Применение кремния химия. Гидриды кремния, или силаны. Физические свойства кремния

Химический знак кремния Si, атомный вес 28,086, заряд ядра +14. , как и , располагается в главной подгруппе IV группы, в третьем периоде. Это аналог углерода. Электронная конфигурация электронных слоев атома кремния ls 2 2s 2 2p 6 3s 2 3p 2 . Строение внешнего электронного слоя

Структура внешнего электронного слоя аналогична структуре атома углерода.
встречается в виде двух аллотропных видоизменений - аморфного и кристаллического.
Аморфный - порошок буроватого цвета, обладающий несколько большей химической активностью, чем кристаллический. При обычной температуре реагирует с фтором:
Si + 2F2 = SiF4 при 400° - с кислородом
Si + O2 = SiO2
в расплавах - с металлами:
2Mg + Si = Mg2Si
Кристаллический кремний - твердое хрупкое вещество с металлическим блеском. Он обладает хорошей тепло- и электропроводностью, легко растворяется в расплавленных металлах, образуя . Сплав кремния с алюминием называется силумином, сплав кремния с железом - ферросилицием. Плотность кремния 2,4. Температура плавления 1415°, температура кипения 2360°. Кристаллический кремний - вещество довольно инертное и в химические реакции вступает с трудом. С кислотами, несмотря на хорошо заметные металлические свойства, кремний не реагирует, а со щелочами вступает в реакцию, образуя соли кремниевой кислоты и :
Si + 2КОН + Н2О = K2SiO2 + 2H2

■ 36. В чем сходство и в чем различие электронных структур атомов кремния и углерода?
37. Как объяснить с точки зрения электронной структуры атома кремния, почему металлические свойства более характерны для кремния, чем для углерода?
38. Перечислите химические свойства кремния.

Кремний в природе. Двуокись кремния

В природе кремний распространен очень широко. Примерно 25% земной коры приходится на кремний. Значительная часть природного кремния представлена двуокисью кремния SiO2. В очень чистом кристаллическом состоянии двуокись кремния встречается в виде минерала, называемого горным хрусталем. Двуокись кремния и двуокись углерода по химическому составу являются аналогами, однако двуокись углерода - это газ, а двуокись кремния - твердое вещество. В отличие от молекулярной кристаллической решетки СO2 двуокись кремния SiO2 кристаллизуется в виде атомной кристаллической решетки, каждая ячейка которой представляет собой тетраэдр с атомом кремния в центре и атомами кислорода по углам. Это объясняется тем, что атом кремния имеет больший радиус, чем атом углерода, и вокруг него могут разместиться не 2, а 4 кислородных атома. Различием в строении кристаллической решетки объясняется различие свойств этих веществ. На рис. 69 показаны внешний вид кристалла природного кварца, состоящего из чистой двуокиси кремния, и ее структурная формула.

Рис. 60. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б)

Кристаллическая двуокись кремния наиболее часто встречается в виде песка, который имеет белый цвет, если не загрязнен глинистыми примесями желтого цвета. Помимо песка, двуокись кремния часто встречается в виде очень твердого минерала - кремния (гидратированная двуокись кремния). Кристаллическая двуокись кремния, окрашенная в различные примеси, образует драгоценные и полудрагоценные камни - агат, аметист, яшму. Почти чистая двуокись кремния встречается также в виде кварца и кварцита. Свободной двуокиси кремния в земной коре 12%, в составе различных горных пород - около 43%. В общей сложности более 50% земной коры состоит из двуокиси кремния.
Кремний входит в состав самых различных горных пород и минералов - глины, гранитов, сиенитов, слюд, полевых шпатов и пр.

Твердая двуокись углерода, не плавясь, возгоняется при -78,5°. Температура плавления двуокиси кремния около 1.713°. Она весьма тугоплавка. Плотность 2,65. Коэффициент расширения двуокиси кремния очень мал. Это имеет очень большое значение при применении посуды из кварцевого стекла. В воде двуокись кремния не растворяется и с ней не реагирует, несмотря на , что это кислотный окисел и ему соответствует кремниевая кислота H2SiO3. Двуокись углерода в воде, как известно, растворима. С кислотами, кроме плавиковой кислоты HF, двуокись кремния не реагирует, со щелочами дает соли.

