Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения. Органоиды клетки и их функции

Органоиды и включения

Немембранные органоиды:

МИТОХОНДРИИ

(митос – нить; хондр - зерно)

Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.

Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры – частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.

В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО 2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.

Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом – агранулярная. Основная функция эндоплазматической сети – накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной – синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.

КОМПЛЕКС ГОЛЬДЖИ

Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.

Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.

ЛИЗОСОМЫ

Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция – расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа – например, инволюции матки после родов). Таким образом, лизосомы – это пищеварительная система клетки.

Различают 4 формы лизосом:

1. Первичные - запасающая гранула.

2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.

3. Аутофагосомы - гидролиз внутриклеточных структур.

4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.

Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.

ПЕРОКСИСОМЫ

Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.

Немембранные органоиды:

РИБОСОМЫ

Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.

Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо: 1) аминокислоты (их 20); 2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код; 3) транспортная РНК и 4) ряд ферментов.

ЦИТОСКЕЛЕТ

Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами – нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки , микрофибриллы и промежуточные филаменты . Оказалось, что микротрубочки – это полые цилиндры, состоящие из белка тубулина; микрофибриллы – длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные – из разных белков (в эпителии – кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.

В последнее время ученые обнаружили 4-ый компонент цитоскелета – тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.



Микротрубочки принимают участие в образовании центриолей , представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.

При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.

Микротрубочки принимают участие в формировании ресничек и жгутиков . Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.

Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).

ВКЛЮЧЕНИЯ

Непостоянные структуры цитоплазмы. Они могут быть липидами, углеводами, белками, витаминами и использоваться клетками как источники энергии и питательных веществ. Могут выделяться из клетки и использоваться организмом (секреторные включения). Включения представляют собой капельки жира, гликогена, ферменты, пигментные включения.

ЯДРО

Является обязательным компонентом полноценной клетки. Оно обеспечивает двефункции :

1. Хранение и передачу генетической информации.

2. Реализацию информации с обеспечением синтеза белка.

Наследственная информация хранится в виде неизменных структур ДНК. В ядре происходит воспроизведение или редупликация молекул ДНK (удвоение), что дает возможность двум дочерним клеткам при митозе получить одинаковые объемы генетической информации.

На молекулах ДНК происходит транскрипция разных РНК-информационных, транспортных и рибосомных.

В ядре происходит образование субъедениц рибосом путем соединения рибосомных РНК с рибосомными белками, синтезируемыми в цитоплазме и перенесенными в ядро. Клетки без ядра не способны синтезировать белок (например, эритроциты). Нарушение любой функции ядра приводит к гибели клетки.

Форма ядер в большинстве округлая, но есть палочковидная и сегментированная. В ядре различают ядерную оболочку, кариоплазму (ядерный матрикс), хроматин и ядрышко. Ядерная оболочка – кариолемма состоит из двух липопротеидных мембран, между которыми находится перинуклеарное пространство.

В оболочке имеются ядерные поры (поровый комплекс), диаметром 80-90 нм. В области поры мембраны сливаются. Внутри поры имеется три ряда гранул (белковых глобул) по 8 штук. В центре тоже есть гранула и с каждой из 24 гранул она соединена тонкими нитями (фибриллами), образуя сеточку. Через нее проходят микромолекулы из ядра и в ядро. Число пор может варьировать в зависимости от активности ядра.

На внешней ядерной мембране, обращенной к цитоплазме клетки, размещены полирибосомы, и она может переходить в мембраны эндоплазматической сети.

Внутренняя мембрана имеет связь с плотной пластинкой, которая представляет густую сеть белковых фибрилл, соединяющихся с фибриллами кариоплазмы. Пластинка и фибриллярная система выполняют опорную функцию. Плотная пластинка при помощи специальных белков связана с участками хромосом и обеспечивает порядок их расположения в период интерфазы.

Таким образом, ядерная оболочка является барьером, отделяющим содержимое ядра от цитоплазмы, ограничивая свободный доступ в ядро крупных агрегатов и регулируя транспорт микромолекул между ядром и цитоплазмой, а также фиксирует хромосомы в ядре.

Кариоплазма - бесструктурное вещество, содержит различные белки (нуклеопротеиды, гликопротеиды, ферменты и соединения, участвующие в процессе синтеза нуклеиновых кислот, белков и других веществ). Под большим увеличением видны рибонуклепротеидные гранулы. Выявлены продукты белкового обмена, гликолитические ферменты и другие.

Хроматин – плотное, хорошо окрашивающееся вещество. Он представлен совокупностью хромосом. Хромосомы постоянно присутствуют, но видны лишь во время митоза, так как сильно спирализуются и утолщаются. В интерфазном ядре они деспирализуются и не видны. Сохранившиеся конденсированные участки называются гетерохроматином, а деконденсированные – эухроматином, в котором идет активная работа по синтезу веществ. Много эухроматин обычно в молодых клетках.

Хроматин состоит из ДНК (30-40 %), белков (60-70 %) и небольшого количества РНК (т.е. дезоксирибонуклеопротеид). Молекула ДНК представляет собой двойную спираль, с различными азотистыми основаниями Белки представлены гистонами и негистонами. Гистоны (основные) выполняют структурную функцию, обеспечивая укладку ДНК. Негистоны образуют матрикс в интерфазном ядре и регулируют синтез нуклеиновых кислот.

Ядрышко – тельце округлой формы внутри ядра. Это место образования рибосомных РНК и формирования рибосом. Ядрышковыми организаторами являются участки хромосомы (или ДНК), которые содержат гены, кодирующие синтез рибосомных РНК. Эти участки прилегают к поверхности ядрышка в виде конденсированного хроматина, где синтезируется предшественник РНК. В зоне ядрышка предшественник одевается белком, образуя субъеденицы рибосомы. Выходя в цитоплазму, они заканчивают свое формирование и участвуют в процессе синтеза белка.

