7530 в режим ожидания с минимальным током потребления.


Первая рассмотренная схема регулятора тембра построена на основе микросборки К140УД1А и используется преимущественно в роли качественных усилителей низкой частоты. Данная конструкция позволяет производит настройку уровня входного сигнала для различных частотных составляющих. Вторая выполнена на микросхеме TDA1524A

Электронная регулировка в данной схеме осуществляется с помощью двух кнопок SB1 громче и SB2 тише.


Многие радиолюбители использующие эту микросборку ругаются на посторонний фон, но как только я заменил неэкранированный провод, на экранированный гул пропал. Единственный минус, который я заметил, при выключении и повторном включении громкость сбрасывается и приходится заново её настраивать. А в целом нормальная схема.

Фото 1. Собранный регулятор


Думаю, каждый, кто занимался сборкой усилителя, сталкивался с выбором регулятора громкости для своего творения. В этой статье я хочу предложить свой вариант решения – цифровой регулятор громкости с опторазвязкой цифровой и аналоговой части.

Это моя первая статья подобного рода, поэтому прошу сильно не ругать. Все началось с того, что я собрал пару довольно приличных колонок. Слушал я их через ресивер Kenwood середины 90-х, который новые колонки тянул плоховато. Встал вопрос о сборке нового усилителя.

Первое, что встречает на своём пути звуковой сигнал в усилителе, это входной буфер и регулятор громкости. С них я и решил начать. Поскольку усилитель планируется довольно большой (моноблок на 4 канала по ~100 Ватт), то размещать переменный резистор на передней панели и тянуть к нему проводку через весь корпус не хотелось, да и 4-канальный переменник ещё найти надо.

Вторая идея – использовать цифровые резисторы. Однако чипы найти оказалось непросто, да и цена у них тоже не маленькая.

Идея третья – взять готовый цифровой аудиопроцессор типа TDA7313. Идея неплохая. Вытравил печатку, запаял, подключил и не понравилось. Что-то со звуком было не то: появился какой-то неприятный окрас. Да и функционал TDA7313 для меня излишен. Регулятор тембра мне не нужен и мультиплексор тоже.

Идея четвертая – регулятор на релюшках, известный как «регулятор Никитина». Не пошёл по причине отсутствия достаточного количества особых реле и точных резисторов.

И решил я придумать чего-нибудь сам.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Архив версии 1. Прошивка, исходники, модель для Proteus. Стартовая версия, вместо - кнопки. Реализовано только управление регулятором.
🕗 08/03/14 ⚖️ 91,15 Kb ⇣ 47 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Наметившаяся в последнее время тенденция электронного ступенчатого регулирования громкости с использованием коммутации матрицы дискретных резисторов с помощью счетчиков, дешифраторов и аналоговых коммутаторов открывает широкие возможности для создания многоканальных звуковоспроизводящих устройств с практически идентичными характеристиками регулирования. Однако подобные регуляторы обладают недостаточной плавностью регулирования, их выходные сопротивления существенно изменяются в процессе регулировки, а потребляемая ими мощность часто оказывается довольно значительной. Перечисленные недостатки сдерживают применение регуляторов громкости с электронным управлением в высококачественной звуковоспроизводящей аппаратуре.

Автору статьи удалось разработать регулятор громкости, обладающий широким диапазоном регулирования с дискретностью почти на порядок меньше, чем в аналогичных устройствах, описанных в литературе, имеющий небольшие габариты, простой в налаживании. Характеристика регулятора линейна во всем диапазоне регулирования, что особенно важно при малых уровнях громкости. Сигнал можно регулировать в каждом канале отдельно либо в обоих одновременно. Предусмотрены два режима регулирования: пошаговый (громкость изменяется на одну ступень регулирования при каждом нажатии на управляющую кнопку) и автоматический (громкость изменяется в заданную сторону с определенной скоростью).

Основные технические характеристики:

Число каналов регулирования: 2

Диапазон регулирования: не менее 60 дБ

Шаг регулирования: не более 0,24 дБ

Ток потребляемый от источника напряжением +15 В/-15 В: не более 15/6 мА

Принципиальная схема регулятора приведена на рис.1. Громкость регулируется с помощью кнопок без фиксации в нажатом положении SB1- SB4. Их "дребезг" устраняет микросхема DD3. Регулятор содержит также генератор тактовых импульсов на элементах DD1.1 и DD2.1 и двухканальное устройство, каждый канал которого состоит из RS-триггера на элементах DD1.2, DD1.3 (DD4.1, DD4.2), реверсивных счетчиков на микросхемах DD7, DD9 (DD8, DD10), интегрального цифроаналогового преобразователя на микросхемах DA1 (DA2), выходного усилителя на ОУ DА3 (DА4), устройства блокировки случайного перехода от максимальной громкости к минимальной и наоборот на элементах DD2.3 (DD5.2), узла автоматического регулирования на элементах DD1.4, DD2.4 (DD4.3, DD5.3) и элементов DD2.2 (DD5.1), обеспечивающих пошаговый режим.

