Лекция: Виды картографических проекций. Картографическая проекция. Виды искажений в картографических проекциях. Классификация проекций

Картографи-ческие проекции — это математические способы изображения на плоскости поверхности земного шара (эллипсоида).

Точнее всего форму Зем-ли передает глобус , потому что он такой же шарообраз-ный, как наша планета . Но глобусы занимают много места, их трудно брать в дорогу, нель-зя вложить в книгу. Они имеют очень мелкий масштаб , на них нельзя подробно показать небольшой участок земной поверхнос-ти.

Картографических проек-ций существует множество. Самые распространённые — азимутальная , цилиндрическая , коническая . В зависимости от вида картографической проекции наибольшие искажения могут быть в одном или другом месте карты, а градусная сеть может выглядеть по-разному.

Какую проекцию выбрать, зави-сит от назначения карты, от размера изображаемой терри-тории и широты, на которой она расположена. Например, для вытянутых в средних ши-ротах стран, таких, как Рос-сия, удобно использовать коническую проекцию, для полярных областей азимутальную, а для карт мира, отдельных материков, океанов часто применяют цилиндрическую проекцию.

Виды картографических проекций и их характеристики

Для выбора наиболее выгодного пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное изображение земной поверхности на плоскости, выполненное по определенному способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей поверхности шара или его части или эллипсоида вращения с малым сжатием называются картографической проекцией, а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S. В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли и последующей развертки по образующей на плоскость.

В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.

Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Картографические проекции

отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую-либо её части на плоскость, получаемые в основном с целью построения карты.

Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно земной эллипсоид в М раз, например в 10 000 000 раз, получают его геометрическую модель - Глобус , изображение которого уже в натуральную величину на плоскости даёт карту поверхности этого эллипсоида. Величина 1: М (в примере 1: 10 000 000) определяет главный, или общий, масштаб карты. Т. к. поверхности эллипсоида и шара не могут быть развёрнуты на плоскость без разрывов и складок (они не принадлежат к классу развёртывающихся поверхностей (См. Развёртывающаяся поверхность)), любой К. п. присущи искажения длин линий, углов и т.п., свойственные всякой карте. Основной характеристикой К. п. в любой её точке является частный масштаб μ. Это - величина, обратная отношению бесконечно малого отрезка ds на земном эллипсоиде к его изображению на плоскости: μ min ≤ μ ≤ μ max , и равенство здесь возможно лишь в отдельных точках или вдоль некоторых линий на карте. Т. о., главный масштаб карты характеризует её только в общих чертах, в некотором осреднённом виде. Отношение μ/М называют относительным масштабом, или увеличением длины, разность М = 1.

Общие сведения. Теория К. п. - Математическая картография - имеет своей целью изучение всех видов искажений отображений поверхности земного эллипсоида на плоскость и разработку методов построения таких проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения или заранее заданное распределение.

Исходя из нужд картографии (См. Картография), в теории К. п. рассматривают отображения поверхности земного эллипсоида на плоскость. Т. к. земной эллипсоид имеет малое сжатие, и его поверхность незначительно отступает от сферы, а также в связи с тем, что К. п. необходимы для составления карт в средних и мелких масштабах (М > 1 000 000), то часто ограничиваются рассмотрением отображений на плоскость сферы некоторого радиуса R , отклонениями которой от эллипсоида можно пренебречь или каким-либо способом учесть. Поэтому далее имеются в виду отображения на плоскость хОу сферы, отнесённой к географическим координатам φ (широта) и λ (долгота).

Уравнения любой К. п. имеют вид

x = f 1 (φ, λ), y = f 2 (φ, λ) , (1)

где f 1 и f 2 - функции, удовлетворяющие некоторым общим условиям. Изображения меридианов λ = const и параллелей φ = const в данной К. п. образуют картографическую сетку. К. п. может быть определена также двумя уравнениями, в которых фигурируют не прямоугольные координаты х , у плоскости, а какие-либо иные. Некоторые К. п. [например, Перспективные проекции (в частности, ортографические, рис. 2 ) перспективно-цилиндрические (рис. 7 ) и др.] можно определить геометрическими построениями. К. п. определяют также правилом построения соответствующей ей картографической сетки или такими её характеристическими свойствами, из которых могут быть получены уравнения вида (1), полностью определяющие проекцию.