В составе ядрышка различают: ядрышковый хроматин, фибриллярные (филаменты РНК) и гранулярные (гранулы РНК-формирующиеся рибосомы) структуры, состоящие из нуклеопротеидов. Фибриллярные и гранулярные компоненты образуют ядрышковую нить (нуклеолонему).

Помимо органелл или органоидов клетка содержит непостоянные клеточные включения. Обычно содержатся в цитоплазме, но могут встречаться в митохондриях, в ядре и других органоидах.

Виды и формы

Включения - необязательные компоненты растительной или животной клетки, накапливающиеся в процессе жизнедеятельности и метаболизма. Включения не стоит путать с органеллами. В отличие от органелл включения то возникают, то исчезают в структуре клетки. Некоторые из них небольшие, едва заметные, другие превышают в размерах органеллы. Они могут иметь разную форму и различный химический состав.

По форме выделяют:

  • гранулы;
  • кристаллы;
  • зёрна;
  • капли;
  • глыбы.

Рис. 1. Формы включений.

По функциональному назначению включения подразделяются на следующие группы:

  • трофические или накопительные - запасы питательных веществ (вкрапления липидов, полисахаридов, реже - белков);
  • секреты - химические соединения в жидком виде, накапливающиеся в железистых клетках;
  • пигменты - окрашенные вещества, выполняющие определённые функции (например, гемоглобин переносит кислород, меланин - окрашивает кожу);
  • экскреты - продукты метаболического распада.

Рис. 2. Пигменты в клетке.

Все включения являются продуктами внутриклеточного обмена веществ. Часть так и остаётся в клетке «про запас», часть расходуется, часть со временем выводится из клетки.

Строение и функции

Главными включениями клетки являются жиры, белки, углеводы. Их краткое описание дано в таблице “Строение и функции клеточного включения”.

ТОП-4 статьи которые читают вместе с этой

Включения

Строение

Функции

Примеры

Мелкие капли. Находятся в цитоплазме. У млекопитающих жировые капли расположены в специальных жировых клетках. В растениях большая часть жировых капель находится в семенах

Являются основным запасом энергии, расщепление 1 г жиров высвобождает 39,1 кДж энергии

Клетки соединительной ткани

Полисахариды

Гранулы разнообразных форм и размеров. Обычно в животной клетке запасаются в форме гликогена. В растениях скапливаются зёрна крахмала

При необходимости восполняют недостаток глюкозы, являются энергетическим запасом

Клетки поперечнополосатых мышечных волокон, печени

Гранулы в форме пластинок, шариков, палочек. Встречаются реже, чем липиды и сахара, т.к. большая часть белков расходуется в процессе метаболизма

Являются строительным материалом

Яйцеклетка, клетки печени, простейшие

В растительной клетке роль включений играют вакуоли - мембранные органеллы, накапливающие питательные вещества. Вакуоли содержат водный раствор с органическими (соли) и неорганическими (углеводы, белки, кислоты и т.д.) веществами. Белки в небольшом количестве могут находиться в ядре. Липиды в виде капель накапливаются в цитоплазме.

Включения - это непостоянные (необязательные) структурные элементы цитоплазмы.

Они заметны при световой микроскопии при общих методах окрашивания, иногда при малом и среднем увеличении, а часть из них можно выявить лишь специальными (гистохимическими, иммунологическими) методами или при электронной микроскопии. В зависимости от активности клетки, гормональных и метаболических влияний, особенностей дифференцировки, возраста, действия разнообразных факторов внешней среды в клетках можно обнаружить большое разнообразие включений по составу и количеству.

Включения указывают на особенности метаболизма, дифференцировки, функциональной активности клеток. Много включений появляется при дистрофических нарушениях в клетке, что сопровождается изменениями в ее жизнедеятельности вплоть до гибели. Иногда содержимое включений не только показатель функции, но основание для названия клетки: пигментные клетки - меланоциты; эозинофильные, базофильные и нейтрофильные гранулоциты крови и др.

При всем многообразии включений их можно объединить по их функциональному назначению.

Секреторные включения . Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Секреторные включения образуются в комплексе Гольджи. Перед этим они проходят стадию синтеза в гр. или глад. ЭПС, реже это происходит в других структурах.

Секреторные белковые включения разнообразны по своим размерам, распределению в цитоплазме, электронной плотности. Они окружены клеточной мембраной. Полипептидные цепочки содержимого секреторных включений синтезируются в гр. ЭПС, а созревают в комплексе Гольджи. В связи с этим у клеток, синтезирующих секреторные белки, хорошо развиты данные органеллы, крупное ядро и ядрышки. Однако если клетка прекращает синтез включений, их накопление сопровождается инволюцией гр. ЭПС и комплекса Гольджи.

В экзокринных железах секреторные включения преобладают в апикальной части клетки, предполагая выведение секрета во внешнюю среду. Секреторные включения эндокринных желез концентрируются вблизи кровеносных сосудов или равномерно распределены в цитоплазме.

Слизистые секреторные включения находятся в основном в клетках слизистых секреторных желез. Примером одноклеточных секреторных желез служат бокаловидные клетки тонкой кишки. При световой микроскопии с помощью ШИК-реакции слизь хорошо видна в крупных вакуолях.