Работает регулятор следующим образом. При включении питания происходит начальная установка счетчиков обоих каналов регулятора. Прямоугольные тактовые импульсы частотой около 20 Гц с выхода генератора поступают на вход синхронизации микросхемы DD3 (вывод 5). Поскольку остальные ее входы (выводы 4, 14, 7, 13) через резисторы R1-R4 соединены с общим проводом, на выходах этой микросхемы (выводы 2, 1, 10, 11) записываются уровни логического 0. Дальнейшая работа регулятора зависит от того, какую кнопку нажмет оператор. Чтобы обеспечить пошаговый режим регулировки громкости, достаточно однократно нажать на соответствующую функциональную кнопку и затем отпустить ее.

При нажатии на кнопку "+" канала 1 (SB1) на выводе 2 микросхемы DD3 появляется логическая 1. Вследствие этого на выходе элемента DD2.2 устанавливается логический 0 и импульс, поступающий через элемент DD6.1 на выводы 15 счетчиков DD7, DD9, увеличивает состояние последних на 1.

При нажатии на клавишу "-" канала 1 (SB2) логическая 1 появляется на выводе 1 микросхемы DD3 и состояние счетчиков DD7, DD9 уже уменьшается на 1, поскольку с выхода RS-триггера на элементах DD1.2, DD1.3 на выводы 10 счетчиков DD8, DD9 поступит уровень логического 0.

Автоматический режим требует оперирования двумя кнопками. Для регулирования уровня громкости в нужную сторону сначала следует нажать на кнопку с соответствующим функциональным действием, а затем – на вторую кнопку этого канала. При достижении желаемой громкости обе кнопки нужно отпустить.

Так, при нажатии на кнопки SB1, SB2 устанавливается автоматический режим регулирования в первом канале. На выводах 2 и 1 микросхемы DD3 появляются уровни логических 1, вследствие чего на выходе элемента DD1.4 устанавливается уровень логического 0 и тактовые импульсы с генератора начинают проходить на счетный вход счетчиков DD7, DD9. Конденсатор С5 (С6) повышает помехоустойчивость счетчиков при переключении режимов счета.

Выходы двоичных реверсивных счетчиков DD7, DD9 подключены непосредственно к входам управления интегральными ключами цифроаналогового преобразователя DA1. Ключи коммутируют резисторы выполненной интегральным способом матрицы типа R-2R, выход которой нагружен на инвертирующий вход DA3. Благодаря ООС с выхода DA3 на вывод 16 микросхемы DA1 уровень напряжения на выходе регулятора изменяется плавно и с высокой стабильностью. Выходное сопротивление регулятора при этом остается постоянным и определяется выходным сопротивлением ОУ DA3.

На выходе элемента DD2.3 уровень логического 0 присутствует до тех пор, пока на выходах переноса счетчиков (выводы 7) будет уровень хотя бы одной 1. Состояние логического 0 устанавливается на выходах переноса, когда на выходах счетчиков DD7, DD9 (выводы 6, 11, 14, 2) возникает состояние 1111 при увеличении счета и 0000 при его уменьшении. Такая работа счетчиков обеспечивает блокировку элемента DD6.1 и делает невозможным переход от уровня максимальной громкости к минимальной и наоборот. Второй канал работает аналогично первому.

Все детали регулятора, кроме кнопок SB1-SB4, размещены на печатной плате размерами 80х70 мм: а) – вид со стороны установки микросхем, б) – с противоположной стороны, в) иллюстрирует расположение элементов на плате. Последняя крепится к передней панели аппаратуры, вблизи от входа оконечного усилителя (для уменьшения уровня фона).

Плата рассчитана на использование резисторов МЛТ, конденсаторов КМ-6 и К50-16. Кнопки SB1-SB4 без фиксации – ПКН-150-1. Вместо указанных элементов можно применить любые малогабаритные близких номиналов – резисторы ВС, ОМЛТ, конденсаторы К10-7В, K50-6, K53-19, кнопки П2К.

Налаживать регулятор практически не требуется. При необходимости скорость автоматического регулирования можно увеличить, уменьшив сопротивление резистора R5 либо емкость конденсатора С1.

Регулятор сохраняет работоспособность без ухудшения параметров при снижении питающего напряжения до ±5 В.

