Графоаналитический способ определения перемещения при изгибе. Способ Верещагина. Теорема Максвелла (теорема о взаимности единичных перемещений) Теорема о взаимности возможных работ

Теорема Максвелла - это теорема о взаимности работ для частного случая нагружения системы, когда F 1 =F 2 =1. Очевидно, что при этом δ 12 =δ 21 .

Перемещение точки первого состояния под действием единичной силы второго состояния равняется перемещению точки второго состояния под действием единичной силы первого состояния.

38. Формула для определения работы внутренних сил (с пояснением всех входя­щих в формулу величин).

Теперь определим возможную работу внутренних сил. Для этого рассмотрим два состояния системы:

1) действует сила P i и вызывает внутренние усилия M i , Q i , N i ;

2) действует сила P j , которая в пределах малого элемента dx вызывает возможные деформации

D Mj = dx, D Qj =m dx, D Nj = dx.

Внутренние усилия первого состояния на деформациях (возможных перемещениях) второго состояния совершат возможную работу

–dW ij =M i D Mj +Q i D Qj +N i D Nj = dx+m dx+ dx .

Если проинтегрировать это выражение по длине элемента l и учесть наличие в системе n стержней, получим формулу возможной работы внутренних сил:

–W ij =
dx .

EI – жесткость при изгибе

GA – Жесткость при сдвиге

Е – модуль упругости характер физ параметры

Е – модуль упругости характер геометрич параметры

G- модуль сдвига

A- площадь сечения

EA –продольная жесткость

39. Формула Мора для определения перемещений (с пояснением всех входящих в формулу величин).

Рассмотрим два состояния стержневой системы:

1) грузовое состояние (рис. 6.6 а), в котором действующая нагрузка вызывает внутренние усилия M P , Q P , N P ;

2) единичное состояние (рис. 6.6 б), в котором действующая единичная сила P=1 вызывает внутренние усилия .

Внутренние силы грузового состояния на деформациях единичного состояния , , совершают возможную работу

–V ij =
dx.

А единичная сила P=1 единичного состояния на перемещении грузового состояния D P совершает возможную работу

W ij =1×D P =D P .

По известному из теоретической механики принципу возможных перемещений в упругих системах эти работы должны быть равными, т.е. W ij = –V ij . Значит, должны быть равны и правые части этих выражений:

D P =
dx .

Эта формула называется формулой Мора и используется для определения перемещений стержневой системы от внешней нагрузки.

40. Порядок определения перемещений в С.О.С. с использованием формулы Мора.

N p , Q p , M p как функции координаты х произвольного сечения для всех участков стержневой системы от действия заданной нагрузки.

Приложить по направлению искомого перемещения соответствующую ему единичную нагрузку (единичную силу, если определяется линейное перемещение; сосредоточенный единичный момент, если определяется угловое перемещение).

Определить выражения для внутренних усилий как функции координаты х произвольного сечения для всех участков стержневой системы от действия единичной нагрузки.

Найденные выражения внутренних усилий в первом и втором состоянии подставляют в интеграл Мора и интегрируют по участкам в пределах всей стержневой системы.

41. Применение формулы Мора для определения перемещений в изгибаемых сис­темах (со всеми пояснениями).

В балках (рис. 6.7 а) возможны три случая:

− если > 8 , в формуле оставляется только член с моментами:

D P = ;

− если 5≤ ≤8 , учитываются и поперечные силы:

D P =
dx
;

2. В рамах (рис. 6.7 б) элементы в основном работают только на изгиб.Поэтому в формуле Мора учитываются только моменты.

В высоких рамах учитывается и продольная сила:

D P =
dx .

3. В арках (рис. 6.7 в) необходимо учитывать соотношение между основными размерами арки l и f :

1) если £ 5 (крутая арка), учитываются только моменты;

2) если >5 (пологая арка), учитываются моменты и продольные силы.

4. В фермах (рис. 6.7 г) возникают только продольные силы. Поэтому

D P = dx = = .

42. Правило Верещагина для вычисления интегралов Мора: суть и условия ис­пользования.