Секреторные включения, содержащие жиры (липосомы), имеются в цитоплазме сальных желез и эндокринных клеток, синтезирующих стероидные гормоны (производные холестерина). Стероидные гормоны — это мужские и женские половые гормоны, гормоны стресса (глюкокортикоиды) и гормон, контролирующий содержание ионов натрия в организме (альдостерон). В этих клетках хорошо развита глад, и гр. ЭПС, комплекс Гольджи, много митохондрий. Митохондрии эндокриноцитов участвуют в синтезе стероидных гормонов и имеют специфические особенности строения. Это крупные митохондрии с мультивезикулярными (трубчатыми) кристами.

Также выделяют секреторные включения, содержащие производные аминокислот и других аминов: норадреналин и адреналин, серотонин (мелатонин) и др.

Разнообразен состав секреторных включений в тучной клетке (лаброците) и базофильном гранулоците (базофиле). Эти клетки содержат многочисленные крупные секреторные включения, окрашивающиеся основными красителями и нередко изменяющие их оттенок. Такая способность изменять цвет красителя называется метахромазией. При электронной микроскопии видно, что в лаброцитах и гранулоцитах много крупных гранул округлой формы, различной электронной плотности.

Количество включений зависит от стадии секреторного цикла. Максимально их количество на стадии накопления секрета, а на других стадиях они могут отсутствовать или их концентрация в клетке минимальна.

Трофические включения . Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Трофические включения гликогена представляют собой мелкие, неправильной формы гранулы, которые можно обнаружить при электронной микроскопии, а также при световой микроскопии, используя специальные методы окрашивания. Гликоген при расщеплении превращается в глюкозу, которую используют клетка и организм в целом в условиях ее дефицита.

Липидные включения в норме накапливаются в жировой ткани (белом или буром жире). В липоците белого жира включения сливаются в гигантскую каплю, которая занимает всю центральную часть клетки. Такие клетки приобретают округлую форму, большие размеры. Ядра уплощены и смещены на периферию, органелл немного. В липоцитах бурого жира включения не сливаются в одну каплю, ядра лежат центрально, много митохондрий, развиты комплекс Гольджи и глад. ЭПС.

При переходе на жировой обмен разрушение липидов в жировых тканях поддерживает энергетические потребности организма. Липидные включения легче разрушаются в буром жире, чем в белом. Избыточное накопление липидов в жировой ткани называют ожирением.

Трофические липидные капли могут накапливаться вне жировых клеток: в гепатоцитах, скелетных и сердечных миоцитах, канальцевом аппарате почек и др. Большое накопление таких включений, которое носит обратимый характер и не нарушает функцию клетки, называется жировой инфильтрацией. В случае, когда такое накопление ведет к повреждению клетки, это явление называют жировой дистрофией. Жировая дистрофия стенки артерии - атеросклероз.

Пигментные включения . Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Пигментные клетки - меланоциты у низкоорганизованных позвоночных встречаются во многих органах, придавая животным разнообразную окраску. Форма клеток также различная, но в основном многоотростчатая.

У млекопитающих и человека меланоциты встречаются в основном в эпителии. В многослойном эпителии они лежат в базальном слое, а их отростки направляются к шиповатому слою. Пигмент включений меланоцитов - меланин является производным аминокислоты тирозина. Меланин накапливается в многочисленных включениях, располагающихся в теле и отростках клетки. Часть включений выделяется и захватывается соседними клетками. Если клетки не способны вырабатывать меланин, то это ведет к альбинизму.

Экскреторные включения . Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Случайные включения . Характерны для фагоцитов, захватывающих чужеродные для организма структуры (частички пыли, бактерии и вирусы), плохо перевариваемые и неперевариваемые макромолекулярные органические и неорганические комплексы. Наиболее часто подобные включения обнаруживают в специализированных клетках, осуществляющих фагоцитоз, - нейтрофильных лейкоцитах и макрофагах.

Минеральные включения . Преимущественно это нерастворимые соли кальция (карбонаты, фосфаты). Они образуются при пониженной активности органа, гипотрофии и атрофии. Нередко минеральные включения (соли кальция) обнаруживают в матриксе митохондрий, это связано с высоким содержанием этого иона и изменением метаболизма в органелле.

Включения при патологии , могут накапливаться в избыточном количестве и вести к нарушению структуры и функции клетки (дистрофии). Дистрофия обусловлена болезнями накопления, связанными с недостаточной активностью лизосом и/или избыточным синтезом каких-либо веществ (жировая дистрофия печени, дистрофия нейронов, при накоплении большого количества гранул с липофусцином, гликогеноз печени и мышц и др.). Накапливаться могут как обычные для клетки вещества (гликоген в гепатоцитах), так и вещества, в норме в клетке не встречающиеся (амилоид).

Большинство включений отделено от матрикса цитоплазмы мембраной (секреторные включения, жировые трофические включения и др.). Однако есть и включения, которые соприкасаются с содержимым гиалоплазмы (гликоген, некоторые минеральные включения).

Происхождение включений разнообразно и зависит от их содержимого. Например, основная масса секреторных и трофических включений формируется в комплексе Гольджи или в ЭПС, а случайные включения, гранулы гемосидерина - продукты неполного переваривания и фагоцитоза.

Утилизация и удаление включений из клетки зависят от природы самого включения. Секреторные включения выводятся из клетки путем экзоцитоза; гликоген и липиды расщепляются ферментами клетки и во внеклеточную среду выводятся в виде продуктов метаболизма (глюкозы, глицерина, жирных кислот); меланин выделяет пигментная клетка, затем его захватывает и разрушает клетка Лангерганса.

Таким образом, включения представляют собой разные по происхождению, функциональному назначению и морфологии структуры. Их число, вид могут быть показателями особенностей дифференцировки и функционального состояния клеток.

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества, или гиалоплазмы, и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении. Способность к движению, или течению цитоплазмы, называют циклозом. Матрикс является активной средой, в которой протекают многие химические и физиологические процессы и которая объединяет все компоненты клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами.