Краткие исторические сведения. Развитие теории К. п., как и всей картографии, тесно связано с развитием геодезии, астрономии, географии, математики. Научные основы картографии были заложены в Древней Греции (6-1 вв. до н. э.). Древнейшей К. п. считается Гномоническая проекция , примененная Фалесом Милетским к построению карт звёздного неба. После установления в 3 в. до н. э. шарообразности Земли К. п. стали изобретаться и использоваться при составлении географических карт (Гиппарх , Птолемей и др.). Значительный подъём картографии в 16 в., вызванный Великими географическими открытиями, привёл к созданию ряда новых проекций; одна из них, предложенная Г. Меркатор ом, используется и в настоящее время (см. Меркатора проекция). В 17-18 вв., когда широкая организация топографических съёмок стала поставлять достоверный материал для составления карт на значительной территории, К. п. разрабатывались как основа для топографических карт (французский картограф Р. Бонн, Дж. Д. Кассини), а также выполнялись исследования отдельных наиболее важных групп К. п. (И. Ламберт , Л. Эйлер , Ж. Лагранж и др.). Развитие военной картографии и дальнейшее увеличение объёма топографических работ в 19 в. потребовали обеспечения математической основы крупномасштабных карт и введения системы прямоугольных координат на базе, более подходящей К. п. Это привело К. Гаусс а к разработке фундаментальной геодезической проекции (См. Геодезические проекции). Наконец, в середине 19 в. А. Тиссо (Франция) дал общую теорию искажений К. п. Развитие теории К. п. в России было тесно связано с запросами практики и дало много оригинальных результатов (Л. Эйлер, Ф. И. Шуберт , П. Л. Чебышев , Д. А. Граве и др.). В трудах советских картографов В. В. Каврайского (См. Каврайский), Н. А. Урмаев а и др. разработаны новые группы К. и., отдельные их варианты (до стадии практического использования), важные вопросы общей теории К. п., классификации их и др.

Теория искажений. Искажения в бесконечно малой области около какой-либо точки проекции подчиняются некоторым общим законам. Во всякой точке карты в проекции, не являющейся равноугольной (см. ниже), существуют два таких взаимно перпендикулярных направления, которым на отображаемой поверхности соответствуют также взаимно перпендикулярные направления, это - так называемые главные направления отображения. Масштабы по этим направлениям (главные масштабы) имеют экстремальные значения: μ max = а и μ min = b . Если в какой-либо проекции меридианы и параллели на карте пересекаются под прямым углом, то их направления и есть главные для данной проекции. Искажение длины в данной точке проекции наглядно представляет эллипс искажений, подобный и подобно расположенный изображению бесконечно малой окружности, описанной вокруг соответствующей точки отображаемой поверхности. Полудиаметры этого эллипса численно равны частным масштабам в данной точке в соответствующих направлениях, полуоси эллипса равны экстремальным масштабам, а направления их - главные.

Связь между элементами эллипса искажений, искажениями К. п. и частными производными функций (1) устанавливается основными формулами теории искажений.

Классификация картографических проекций по положению полюса используемых сферических координат. Полюсы сферы суть особые точки географической координации, хотя сфера в этих точках не имеет каких-либо особенностей. Значит, при картографировании областей, содержащих географические полюсы, желательно иногда применять не географические координаты, а другие, в которых полюсы оказываются обыкновенными точками координации. Поэтому на сфере используют сферические координаты, координатные линии которых, так называемые вертикалы (условная долгота на них а = const ) и альмукантараты (где полярные расстояния z = const ), аналогичны географическим меридианам и параллелям, но их полюс Z 0 не совпадает с географическим полюсом P 0 (рис. 1 ). Переход от географических координат φ , λ любой точки сферы к её сферическим координатам z , a при заданном положении полюса Z 0 (φ 0 , λ 0) осуществляется по формулам сферической тригонометрии. Всякая К. п., данная уравнениями (1), называется нормальной, или прямой (φ 0 = π/2 ). Если та же самая проекция сферы вычисляется по тем же формулам (1), в которых вместо φ , λ фигурируют z , a , то эта проекция называется поперечной при φ 0 = 0 , λ 0 и косой, если 0 . Применение косых и поперечных проекций приводит к уменьшению искажений. На рис. 2 показана нормальная (а), поперечная (б) и косая (в) ортографические проекции (См. Ортографическая проекция) сферы (поверхности шара).