Правило Верещагина для вычисления интегралов Мора: суть и условия ис­пользования.

c- центр тяжести площади грузовой эпюры.

y c -ордината взята из единичной эпюры, расположенной под центром тяжести площади грузовой эпюры.

EI- жесткость при изгибе.

Для вычисления полного перемещения необходимо сложить произведения грузовой эпюры на ординату поединично всех простых участков системы.

В данной формуле приведены определенные перемещения от действий только изгибающего момента. Это справедливо для изгибающих систем, для которых основное влияние на перемещение точек оказывает величина изгибающего момента, а влияние поперечной и продольных сил незначительно,которыми на практике пренебрегают.

Формулировка теоремы о взаимности работ (теоремы Бетти) , доказанная в 1872 г Э. Бетти: возможная работа сил первого состояния на соответствующих перемещениях, вызванных силами второго состояния, равна возможной работе сил второго состояния на соответствующих перемещениях, вызванных силами первого состояния.

24. Теорема о взаимности перемещений (Максвелла)

Пусть и.Теорема о взаимности перемещений с учетом принятого обозначения перемещения от единичной силы имеет вид: .Теорема о взаимности перемещений была доказана Максвеллом.Формулировка теоремы о взаимности перемещений : перемещение точки приложения первой единичной силы, вызванное действием второй силы, равно перемещению точки приложения второй единичной силы, вызванному действием первой единичной силы

25. теорема Релея о взаимноти реакций.

26. теорема Гвоздева о взаимности перемещений и реакций.

27. Определение перемещений от нагрузки. Формула Мора.

Формула мора


28. Определение перемещений от температурного воздействия и от смещения.

Температурное воздействие.


Осадка


29. Правило Верещагина. Формула перемножения трапеций, формула Симпсона.

Формула умножения трапеций.

Формула умножения криволинейных трапеций

31. Свойства статически неопределимых систем.

    Для определения усилий и реакций уравнений статики недостаточно, надо привлекать уравнения неразрывности деформации и перемещений.

    Усилия и реакции зависят от соотношения жесткостей отдельных элементов.

    Изменение температуры и осадка опоры вызывают появление внутренних усилий.

    При отсутствии нагрузки возможно состояние самонапряжения.

32. Определение степени статической неопределимости, принципы выбора основной системы метода сил.

Для статически неопределимых систем W<0

Число лишних связей определяется по формуле:

Л = - W + 3К ,

где W– число независимых геометрических параметров, определяющих положение конструкции на плоскости без учета деформации конструкции (число степеней свободы), К – число замкнутых контуров (контуры, в которых нет шарнира).

W = 3Д – 2Ш – Со

формула Чебышева для определения степени свободы, где Д – число дисков, Ш – число шарниров, Со – число опорных стержней.

    ОСМС должна быть геометрически неизменяемой.

    Должна быть статически определима (удаляем Л лишних связей).

    Эта система должна быть простой для расчета.

    Если исходная система была симметричной, то и ОСМС по возможности выбирают симметричной.

33. Канонические уравнения метода сил, их физический смысл.

Канонические уравнения:

Физический смысл:

Суммарное перемещение по направлению каждой удаленной связи должно быть = 0

34. Вычисление коэффициентов канонических уравнений, их физический смысл, проверка правильности найденных коэффициентов.

Перемещение по направлению итой удаленной связи, вызванной джитой единичной силой.

Перемещение по направлению итой удаленной связи, вызванной внешней нагрузкой.

Для того, чтобы проверить правильность найденных коэффициентов, нужно подставить их в систему канонических уравнений и найти Х1 и Х2.

Пусть балка имеет два состояния:

Где ∆ 12 – перемещение в точке 1 от действия силы, приложенной в точке 2.

∆ 21 – перемещение в точке 2 от силы, приложенной в точке 1.