Органоиды – это постоянные и обязательные компоненты большинства клеток, имеющие специфическую структуру и выполняющие жизненно важные функции. Органоиды бывают общего назначения и специального назначения.

Органоиды общего значения присутствуют во всех клетках и в зависимости от особенностей строения делятся на немембранные, одномембранные и двумембранные.

Органоиды специального значения присутствуют только в клетках определенных тканей; например, миофибриллы в мышечных тканях, нейрофибриллы в нервной ткани.

Немембранные органоиды.

К этой группе относятся рибосомы, микротрубочки и микрофиламенты, а также клеточный центр.

РИБОСОМЫ.

Рибосомы - очень мелкие органеллы, присутствуют во всех типах клеток. Имеют округлую форму, состоят из примерно равных по массе количеств рРНК и белка и представлены двумя субъединицами: большой и малой. Между субъединицами находится пространство, куда присоединяется иРНК.

В клетках рибосомы локализуются свободно в цитоплазме, на мембранах ЭПС, в матриксе митохондрий, на наружной мембране ядра, у растений в пластидах.

Функция рибосом – сборка белковых молекул.

На время активного синтеза белка образуются полирибосомы. Полирибосомы - комплекс рибосом (от 5 до 70 рибосом). Между отдельными рибосомами имеется связь, которая осуществляется при помощи молекул и-РНК.

Рис. 5. Строение рибосомы (схема)

1- малая субъединица; 2 – и-РНК; 3 – большая субъединица 4-рРНК

МИКРОТРУБОЧКИ И МИКРОФИЛАМЕНТЫ

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков. Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламентыпредставляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обусловливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала. Помимо свободных микротрубочек, пронизывающих цитоплазму, в клетках имеются определенным образом организованные микротрубочки, формирующие центриоли клеточного центра, базальные тельца, реснички и жгутики.

КЛЕТОЧНЫЙ ЦЕНТР

Клеточный центр, или центросома – обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована 9 триплетами микротрубочек. В центре микротрубочек нет. Поэтому систему микротрубочек центриоли можно описать формулой (9×3)+0.

В период подготовки клетки к делению происходит удвоение - дупликация центриолей: материнская и дочерняя расходятся к полюсам клетки, намечая направление будущего деления, около каждой образуется по новой центриоли из микротрубочек цитоплазмы. Основными функциями клеточного центра являются:

1) участие в процессах деления клетки, расхождение центриолей обусловливает ориентировку веретена деления и движение хромосом;

2) с этим органоидом связано строение и функция ресничек и жгутиков (базальные тельца); таким образом, центриоли связаны с процессами движения в клетке.

Одномембранные органоиды

К ним относятся эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы.

5.2.1 Эндоплазматическая сеть (ретикулум) (ЭПС) .

Представляет собой сеть во внутренних слоях цитоплазмы (эндоплазме) - эндоплазматическую сеть, представляющую собой сложную систему канальцев , трубочек и цистерн , ограниченных мембранами.

Различают ЭПС (ЭПР):

Гладкий (агранулярный) (не содержит на мембранах рибосом) Шероховатый (гранулярный) (на мембранах - рибосомы)
1. Синтез гликогена и липидов (сальные железы, печень). 2. Накопление продуктов синтеза. 3. Транспорт секрета. 1. Синтез белка (клетки белковых желез). 2. Участие в секреторных процессах, транспорт секрета. 3. Накопление продуктов синтеза.
4. Обеспечивает связь с органоидами клетки. 5. Обеспечивает транспорт секретов к органо-идам клетки. 6. Обеспечивает связь ядра с клеточными органоидами и цитоплазматической мембраной. 7. Обеспечивает циркуляцию различных ве-ществ по цитоплазме. 8. Участие в пиноцитозе (транспорт различных веществ, поступивших в клетку извне).

Наибольшее развитие ЭПС характерно для секреторных клеток. Слабо ЭПС развита в сперматозоидах.

Образование ЭПС происходит при делении клеток из разрастаний наружной цитоплазматической мембраны и ядерной оболочки, передается из клетки в клетку при клеточном делении.

КОМПЛЕКС ГОЛЬДЖИ

Комплекс Гольджи открыт в 1898 г. Гольджи.

Форма комплекса может быть в виде сети вокруг ядра, в виде шапочки или пояса вокруг ядра, в виде отдельных элементов - округлых, серповидных телец, называемых диктиосомами.

Комплекс Гольджи состоит из трех элементов, способных переходить один в другой и взаимосвязанных друг с другом:

1) система плоских цистерн, расположенных пачками по пять-восемь, в виде стопки монет и плотно прилегающих друг к другу;

2) система трубочек, отходящих от цистерн, анастомозирующих друг с другом и образующих сеть;

3) крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Наиболее хорошо этот органоид развит в железистых клетках, например, в лейкоцитах и овоцитах, а также в других клетках, вырабатывающих белковые продукты, полисахариды и липиды.

Слабое развитие комплекса Гольджи наблюдается в недифференцированных и опухолевых клетках.

Состав: фосфолипиды, белки, ферменты для синтеза полисахаридов и липидов.

1) участие в секреторной деятельности клетки;

2) накопление готовых или почти готовых продуктов;

3) транспортировка продуктов секрета по клетке по системе трубочек и пузырьков;

4) конденсация секреторных гранул (осмотическое удаление воды);

5) обособление и накопление ядовитых для клеток веществ, поступивших извне (токсинов, анестезирующих веществ), которые затем удаляются из клетки;

6) образование зерен желтка в овоцитах;

7) образование перегородок клеток (в растительных клетках).

Комплекс Гольджи при делении клеток передается из материнской в дочерние.