Рис. 69. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б).
При накаливании двуокиси кремния с углем происходит восстановление кремния, а затем его соединение с углеродом и образование карборунда по уравнению:
SiO2 + 2С = SiC + СО2. Карборунд обладает высокой твердостью, к кислотам устойчив, а щелочами разрушается.

■ 39. По каким свойствам двуокиси кремния можно судить о ее кристаллической решетке?
40. В виде каких минералов двуокись кремния встречается в природе?
41. Что такое карборунд?

Кремниевая кислота. Силикаты

Кремниевая кислота H2SiO3 является кислотой очень слабой и малоустойчивой. При нагревании она постепенно разлагается на воду и двуокись кремния:
H2SiO3 = H2O + SiO2

В воде кремниевая кислота практически нерастворима, но может легко давать .
Кремниевая кислота образует соли, которые называются силикатами. широко встречаются в природе. Природные - это довольно сложные . Состав их обычно изображается как соединение нескольких окислов. Если в состав природных силикатов входит окись алюминия, они называются алюмосиликатами. Таковы белая глина, (каолин) Al2O3 · 2SiO2 · 2H2O, полевой шпат К2O · Al2O3 · 6SiO2, слюда
К2O · Al2O3 · 6SiO2 · 2Н2O. Многие природные в чистом виде являются драгоценными камнями, например аквамарин, изумруд и др.
Из искусственных силикатов следует отметить силикат натрия Na2SiO3 - один из немногих растворимых в воде силикатов. Его называют растворимым стеклом, а раствор - жидким стеклом.

Силикаты широко применяются в технике. Растворимым стеклом пропитывают ткани и древесину для предохранения их от воспламенения. Жидкое входит в состав огнеупорных замазок для склеивания стекла, фарфора, камня. Силикаты и являются основой в производстве стекла, фарфора, фаянса, цемента, бетона, кирпича и различных керамических изделий. В растворе силикаты легко гидролизуются.

■ 42. Что такое ? Чем они отличаются от силикатов?
43. Что такое жидкое и для каких целей оно применяется?

Стекло

Сырьем для производства стекла являются сода Na2CO3, известняк СаСO3 и песок SiO2. Все составные части стеклянной шихты тщательно очищают, смешивают и сплавляют при температуре около 1400°. В процессе сплавления протекают следующие реакции:
Na2CO3 + SiO2= Na2SiO3 + CO2

CaCO3 + SiO2 = CaSiO 3+ CO2
Фактически в состав стекла входят силикаты натрия и кальция, а также избыток SO2, поэтому состав обычного оконного стекла: Na2O · CaO · 6SiO2. Стеклянную шихту нагревают при температуре 1500° до тех пор, пока полностью не удалится двуокись углерода. Затем охлаждают до температуры 1200°, при которой оно становится вязким. Как всякое аморфное вещество, стекло размягчается и затвердевает постепенно, поэтому оно является хорошим пластическим материалом. Вязкую стеклянную массу пропускают через щель, в результате чего образуется стеклянный лист. Горячий стеклянный лист вытягивают валками, доводя до определенных размеров и постепенно охлаждая током воздуха. Затем его обрезают по краям и разрезают на листы определенного формата.

■ 44. Приведите уравнения реакций, протекающих при получении стекла, и состав оконного стекла.

Стекло - вещество аморфное, прозрачное, в воде практически нерастворимо, но если измельчить его в мелкую пыль и смешать с небольшим количеством воды, в полученной смеси с помощью фенолфталеина можно обнаружить щелочь. При длительном хранении щелочей в стеклянной посуде избыток SiO2 в стекле очень медленно реагирует со щелочью и стекло постепенно утрачивает прозрачность.
Стекло стало известно людям более чем за 3000 лет до нашей эры. В древности получали стекла почти такого же состава, как и в настоящее время, но древние мастера руководствовались лишь собственной интуицией. В 1750 г. М. В. сумел разработать научные основы получения стекла. За 4 года М. В. собрал много рецептов изготовления разных стекол, особенно цветных. На построенной им стекольной фабрике было изготовлено большое количество образцов стекла, которые сохранились до наших дней. В настоящее время используются стекла разного состава, обладающие различными свойствами.