Для вывода теоремы сначала балку загружаем силой F 1 , а затем силой F 2

Совершенная работа равна: W=W 11 +W 22 +W 12 = + + F 1 ∙∆ 12

W=W 22 +W 11 +W 21 = + + F 2 ∙∆ 21

Т.к. силы одинаковы, то и работа одинакова, из этого следует: F 1 ∙∆ 12 = F 2 ∙∆ 21 – теорема о взаимности работ (теорема Бетти): Работа сил первого состояния на перемещение второго состояния равна работе сил второго состояния на перемещение первого состояния.

Если принять F 1 =F 2 =1 (безразмерная величина), то получим теорему о взаимности перемещений (теорема Максвелла): δ 12 =δ 21 - перемещение от единичной силы. Th: перемещение в точке приложения первой единичной силы по её направлению, вызванной второй единичной силой равно перемещению в точке приложения второй единичной силы по её направлению, вызванной первой единичной силой.


10.Графоаналитеческий способ решения интеграла Мора (способ Верещагина)

Если загружен. сис-мы имеют ряд участков с различными изгиб. моментами, то вычисления интеграла несколько затруднительно. Поэтому применяют способ Верещагина.

Пусть груз. эпюра моментов имеет криволинейное очертание, а единич. эпюра изгиб. моментов имеет линейное(рисунок).В этом случае интеграл Мора .(ВЫВОД)

; dw =S y - статический момент площади груз. Эпюры моментов относительно оси У.

Статический момент любой фигуры равен произведению площади на расстояние от оси до центра тяжести фигуры где w- площадь грузовой эпюры М F ; Z c - растояние до центра тяжести.

; Однако имея значение момента от единичной нагрузки под центром тяжести груз. Эпюры .Поскольку к балке может быть приложена несколько нагрузок, то перемещение определяют для каждого участка балки – формула Верещагина, т.е перемещение равно площади криволинейной эпюры на ординату прямолинейной расположенной под центром тяжести криволинейной эпюры. В практических расчётах площадь груз. эпюры разбивают на простейшие эпюры (рисунки).


Статически неопределимые системы.Метод расчета. Основная и эквивалентная система.

Статически неопределимыми балками(рамами) наз. балки(рамы) у которых все неизвестные реакции опор невозможно определить используя только уравнения статики, тк они имеют линии связи(реакции). Степень статич неопред-ти опред-ся разностью между числами неизвестных реакций и уравнений статики.

Балки имеют 4 опорные связи,т.е 4 опорные р-ции. А ур-й статики для плоской сист. Можно составить 3, следовательно балка явл. 1 раз статич. Неопределимой. Для раскрытия статической неопред-ти необход. к ур-ю статики составить доп. Ур-е исходя из перемещения сист. Их кол-во опред. степень статич неопределимости. Если линейных неизвестных несколько то доп. ур-я сост-ся исходя из деформационных условий(прогибов) на опору балки используя метод начальных параметров.

Сост. Ур-я статики и доп. Ур-я для заданной балки: Z=0; Y=0; M(B)=0.

Доп. Ур-е запишем из условия, что прогиб на опоре B=0 . EIY(B)=0. У некоторых сист. степень статич. неопред. высокая(неразрезные балки). Доп. ур-е составляеться исходя из деформационных условий(углов поворота сечения) на промежуточных опорах балкииспользуя метод сил. Из совместного решения ур-й статики и доп-х ур-й находим все неизвестные реакции

Установив степень статической неопределимости составляеться основная система. Под основной системой понимаеться такая статически определимая система, которая получается из статически неопределимой путем отбрасывания линейных связей.

Связей 6, уравнений статики 3. 6-3=3 - 3 раза статич неопред сист

Основных систем можно выбрать множество. При выборе основной системы необходимо что бы она была геометрически и мгновенно неизменяемой.

«геометрич измененная», «мгновенно измененная»

К мгновенно измененным сист относиться системы у которых реакции опор пересекаются в одной точке. Если к основной сист. приложить отброшенные связи и нагрузку, то получим эквивалентную систему.

рассмотрим 1-ю осн ситему. Рисунок

рассмотрим 2-ю основную систему. Рисунок

Основы метода сил.