ЛИЗОСОМЫ

Выполняют функцию внутриклеточного переваривания макромолекул пищи и чужеродных компонентов, поступающих в клетку при фаго- и пиноцитозе, обеспечивая клетку дополнительным сырьём для химических и энергетических процессов. Для осуществления этих функций лизосомы содержат около 40 гидролитических ферментов – гидролаз, разрушающих белки, нуклеиновые кислоты, липиды, углеводы при кислом рН (протеиназы, нуклеазы, фосфатазы, липазы). Различают первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Первичные лизосомы – это отшнуровавшиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор ферментов. После слияния первичных лизосом с каким-нибудь субстратом, подлежащим расщеплению, образуются различные вторичные лизосомы. Примером вторичных лизосом являются пищеварительные вакуоли простейших. Такие лизосомы называются фаголизосомы, или гетерофагосомы. Если слияние происходит с измененными органеллами самой клетки, то образуются аутофагосомы. Лизосомы, в полостях которых накапливаются непереваренные продукты, носят название телолизосомы или остаточные тельца.

ЭПС, аппарат Гольджи и лизосомы представляют собой функционально связанные внутриклеточные структуры, отграниченные от цитоплазмы одинарной мембраной. Они составляют единую канальцево-вакуолярную систему клетки.

Пероксисомы

Имеют овальную форму. В центральной части матрикса находятся кристалло подобные структуры. В матриксе содержатся ферменты окисления аминокислот, при работе которых образуется перекись водорода. Также присутствует фермент каталаза, которая разрушает перекись.(Характерны для клеток печени и почек)

Двумембранные органоиды

Митохондрии

По форме митохондрии могут быть овальные, палочковидные, нитевидные, сильноразветвленные. Формы митохондрий могут меняться из одной в другую при изменении рН, осмотического давления, температуры. Форма может быть разной и в разных клетках, и в разных участках одной клетки.

Снаружи митохондрии ограничены гладкой наружной мембраной. Внутренняя мембрана образует многочисленные выросты – кристы. Внутреннее содержимое митохондрий называется матрикс. Митохондрии являются полуавтономными органоидами, поскольку в них содержится собственный аппарат биосинтеза белка (кольцевая ДНК, РНК, рибосомы, аминокислоты, ферменты).

Матрикс - вещество более плотное, чем цитоплазма, гомогенное.

Крист много в клетках печени, расположены они плотно друг относительно друга; в мышцах - меньше.

Рис.7. Строение митохондрии (схема)

1- гладкая наружная мембрана; 2 - внутренняя мембрана; 3 – кристы; 4 –матрикс (и в нем кольцевая молекула ДНК, много рибосом, ферменты).

Размер митохондрий варьирует от 0,2 до 20 микрон.

Количество митохондрий разное в разных типах клеток: от 5-7 до 2500, зависит от функциональной активности клеток. Большое количество митохондрий в клетках печени, работающих мышцах (больше - в молодых, чем в старых).

Расположение митохондрий может быть равномерным по всей цитоплазме, как например, в клетках эпителия, нервных клетках, клетках простейших, или неравномерным, например, в участке наиболее активной клеточной активности. В секреторных клетках это участки, где вырабатывается секрет, в клетках сердечной мышцы и гаметах (окружают ядро). Обнаружена структурная связь митохондрий с клеточным ядром в периоды, предшествующие клеточному делению. Считается, что в этот период активно протекают процессы обмена веществ и энергии и осуществляется он по структурам, напоминающим трубочки.

Химический состав: белки - 70 %, липиды - 25 %, нуклеиновые кислоты (ДНК, РНК - незначительно), витамины А, В 12 , В 6 , К, Е, ферменты.

Митохондрии являются наиболее чувствительными органоидами к воздействию различных факторов: наркотики, повышение температуры, яды приводят к набуханию, увеличению объема митохондрий, у них разжижается матрикс, уменьшается число крист и появляются складки на наружной мембране. Эти процессы приводят к нарушению клеточного дыхания и могут стать необратимыми при частых и чрезвычайных воздействиях.

В митохондриях осуществляется синтез АТФ в результате процессов окисления органических субстратов и фосфорилирования АДФ и синтез стероидных гормонов

В процессе эволюции разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функций. Это требовало наличия в них особых органоидов, которые называют специализированными.

Такие органоиды присутствуют только в клетках определенных тканей, например, миофибриллы - в мышечных, нейрофибриллы - в нервных, тоно-фибриллы, реснички и жгутики - в эпителиальных.

ВКЛЮЧЕНИЯ

В отличие от органоидов, включения являются временными струк-турами, появляющимися в клетке в определенные периоды жизнедеятель-ности клетки. Основное место локализации включений - цитоплазма, но иногда и ядро.

Включения являются продуктами клеточного метаболизма, могут иметь вид гранул, зерен, капель, вакуолей и кристаллов; используются или самой клеткой по мере надобности, или служат для всего макроорганизма.

Включения классифицируются по химическому составу:

жировые: углеводные: белковые: пигментные:
1) в любой клетке в виде капелек жи-ра; 2) белый жир - специализированная жировая ткань взрослых; 3) бурый жир - специализированная жировая ткань эм-брионов; 4) в результате пато- логических про-цессов - жировая дистрофия клеток (печень, сердце); 5) у растений - в се-менах содержится до 70 % включе-ний; 1) гликоген - в клет-ках скелетных мышц, печени, нейронах; 2) в клетках эндопа-разитов (анаэроб-ный тип дыха-ния); 3) крахмал - в клет-ках растений; 1) в яйцеклетках, клетках печени, простейших; 1) липофусцин - пигмент старения; 2) липохромы - в корковом вещест-венапдпочеников и желтом теле яичника; 3) ретинин - зри-тельный пурпур глаза; 4) меланин - в пиг-ментных клетках; 5) гемоглобин - ды-хательный - в эри-троцитах;
секреторные: могут быть белками, жирами, углеводами, или смешанными и находятся в клетках соответствующих желез: 1) сальная железа; 2) железы внутренней секреции; 3) железы пищеварительной системы; 4) молочные железы; 5) слизь в бокаловидных клетках; 6) эфирные масла растений.