Классификация картографических проекций по характеру искажений. В равноугольных (конформных) К. п. масштаб зависит только от положения точки и не зависит от направления. Эллипсы искажений вырождаются в окружности. Примеры - проекция Меркатор, Стереографическая проекция .

В равновеликих (эквивалентных) К. п. сохраняются площади; точнее, площади фигур на картах, составленных в таких проекциях, пропорциональны площадям соответствующих фигур в натуре, причём коэффициент пропорциональности - величина, обратная квадрату главного масштаба карты. Эллипсы искажений всегда имеют одинаковую площадь, различаясь формой и ориентировкой.

Произвольные К. п. не относятся ни к равноугольным, ни к равновеликим. Из них выделяют равнопромежуточные, в которых один из главных масштабов равен единице, и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми.

При изображении сферы на плоскости свойства равноугольности, равновеликости, равнопромежуточности и ортодромичности несовместимы. Для показа искажений в разных местах изображаемой области применяют: а) эллипсы искажений, построенные в разных местах сетки или эскиза карты (рис. 3 ); б) изоколы, т. е. линии равного значения искажений (на рис. 8в см. изоколы наибольшего искажения углов со и изоколы масштаба площадей р ); в) изображения в некоторых местах карты некоторых сферических линий, обычно ортодромий (О) и локсодромий (Л), см. рис. 3а , и др.

Классификация нормальных картографических проекций по виду изображений меридианов и параллелей, являющаяся результатом исторического развития теории К. п., объемлет большинство известных проекций. В ней сохранились наименования, связанные с геометрическим методом получения проекций, однако рассматриваемые их группы теперь определяют аналитически.

Цилиндрические проекции (рис. 3 ) - проекции, в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели - прямыми, перпендикулярными к изображениям меридианов. Выгодны для изображения территорий, вытянутых вдоль экватора или какие-либо параллели. В навигации используется проекция Меркатора - равноугольная цилиндрическая проекция. Проекция Гаусса - Крюгера - равноугольная поперечно-цилиндрическая К. п. - применяется при составлении топографических карт и обработке триангуляций.

Азимутальные проекции (рис. 5 ) - проекции, в которых параллели - концентрические окружности, меридианы - их радиусы, при этом углы между последними равны соответствующим разностям долгот. Частным случаем азимутальных проекций являются перспективные проекции.

Псевдоконические проекции (рис. 6 ) - проекции, в которых параллели изображаются концентрическими окружностями, средний меридиан - прямой линией, остальные меридианы - кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.

Псевдоцилиндрические проекции (рис. 8 ) - проекции, в которых параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной этим прямым и являющейся осью симметрии проекций, остальные меридианы - кривыми.

Поликонические проекции (рис. 9 ) - проекции, в которых параллели изображаются окружностями с центрами, расположенными на одной прямой, изображающей средний меридиан. При построении конкретных поликонических проекций ставятся дополнительные условия. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.

Существует много проекций, не относящихся к указанным видам. Цилиндрические, конические и азимутальные проекции, называемые простейшими, часто относят к круговым проекциям в широком смысле, выделяя из них круговые проекции в узком смысле - проекции, в которых все меридианы и параллели изображаются окружностями, например конформные проекции Лагранжа, проекция Гринтена и др.

Использование и выбор картографических проекций зависят главным образом от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой К. п. Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий - в равновеликих. При этом возможно некоторое нарушение определяющих условий этих проекций (ω ≡ 0 или р ≡ 1 ), не приводящее к ощутимым погрешностям, т. е. допустим выбор произвольных проекций, из которых чаще применяют проекции равнопромежуточные по меридианам. К последним прибегают и тогда, когда назначением карты вообще не предусмотрено сохранение углов или площадей. При выборе К. п. начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их. Если ни одна из известных К. п. не удовлетворяет требованиям, предъявляемым к составляемой карте со стороны её назначения, то изыскивают новую, наиболее подходящую К. п., пытаясь (насколько это возможно) уменьшить искажения в ней. Проблема построения наивыгоднейших К. п., в которых искажения в каком-либо смысле сведены до минимума, полностью ещё не решена.