расчет по методу сил осуществляеться в след. порядке:

1) Устанавливаем степень статической неопределимости

2) Выбираем основную и эквивалентную системы. отбрасывая линии связи и заменяя их неизвестными силами Х1,Х2,Х3.

3) Записывают условия эквивалентности заданой и эквиваленнтной систем по перемещению

заданая система эквив.сист

Если у заданной сист перемещение по направлению неизвестных сил Х1,х2,Х3 отсутствует.то условия эквивалентности будут иметь вид: =0, , =0.

Выразим эти перемещения от каждой неизвестной силы и от внешней нагрузки

Перемещения:

Что касается неизвестных Х1,Х2,Х3, то их влияние на перемещение можно представить ввиде:

Х1; = Х2; = Х3 т.е определение перемещений от единич. сил приложенных в направл. связей умножают их на соответствующие неизвестные силы X. после этого ур-е перемещений по направлению 3-х неизвестных связей примут вид.

Начало возможных перемещений, являясь общим принципом механики, имеет важнейшее значение для теории упругих систем. Применительно к ним этот принцип можно сформулировать следующим образом: если система находится в равновесии под действием приложенной нагрузки, то сумма работ внешних и внутренних сил на возможных бесконечно малых перемещениях системы равна нулю.

где - внешние силы;
- возможные перемещения этих сил;
- работа внутренних сил.

Заметим, что в процессе совершения системой возможного перемещения величина и направление внешних и внутренних сил остаются неизменными. Поэтому при вычислении работ следует брать на половину, а полную величину произведения соответствующих сил и перемещений.

Рассмотрим два состояния какой-либо системы, находящейся в равновесии (рис. 2.2.9). В состоянии система деформируется обобщенной силой(рис. 2.2.9, а), в состоянии- силой(рис. 2.2.9, б).

Работа сил состояния на перемещениях состояния, как и работа сил состоянияна перемещениях состояния, будет возможной.

(2.2.14)

Вычислим теперь возможную работу внутренних сил состояния на перемещениях, вызванных нагрузкой состояния. Для этого рассмотрим произвольный элемент стержня длиной
в обоих случаях. Для плоского изгиба действие удаленных частей на элемент выражается системой усилий,,
(рис. 2.2.10, а). Внутренние усилия имеют направления, противоположные внешним (показаны штриховыми линиями). На рис. 2.2.10, б показаны внешние усилия,,
, действующие на элемент
в состоянии. Определим деформации, вызванные этими усилиями.

Очевидно удлинение элемента
, вызванное силами

.

Работа внутренних осевых сил на этом возможном перемещении

. (2.2.15)

Взаимный угол поворота граней элемента, вызванный парами
,

.

Работа внутренних изгибающих моментов
на этом перемещении

. (2.2.16)

Аналогично определяем работу поперечных сил на перемещениях, вызванных силами

. (2.2.17)

Суммируя полученные работы, получаем возможную работу внутренних сил, приложенных к элементу
стержня, на перемещениях, вызванной другой, вполне произвольной нагрузкой, отмеченной индексом

Просуммировав элементарные работы в пределах стержня, получим полное значение возможной работы внутренних сил:

(2.2.19)

Применим начало возможных перемещений, суммируя работу внутренних и внешних сил на возможных перемещениях системы, и получим общее выражение начала возможных перемещений для плоской упругой стержневой системы:

(2.2.20)

Т. е., если упругая система находится в равновесии, то работа внешних и внутренних сил в состоянии на возможных перемещениях, вызванных другой, вполне произвольной нагрузкой, отмеченной индексом, равна нулю.

Теоремы о взаимности работ и перемещений

Запишем выражения начала возможных перемещений для балки, показанной на рис. 2.2.9, приняв для состояния в качестве возможных перемещения, вызванные состоянием, а для состояния- перемещения, вызванные состоянием.

(2.2.21)

(2.2.22)

Так как выражения работ внутренних сил одинаковы, то очевидно, что

(2.2.23)

Полученное выражение носит название теоремы о взаимности работ (теоремы Бетти). Она формулируется следующим образом: возможная работа внешних (или внутренних) сил состояния на перемещениях состоянияравна возможной работе внешних (или внутренних) сил состоянияна перемещениях состояния.