КЛЕТОЧНОЕ ЯДРО

Клеточное ядро участвует в дифференцировке клеток по форме, по количеству, по расположению и по размеру. Форма ядра зачастую связана с формой клетки, но может быть и совершенно неправильной. В шаровидных, кубических и многогранных клетках ядро обычно имеет сферическую форму; в цилиндрических, призматических и веретенообразных - форму эллипса (гладкий миоцит).

Рис 8. Гладкий миоцит

Примером неправильной формы ядра могут служить ядра лейкоцитов (сегментированные – сегментоядерный нейтрофильный лейкоцит). Моноциты крови имеют ядро бобовидной формы.


Рис. 9 . Моноцит крови Рис. 10 Сегментоядерный

нейтрофильный лейкоцит

Большинство клеток имеет по одному ядру. Но существуют двуядерные клетки: клетки печени гепатоциты и хрящей хондроциты, и многоядерные: остеокласты костной ткани и мегакариоциты красного костного мозга - до 100 ядер. Особенно многочисленны ядра в симпластах и синцитиях (поперечно-полосатые мышечные волокна и ретикулярная ткань), но эти образования не являются собственно клетками.

Рис.11 . Гепатоцит Рис. 12 .Мегакариацит

Расположение ядер индивидуально для каждого типа клеток. Обычно в недифференцированных клетках ядро располагается в геометрическом центре клетки. По мере созревания, накопления запасных питательных веществ и органоидов, ядро смещается к периферии. Есть клетки, у которых ядро занимает резко эксцентричное положение. Наиболее ярким примером этого являются клетки белого жира адипоциты, в которых почти весь объем цитоплазмы занимает капля жира. В любом случае, как бы ни располагалось ядро в клетке, оно почти всегда окружено зоной недифференцированной цитоплазмы.

Рис. 13Адипоциты

Размер ядра зависит от типа клетки и обычно прямо пропорционален объему цитоплазмы. Соотношение между объемом ядра и цитоплазмы принято выражать так называемым ядерно-плазматическим (Я-Ц) соотношением Гертвига: при увеличении объема цитоплазмы увеличивается также объем ядра. Момент наступления клеточного деления, по-видимому, определяется изменением Я-Ц-соотношения и связано с тем, что только определенный объем ядра способен контролировать определенный объем цитоплазмы. Обычно более крупные ядра обнаруживаются в молодых, опухолевых клетках, клетках, готовящихся к делению. Вместе с тем, объем ядра - признак, характерный для каждой ткани. Существуют ткани, клетки которых имеют мелкое относительно объема цитоплазмы ядро, это так называемые клетки цитоплазматического типа. К ним относятся большинство клеток организма, например, все виды эпителиев.

Другие - имеют крупное ядро, занимающее практически всю клетку и тонкий ободок цитоплазмы - клетки ядерного типа, таковыми являются лимфоциты крови.

Рис.16 Строение ядра (схема)

1- рибосомы на наружной мембране; 2 - ядерные поры; 3 - наружная мембрана; 4 - внутренняя мембрана; 5 - ядерная оболочка; (кариолемма, нуклеолемма); 6 - щелевидное перинуклеарное пространство; 7 - ядрышко;

8 - ядерный сок (кариоплазма, нуклеоплазма); 9 - гетерохроматин;

10 – эухроматин.

Ядерная оболочка образована двумя элементарными биологическими мембранами, между которыми находится щелевидное перинуклеарное пространство. Ядерная оболочка служит отграничению внутриядерного пространства от цитоплазмы клетки. Она не сплошная и имеет мельчайшие отверстия - поры. Ядерная пора образуется за счет слияния ядерных мембран и представляет собой сложноорганизованную глобулярно-фибриллярную структуру, заполняющую перфорацию в ядерной оболочке. Это так называемый комплекс ядерной поры . По границе отверстия располагается три ряда гранул (по восемь - в каждом). Первый ряд прилежит к внутриядерному пространству, второй - к цитоплазме, а третий - располагается между ними. От гранул отходят фибриллярные отростки, которые соединяются в центре припомощи гранулы и создают перегородку, диафрагму поперек поры. Число пор непостоянно и зависит от метаболической активности клетки.

Ядерный сок - неокрашенная масса, которая заполняет все внутреннее пространство ядра между его компонентами и представляет собой коллоидную систему и обладает тургором.

Ядрышки - одной или несколько стероидных телец, часто довольно большого размера (в нейроцитах и овоцитах). Ядрышки - нуклеолы - самая плотная структура ядра, хорошо окрашиваются основными красителями, так как богаты РНК. Он неоднородны по своему строению, имеют тонкозернистую или мелковолокнистую структуру. Служат местом образования рибосом .

Хроматин - зоны плотного вещества, которые хорошо воспринимают красители, характерны для неделящейся клетки. Хроматин имеет другое агрегатное состояние - во время клеточного деления превращается путем конденсации и спирализации в хромосомы . Каждая хромосома имеет центромеру - место прикрепления к нитям веретена деления при митозе центромера делит хромосому на два плеча.