В большинстве регуляторов громкости низкочастотного сигнала используют аналоговые плавные регуляторы на базе операционных усилителей или транзисторных схем. В ряде регуляторов применяют прин­цип дискретного управления величиной выходного сигнала, причем дискретность установки уровня выбирается, как правило, равной 3 дБ. Это обусловливается тем, что такой дискрет уровня удобен для про­слушивания музыкальных программ. Однако для качественной пере­записи фонограмм требуется изменение уровня сигнала в меньшем диапазоне. Один из возможных путей преодоления этих труднос­тей - применение преобразователей код-напряжение, коммутируемых электронными переключателями. Но в этом случае неоправданно воз­растают габаритные и стоимостные показатели такого узла. Немало­важное значение имеют и показатели надежности и трудоемкости нала­дочных работ изготовляемого узла. Более простой путь решения этого вопроса - использование микроэлектронных цифроаналоговых преобра­зователей, например, серии 572. Эта серия обладает низкой потреб­ляемой мощностью, совместимостью со стандартными ТТЛ и К.МОП уровнями, возможностью работы от одного источника питания.

В предлагаемом регуляторе громкости изменение уров­ня сигнала осуществляется посредством схемы управле­ния, построенной с использованием устройства управле­ния реверсивным цифровым счетчиком. Изменяемый цифровой код подается на входы цифроаналогового преобразователя со схемой коррекции. Для контроля за изменением цифрового кода, а следовательно, и уровнем выходного сигнала служит схема индикации, построенная на реверсивном счетчике и дешифраторе двоичного кода в семисегментный код светодиодных матриц.

Рис. 1. Принципиальная схема регулятора

Принципиальная схема регулятора изображена на рис. 1. Регулятор позволяет изменять уровень выходного сигнала и в ых в интервале частот от 20 Гц до 150 кГц с коэффициентом гармоник не более 0,01 % при входном сигнале 1 В. Шаг изменения уровня сигнала соответ­ствует значению 50 мВ. Выходное напряжение изменяется от 0 до 5 В. Неравномерность АЧХ устройства в полосе частот от 20 Гц до 150 кГц не более ±0,5 дБ. Величина выходного напряжения индицируется цифровым кодом на табло двух семисегментных индикаторов типа АЛС 333 Б. Изменение уровня сигнала осуществляется с помощью двух кнопок «Pf» и «F|». Собственно преобразователь уровня сигнала собран на 10-разрядном умножающем ЦАП К572ПА1А, который является универсальным струк­турным звеном ЦАП и управляется цифровым кодом. Все элементы ЦАП выполнены в одном кристалле, разме­щенном в 16-выводном металлокерамическом корпусе. В состав кристалла входят: прецизионная резистивная матрица R-2R, токовые ключи на МОП транзисторах и входные инверторы, обеспечивающие управление клю­чами от стандартных уровней цифрового сигнала. Микро­схема работает с прямым параллельным двойным кодом. Для ее функционирования необходимы: внешний источ­ник опорного напряжения, роль которого выполняет входной сигнал звуковой частоты (вывод 15 - вход) и вы­ходной операционный усилитель DA1, который подключа­ется инвертирующим входом к выводу 1 DD10 и тем самым обеспечивается отрицательная обратная связь, и двоичный закон распределения токов в ветвях резистивной матри­цы при равенстве потенциалов выводов 1 и 2 DD10. Неин­вертирующий вход ОУ соединен с выводом 2 и 3 на «землю» (аналоговую). Отличительная особенность схемы данного ОУ заключается в возможности поддержания с высокой точностью большого значения коэффициента усиления при замкнутой цепи отрицательной обратной связи. Малые температурные дрейфы обеспечиваются внутренним включением входных транзисторов дифферен­циального каскада ОУ. Балансировка симметричности работы усилителя осуществляется за счет резистора R26, который позволяет получить симметричную характерис­тику усиления и снизить коэффициент нелинейных искаже­ний.

Отличительной особенностью ЦАП К572ПА1А являет­ся возможность его работы в режиме независимости сопротивления открытых МОП транзисторов от амплитуды и направления протекающего тока, что позволяет изме­нять входное напряжение по амплитуде в широких пределах без нарушения линейности преобразования. Максимальное значение амплитуды переменного напря­жения 5 В.