Применим теорему о взаимности работ к частному случаю нагружения, когда в обоих состояниях системы приложено по одной единичной обобщенной силе
и
.

Рис. 2.2.11

На основании теоремы о взаимности работ получаем равенство

, (2.2.24)

которое носит название теоремы о взаимности перемещений (теоремы Максвелла). Формулируется она так: перемещение точки приложения первой силы по ее направлению, вызванное действием второй единичной силы, равно перемещению точки приложения второй силы по ее направлению, вызванному действием первой единичной силы.

Теоремы о взаимности работ и перемещений существенно упрощают решение многих задач при определении перемещений.

Пользуясь теоремой о взаимности работ, определим прогиб
балки посредине пролета при действии на опоре момента
(рис. 2.2.12, а).

Используем второе состояние балки – действие в точке 2 сосредоточенной силы . Угол поворота опорного сечения
определим из условия закрепления балки в точке В:

Рис. 2.2.12

Согласно теореме о взаимности работ

,

Рассмотрим два состояния упругой системы, находящейся в равновесии. В каждом из этих состояний на систему действует некоторая статическая нагрузка (рис.23,а). Обозначим перемещения по направлениям сил F 1 и F 2 через, где индекс “i” показывает направление перемещения, а индекс “j” – вызвавшую его причину.

Рис. 23

Обозначим работу нагрузки первого состояния (сила F 1) на перемещениях первого состояния через А 11 , а работу силы F 2 на вызванных ею перемещениях – А 22:

.

Используя (2.9), работы А 11 и А 22 можно выразить через внутренние силовые факторы:

(2.10)

Рассмотрим случай статического нагружения той же системы (рис.23,а) в такой последовательности. Сначала к системе прикладывается статически возрастающая сила F 1 (рис.23,б); когда процесс ее статического нарастания закончен, деформация системы и действующие в ней внутренние усилия становятся такими же, как и первом состоянии (рис.23,а). Работа силы F 1 составит:

Затем на систему начинает действовать статически нарастающая сила F 2 (рис.23,б). В результате этого система получает дополнительные деформации и в ней возникают дополнительные внутренние усилия, такие же, как и во втором состоянии (рис.23,а). В процессе нарастания силы F 2 от нуля до ее конечного значения сила F 1 , оставаясь неизменной, перемещается вниз на величину дополнительного прогиба
и, следовательно, совершает дополнительную работу:

Сила F 2 при этом совершает работу:

Полная работа А при последовательном нагружении системы силами F 1 , F 2 равна:

С другой стороны, в соответствии с (2.4) полную работу можно определить в виде:

(2.12)

Приравнивая друг к другу выражения (2.11) и (2.12), получим:

(2.13)

А 12 =А 21 (2.14)

Равенство (2.14) носит название теоремы о взаимности работ, илитеоремы Бетти: работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния.

Опуская промежуточные выкладки, выразим работу А 12 через изгибающие моменты, продольные и поперечные силы, возникающие в первом и втором состояниях:

Каждое подинтегральное выражение в правой части этого равенства можно рассматривать как произведение внутреннего усилия, возникающего в сечении стержня от сил первого состояния, на деформацию элемента dz, вызванную силами второго состояния.

2.4 Теорема о взаимности перемещений

Пусть в первом состоянии к системе приложена сила
, а во втором -
(рис.24). Обозначим перемещения, вызванные единичными силами (или единичными моментами
) символом. Тогда перемещение рассматриваемой системы по направлению единичной силыв первом состоянии (то есть вызванное силой
) -
, а перемещение по направлению силы
во втором состоянии -
.

На основании теоремы о взаимности работ:

, но
, поэтому
, или в общем случае действия любых единичных сил:

(2.16)

Рис. 24

Полученное равенство (2.16) носит название теоремы о взаимности перемещений (илитеоремы Максвелла): для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй силы, вызванному первой силой.