Кроме центромеры (первичной перетяжки) у хромосомы может быть вторичная перетяжка и отделенный ею спутник . Снаружи каждая хромосома покрыта пелликулой , под которой находится белковый матрикс . В матриксе располагаются хроматиды . Хроматиды состоят из хромонем , а те - из элементарных нитей . Совокупность хромосом каждого организма составляют хромосомный набор .

Рис17 . Строение хромосомы (схема)

1 - центромера (первичная перетяжка); 2- плечи; 3 – вторичная перетяжка; 4-спутник; 5 – пелликула; 6 – белковый матрикс; 7 - хроматин

ВОСПРОИЗВЕДЕНИЕ КЛЕТОК.

Все живые организмы состоят из клеток. В процессе жизнедеятельности часть клеток организма изнашивается, стареет и погибает. Единственным способом образования клеток является деление предшествующих. Деление клеток – жизненно важный процесс для всех организмов.

Жизненный (клеточный) цикл.

Жизнь клетки от момента её возникновения в результате деления материнской летки до её собственного деления или смерти называется жизненным (клеточным) циклом . Обязательным компонентом клеточного цикла является митотический цикл , включающий период подготовки клетки к делению и само деление. Подготовка клетки к делению, или интерфаза, составляет значительную часть времени митотического цикла и состоит из периодов:

1. Пресинтетический (постмитотический) G1 – наступает сразу после деления клетки. В клетках идут процессы биосинтеза, образуются новые органоиды. Молодая клетка растет. Этот период самый вариабельный по продолжительности.

2. Синтетический S – главный в митотическом цикле. Происходит репликация ДНК. Каждая хромосома становится двунитчатой, то есть состоит из двух хроматид – идентичных молекул ДНК. Кроме того, клетка продолжает синтезировать РНК, белки. В делящихся клетках млекопитающих он длится около 6 – 10 часов.

3. Постсинтетический (премитотический) G2 – относительно короток, в клетках млекопитающих он составляет порядка 2 – 5 часов. В это время количество центриолей и митохондрий удваивается, идут активные метаболические процессы, накапливаются белки и энергия для предстоящего деления. Клетка приступает к делению.

7.2 ДЕЛЕНИЕ КЛЕТКИ .

Описано три способа деления эукариотических клеток:

1) амитоз (прямое деление),

2) митоз (непрямое деление).

3) мейоз (редукционное деление).

7.2.1 Амитоз - клеточное деление без спирализации хромосом, возник ранее митоза. Этим способом размножаются прокариоты, высокоспециализиро-ванные и деградирующие клетки. При этом ядерная мембрана и ядрышки не исчезают, хромосомы остаются спирализованными.

Типы амитоза:

1) перешнуровка (характерна для бактерий)

2) фрагментация (мегакариобласт, мегакариоцит)

3)почкование (от мегакариоцита отпочковываются тромбоциты)

По распределению генетического материала

К делению без митотического аппарата приводит облучение, дистрофия ткани, действие различных агентов, нарушающих вступление клеток в митоз.

Митоз

Характеризуется разрушением ядерной оболочки и ядрышек, спирализацией хромосом. В митозе различают профазу , метафазу , анафазу и телофазу .

Рис.18 . Схема митоза

I. Профаза:

1) Форма клетки становится округлой, ее содержимое - более вязким, хромосомы приобретают вид длинных тонких нитей, скрученных внутри ядра. Каждая хромосома состоит из двух хроматид.

2) Хроматиды постепенно укорачиваются и приближаются к ядерной оболочке, что является признаком начала разрушения кариолеммы.

3) Развивается веретено: центриоли расходятся к полюсам и удваиваются, между ними формируются нити веретена деления.

4) Происходит разрушение ядерной оболочки, в центре клетки образуется зона жидкой цитоплазмы, куда устремляются хромосомы.


Поздняя метафаза

Хромосомы выстраиваются в экваториальной плоскости, образуя метафизарную пластинку . К центромерам хромосом прикрепляются нити веретена деления.

Различают два типа нитей веретена деления: одни из них связаны с хромосомами и называются хромосомными , а другие - тянутся от полюса к полюсу и называются непрерывными .

Материнская

IV. Телофаза.

Завершается миграция двух дочерних групп хромосом к противоположным полюсам клетки.Происходят реконструкция ядер и деконденсация хромосом, они деспирализуются, восстанавливается кариолемма, появляются ядрышки. Деление ядра завершается.

Начинается цитокинез (цитотомия) - процесс перешнуровки и разделения цитоплазмы с образованием перетяжки. Наблюдается «вскипание» клеточной поверхности из-за ее интенсивного роста. Цитоплазма теряет свою вязкость, центриоли утрачивают активность, органоиды разделяются приблизительно пополам между дочерними клетками.

Рис.24 Цитокинез

Типы митоза:


1) Любая ткань является саморегулирующейся системой, в связи с этим количество клеток, погибших в ткани, уравновешивается числом их образовавшихся.

2) Существуют суточные ритмы митотической активности. Наибольшая митотическая активность совпадает с периодами покоя ткани, а усиление функции ткани приводит к торможению митозов (у ночных животных - в ранне-утреннее время, а у животных, ведущих дневной образ жизни, - в ночные часы).

3) Тормозящее влияние на митотическую активность оказывают гормоны стресса: адреналин и норадреналин, а стимулирующее - гормон роста. Изменение митотической активности происходит за счет изменения длительности интерфазы. В каждой клетке изначально заложена способность к делению, но при некоторых условиях эта способность заторможена . Торможение может быть разной степени, вплоть до необратимой.

Продолжительность жизни клеток можно рассматривать как период от одного деления до другого. В стабильных клеточных популяциях, в которых практически не происходит размножения клеток, продолжительность их жизни максимальная (печень, нервная система).