Управление токовыми ключами осуществляется реверсивными счетчиками DD8 и DD9, которые по­лучают импульсы изменения состояния от устройства управления счетчиком DD1 - DD3 При кратковременном нажатии на кнопку «Ff» («F|») переключается триггер на элементах DD1.1,DD1.2 (DD2.1, DD2.2). Короткий отрицательный импульс, сформированный дифференци­рующей цепью C1R21 (C2R22), через элементы DD1.3, DD1.4 (DD2.3, DD2.4) воздействует на вход +1 (- 1) микросхем DD8, DD6 и переводит реверсивные счетчики в состояние, соответствующее большему (меньшему) на единицу числу. Выходные сигналы счетчика переключают входы DD10, увеличивая или уменьшая выходной сигнал. Состояния счетчиков DD6, DD7 дешифруются микросхе­мами DD4, DD5 и отражаются на индикаторах. Так как выход микросхемы DD7 (> 9<) соединен со входом С этой микросхемы и одноименными входами DD8, DD9, а выход < 0> - через инвертор DD3.4 с их входами Ro, то при достижении состояний, соответствующих чис­лам 99 (при нажатой «Ff») и 00 (при нажатой «FJ»), счетчик останавливается. При длительно нажатой кнопке «Ff» или «FJ» на выходе элемента DD3.1 устанавли­вается уровень логической 1 и конденсатор С4 начинает заряжаться через резистор R24. В момент, когда напряже­ние на конденсаторе достигает уровня логической 1 (при­мерно через 1,3 с), включается генератор на элементах DD3.2, DD3.3, и его импульсы с частотой около 8… 12 Гц следуют через элементы DD1.3, DD1.4 (DD2.3, DD2.4) и также поступают на выход -f- 1 { - 1) микросхемDD6, DD8, непрерывно изменяя состояние счетчиков DD6 - DD9, в сторону увеличения (уменьшения) соответствую­щего ему числа до предельного значения. Импульсы управления счетчиком одновременно поступают на узел индикации, который выполнен на счетчиках DD6,DD7, дешифраторах DD4, DD5 и светодиодных матрицах.

В электронном регуляторе использованы постоянные резисторы МЛТ-0,125; подстроечный резистор R26 СПЗ-19а; конденсаторы С1, С2 - КМ5, СЗ - С5 - К52-16.

Вместо указанных на схеме деталей можно использо­вать: АЛС324Б (HG1, HG2); КД102А - В, КД520А, КД521, КД522 (VD1); К50-16 (СЗ, С5); 140УД20, 140УД6, 140УД7, 140УД8, 153УД1, 574 УД 1, 574УД2 (DA1). Вместо всех микросхем 155 серии можно исполь­зовать 133 серию, но тогда придется внести небольшую корректировку, которая заключается в применении сов­местно с микросхемами 133 серии переходных колодок. Колодки содержат печатные дорожки под 133 серию, а дорожки контачат с колами, выведенными с противо­положной стороны колодки и имеющими расположение размеров выводов 155 серии. Колодки с распаянными микросхемами и колами вставляются в отверстия, пред­назначенные для микросхем 155 серии в плате и про­паиваются.

Все детали размещены на плате из фольгированно-го стеклотекстолита СФ1-1,5. Монтаж перемычек на пла­те выполнен проводом МГТФ или ШБПВЛ. Чертеж печатной платы показан на рис. 2, а расположение элементов на ней - на рис. 3.

Налаживание регулятора начинают с проверки монтажа, затем проверяется работа счетчиков: при каж­дом нажатии на кнопку «Ff» или кнопку «FJ» показание индикаторов должно соответственно увеличиваться или уменьшаться на единицу. При длительном нажатии на эти же кнопки показания индикаторов должны нарастать или убывать до тех пор, пока они не окажутся рав­ными 99 или 00. Работоспособность счетчиков указы­вает на работоспособность всей схемы управления.

Потенциальные возможности ЦАП 572ПА1А в данной схеме используются не полностью, так как он способен обеспечить 256 ступеней регулировки уровня громкости, но они ограничены до 100 ступеней двухразрядным деся­тичным индикатором. Недостаток, связанный с линей­ным законом регулирования уровня громкости, компен­сируется большим количеством ступеней регулировки и возможностью быстрой регулировки при длительном на­жатии кнопки.

Начальное состояние регулятора при включении пи­тания соответствует нулевому уровню благодаря подключению выводов Д1, Д2, Д4 и Д8 микросхем DD6 - DD9 к «земле».

Питание электронного регулятора громкости осу­ществляется от двух источников. Операционный усилитель DA1 питается от двуполярного источника напряжения ± 5 В с током потребления 15 мА. Остальные элементы регулятора питаются от источника с напряжением 5 В с током потребления 350 мА. Допустимая пульсация напряжений источников питания не должна превышать 5 мВ.

Рис. 2. Чертеж печатной платы

Рис. 3. Расположение элементов на плате

Литература

  • В помощь радиолюбителю: Сборник. Вып. 104/ Б. Колобов