К. п. используются также в навигации, астрономии, кристаллографии и др.; их изыскивают для целей картографирования Луны, планет и др. небесных тел.

Преобразование проекций. Рассматривая две К. п., заданные соответствующими системами уравнений: x = f 1 (φ, λ) , y = f 2 (φ, λ) и X = g 1 (φ, λ) , Y = g 2 (φ, λ) , можно, исключая из этих уравнении φ и λ, установить переход от одной из них к другой:

Х = F 1 (x, у) , Y = F 2 (x, у) .

Эти формулы при конкретизации вида функций F 1 , F 2 , во-первых, дают общий метод получения так называемых производных проекций; во-вторых, составляют теоретическую основу всевозможных способов технических приёмов составления карт (см. Географические карты). Например, аффинные и дробно-линейные преобразования осуществляются при помощи картографических трансформаторов (См. Картографический трансформатор). Однако более общие преобразования требуют применения новой, в частности электронной, техники. Задача создания совершенных трансформаторов К. п. - актуальная проблема современной картографии.

Лит.: Витковский В., Картография. (Теория картографических проекций), СПБ. 1907; Каврайский В. В., Математическая картография, М. - Л., 1934; его же, Избр. труды, т. 2, в. 1-3, [М.], 1958-60; Урмаев Н. А., Математическая картография, М., 1941; его же, Методы изыскания новых картографических проекций, М., 1947; Граур А. В., Математическая картография, 2 изд., Л., 1956; Гинзбург Г. А., Картографические проекции, М., 1951; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968.

Г. А. Мещеряков.

2. Шар и его ортографические проекции.

3а. Цилиндрические проекции. Равноугольная Меркатора.

3б. Цилиндрические проекции. Равнопромежуточная (прямоугольная).

3в. Цилиндрические проекции. Равновеликая (изоцилиндрическая).

4а. Конические проекции. Равноугольная.

4б. Конические проекции. Равнопромежуточная.

4в. Конические проекции. Равновеликая.

Рис. 5а. Азимутальные проекции. Равноугольная (стереографическая) слева - поперечная, справа - косая.

Рис. 5б. Азимутальные проекции. Равнопромежуточная (слева - поперечная, справа - косая).

Рис. 5в. Азимутальные проекции. Равновеликая (слева - поперечная, справа - косая).

Рис. 8а. Псевдоцилиндрические проекции. Равновеликая проекция Мольвейде.

Рис. 8б. Псевдоцилиндрические проекции. Равновеликая синусоидальная проекция В. В. Каврайского.

Рис. 8в. Псевдоцилиндрические проекции. Произвольная проекция ЦНИИГАиК.

Рис. 8г. Псевдоцилиндрические проекции. Проекция БСАМ.

Рис. 9а. Поликонические проекции. Простая.

Рис. 9б. Поликонические проекции. Произвольная проекция Г. А. Гинзбурга.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Картографические проекции" в других словарях:

    Математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Большой Энциклопедический словарь

    КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, системные методы нанесения меридианов и параллелей Земли на плоскую поверхность. Только на глобусе можно достоверно представить территории и формы. На плоских картах больших территорий искажения неизбежны. Проекции это… … Научно-технический энциклопедический словарь

Картографическая проекция

Картографи́ческая прое́кция - математически определенный способ отображения поверхности эллипсоида на плоскости.

Суть проекций связана с тем, что фигуру Земли - эллипсоид, не развертываемый в плоскость, заменяют на другую фигуру, развёртываемую на плоскость. При этом с эллипсоида на другую фигуру переносят сетку параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Искажения

В любой проекции существуют искажения , они бывают четырёх видов:

  • искажения длин
  • искажения углов
  • искажения площадей
  • искажения форм

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.

Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.

Это означает, что на карте присутствует 2 вида масштаба:

  • Главный, он на карте подписывается, но на самом деле это масштаб исходного эллипсоида, развертыванием которого в плоскость карта и получена.
  • Частный масштаб - их бесконечно много на карте, он меняется от точки к точке и даже в пределах одной точки.