Эндорепродукция - все случаи, когда происходит редупликация хромосом или репликация ДНК, деления клетки не происходит. Это приводит к полиплодии, увеличению объёма ядра и клетки. Может возникнуть при нарушениях митотического аппарата, наблюдается как в норме, так и при патологии. Характерна для клеток печени, мочевыводящих путей.

Эндомитоз протекает при неразрушающейся ядерной оболочке. Редупликация хромосом происходит как при обычном делении, в результате образуются гигантские хромосомы. Наблюдаются все характерные для митоза фигуры, но они происходят внутри ядра. Различают эндопрофазу ,эндометафазу ,эндоанафазу ,эндотелофазу . Поскольку оболочка ядра сохраняется, в результате получается полиплоидная клетка. Значение эндомитоза состоит в том, что в ходе его не прекращается основная деятельность клетки.

Цитоплазма (cytoplasma) представляет собой сложную коллоидную систему, состоящую из гиалоплазмы, мембранных и немембранных органелл и включений.

Гиалоплазма (от греч. hyaline - прозрачный) представляет собой сложную коллоидую систему состоящую из различных биополимеров (белки, нуклеиновые кислоты, полисахариды), которая способна переходить из золеобразного (жидкого) состояния в гель и обратно.

¨Гиалоплазма состоит из воды, органических и неорганических соединений, растворенных в ней и цитоматрикса, представленного трабекулярной сеткой волокон белковой природы, толщиной 2-3 нм.

¨Функция гиалоплазмы заключается в том, что эта среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом.

Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее, к митохондриям, ядру и вакуолям. Гиалоплазма составляет около 50% от всего объема цитоплазмы.

Органеллы и включения. Органеллы - постоянные и обязательные для всех клеток микроструктуры, обеспечивающие выполнение жизненно важных функций клеток.

В зависимости от размеров органеллы разделяются на:

1) микроскопические - видимые под световым микроскопом;

    субмикроскопические - различимые при помощи электронного микроскопа.

По наличии мембраны в составе органелл различают:

1) мембранные;

    немембранные.

В зависимости от назначения все органеллы делятся на:

Мембранные органеллы

Митохондрии

Митохондрии - микроскопические мембранные органеллы общего назначения.

¨Размеры - толщина 0,5мкм, длина от 1 до 10мкм.

¨Форма - овальная, вытянутая, неправильная.

¨Строение - митохондрия ограничена двумя мембранами толщиной около 7нм:

1) Наружной гладкой митохондриальной мембраной (membrana mitochondrialis externa), которая отграничивает митохондрию от гиалоплазмы. Она имеет равные контуры, замкнута таким образом, что представляет мешок.

    Внутренней митохондриальной мембраной (memrana mitochondrialis interna), которая образует выросты, складки (кристы) внутрь митохондрии и ограничивает внутреннее содержание митохондрии - матрикс. Внутренняя часть митохондрии заполнена электронно-плотным веществом, которое носит название матрикс.

Матрикс имеет тонкозернистое строение и содержит тонкие нити толщиной 2-3 нм и гранулы размером около 15-20 нм. Нити представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.

¨Функции митохондрий

1. Синтез и накопление энергии в виде АТФ, происходит в результате процессов окисления органических субстратов и фосфорилирования АТФ. Эти реакции протекают при участии ферментов цикла трикарбоновых кислот, локализованных в матриксе. Мембраны крист имеют системы дальнейшего транспорта электронов и сопряженного с ним окислительного фосфорилирования (фосфорилирование АДФ в АТФ).

2. Синтез белка. Митохондрии в своем матриксе имеют автономную систему синтеза белка. Это единственные органеллы, которые имеют молекулы собственной ДНК, свободной от гистоновых белков. В матриксе митохондрий также происходит образование рибосом, которые синтезируют ряд белков, некодируемых ядром и используемых для по строения собственных ферментных систем.

3. Регуляция водного обмена.

Лизосомы

Лизосомы (lisosomae) - субмикроскопические мембранные органеллы общего назначения.

¨Размеры - 0,2-0,4 мкм

¨Форма - овальная, мелкая, шаровидная.

¨Строение - лизосомы имеют в своем составе протеолитические ферменты (известно более 60), которые способны расщеплять различные биополимеры. Ферменты располагаются замкнутом мембранном мешочке, который предупреждает их попадание в гиалоплазму.

Среди лизосом различают четыре типа:

    Первичные лизосомы;

    Вторичные (гетерофагосомы, фаголизосомы);

    Аутофагосомы

    Остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки размером 0,2-0,5 мкм, заполненные неструктурированным веществом, содержащим гидролитические ферменты в неактивном состоянии (маркерный - кислая фосфотаза).

Вторичные лизосомы (гетерофагосомы) или внутриклеточные пищеварительные вакуоли, которые формируются при слиянии первичных лизосом с фагоцитарными вакуолями. Ферменты первичной лизосомы начинают контактировать с биополимерами, и расщепляют их до мономеров. Последние транспортируются через мембрану в гиалоплазму, где происходит их реутилизация, то есть включение в различные обменные процессы.

Аутофагосомы (аутолизосомы) – постоянно встречаются в клетках простейших, растений и животных. По совей морфологии их относят к вторичным лизосомам, но с тем различием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, рибосомы, гранулы гликогена.

Остаточные тельца (телолизосома, corpusculum residuale) - представляют собой окруженные биологической мембраной нерасщепленные остатки, содержат небольшое количество гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах происходит вторичная структуризация не переваренных липидов и последние образуют слоистые структуры. Там же наблюдается отложение пигментных веществ - пигмент старения, содержащий липофусцин.

¨Функция - переваривание биогенных макромолекул, модификация продуктов синтезируемых клеткой с помощью гидролаз.