Для наглядного изображения частных масштабов вводят Эллипс искажения .

Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .

Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.

Искажения формы

Искажения формы - графическое изображение вытянутости эллипсоида.

Классификация проекций по характеру искажений

Равноугольные проекции

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) - при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

В азимутальных проекциях параллели изображаются концентрическими окружностями, а меридианы - пучком прямых, исходящих из центра

Углы между меридианами проекции равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим) или способом проектирования точек земной поверхности на картинную плоскость. Нормальная сетка азимутальных проекций ортогональна. Их можно рассматривать как частный случай конических проекций.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой зависит от расположения территории. Меридианы и параллели в косых и поперечных проекциях изображаются кривыми линиями, за исключением среднего меридиана, на котором находится центральная точка проекции. В поперечных проекциях прямой изображается также экватор: он является второй осью симметрии.

В зависимости от искажений, азимутальные проекции подразделяются на равноугольные, равновеликие и с промежуточными свойствами. В проекции масштаб длин может сохраняться в точке или вдоль одной из параллелей (вдоль альмукантарата). В первом случае предполагается касательная картинная плоскость, во втором - секущая. В прямых проекциях формулы даются для поверхности эллипсоида или шара (в зависимости от масштаба карт), в косых и поперечных - только для поверхности шара.

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции - гномоническая . Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (то есть дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним - прямой линией, а остальные - кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Псевдоцилиндрические проекции

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной параллелям, а остальные меридианы - кривыми. Причём средний меридиан является осью симметрии проекции.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

См. также

Ссылки

  • // БСЭ

Проекция Математически определенный способ отображения поверхности шара или эллипсоида на плоскость, используемый для создания картографического произведения. [ГОСТ 21667 76] Тематики картография Обобщающие термины математическая картография… …

картографическая проекция - Математический способ изображения, а также собственно изображение поверхности эллипсоида или шара на плоскости географической карты … Словарь по географии

Отображение всей поверхности земного эллипсоида или какой либо ее части на плоскость, получаемое в основном с целью построения карты. К. п. чертят в определенном масштабе. Уменьшая мысленно земной эллипсоид в Мраз, получают его геометрич. модель… … Математическая энциклопедия

Математически определённое отображение поверхности земного шара, эллипсоида (или глобуса) на плоскость карты. Проекция устанавливает соответствие между географическими координатами точки (широтой В и долготой L) и её прямоугольными координатами… … Географическая энциклопедия

псевдоазимутальная картографическая проекция - картографическая проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности или их дуги, а меридианы кривые, исходящие из центра параллелей, симметричные относительно одного или двух прямолинейных… … Справочник технического переводчика

равновеликая картографическая проекция - равновеликая проекция Н.д.п. авталическая проекция гомолографическая проекция равноплощадная проекция эквивалентная проекция Картографическая проекция, в которой отсутствуют искажения площадей. [ГОСТ 21667 76] Недопустимые, нерекомендуемые… … Справочник технического переводчика

равноугольная картографическая проекция - равноугольная проекция Ндп. конформная проекция ортоморфная проекция изогональная проекция автогональная проекция Картографическая проекция, в которой отсутствуют искажения углов. [ГОСТ 21667 76] Недопустимые, нерекомендуемые автогональная… … Справочник технического переводчика

азимутальная картографическая проекция - азимутальная проекция Ндп. зенитальная проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности, а меридианы их радиусы, углы между которыми равны соответствующим разностям долгот. [ГОСТ 21667 76]… … Справочник технического переводчика

равнопромежуточная картографическая проекция - равнопромежуточная проекция Ндп. эквидистантная проекция Произвольная картографическая проекция, в которой масштаб по одному из главных направлений постоянная величина. [ГОСТ 21667 76] Недопустимые, нерекомендуемые эквидистантная проекция… … Справочник технического переводчика

коническая картографическая проекция - коническая проекция Картографическая проекция, в которой параллели нормальной сетки дуги концентрических окружностей, а меридианы их радиусы, углы между которыми пропорциональны соответствующим разностям долгот. [ГОСТ 21667 76] Тематики… … Справочник технического переводчика