Кварцевое стекло состоит из почти чистой двуокиси кремния и выплавляется из горного хрусталя. Его очень важной особенностью является , что коэффициент расширения у него незначительный, почти в 15 раз меньше, чем у обычного стекла. Посуду из такого стекла можно раскалить докрасна в пламени горелки и после этого опустить в холодную воду; при этом никаких изменений со стеклом не произойдет. Кварцевое стекло не задерживает ультрафиолетовых лучей, а если окрасить его никелевыми солями в черный цвет, то оно будет задерживать все видимые лучи спектра, но для ультрафиолетовых лучей останется прозрачным.
На кварцевое стекло не действуют кислоты и , но щелочи его заметно разъедают. Кварцевое стекло более хрупко, чем обычное. Лабораторное стекло содержит около 70% SiО2, 9% Na2О, 5% К2О 8% СаО, 5% Аl2O3, 3% В2O3 (состав стекол приводится не для запоминания).

В промышленности находят применение стекла иен-ское и пирекс. Иенское стекло содержит около 65% Si02, 15% В2O3, 12% ВаО, 4% ZnO, 4% Аl2O3. Оно прочно, устойчиво к механическим воздействиям, имеет малый коэффициент расширения, устойчиво к щелочам.
Стекло пирекс содержит 81% SiO2, 12% В2O3, 4% Na2O, 2% Аl2O3, 0,5% As2O3, 0,2% К2O, 0,3% СаО. Оно обладает такими же свойствами, как иенское стекло, но в еще большей степени, особенно после закалки, зато менее устойчиво к щелочам. Из стекла пирекс изготовляют предметы домашнего обихода, подвергающиеся нагреванию, а также детали некоторых промышленных установок, работающие при низких и высоких температурах.

Разные качества стеклу придают некоторые добавки. Например, примеси окислов ванадия дают стекло, полностью задерживающее ультрафиолетовые лучи.
Получают также и стекло, окрашенное в различные цвета. Еще М. В. изготовил несколько тысяч образцов цветного стекла разной окраски и оттенков для своих мозаичных картин. В настоящее время методы окраски стекла детально разработаны. Соединения марганца окрашивают стекло в фиолетовый цвет, кобальта - в синий. , распыленное в массе стекла в виде коллоидных частиц, придает ему рубиновую окраску и т. д. Свинцовые соединения придают стеклу блеск, подобный блеску горного хрусталя, поэтому оно называется хрустальным. Такое стекло легко поддается обработке, огранке. Изделия из него очень красиво преломляют свет. При окраске этого стекла различными добавками получается цветное хрустальное стекло.

Если расплавленное стекло смешать с веществами, которые при разложении образуют большое количество газов, то последние, выделяясь, вспенивают стекло, образуя пеностекло. Такое стекло очень легкое, хорошо обрабатывается, является прекрасным электро- и тепло-изолятором. Оно было впервые получено проф. И. И. Китайгородским.
Вытягивая из стекла нити, можно получить так называемое стекловолокно. Если пропитать уложенное слоями стекловолокно синтетическими смолами, то получается очень прочный, не поддающийся гниению, прекрасно обрабатывающийся строительный материал, так называемый стеклотекстолит. Интересно, что чем тоньше стекловолокно, тем выше его прочность. Стекловолокно также применяется для изготовления спецодежды.
Стеклянная вата является ценным материалом, через который можно фильтровать сильные кислоты и щелочи, не фильтрующиеся через бумагу. Кроме того, стеклянная вата является хорошим теплоизолирующим веществом.

■ 44. От чего зависят свойства стекол разных видов?

Керамика

Из алюмосиликатов особенно важна белая глина - каолин, являющаяся основой для получения фарфора и фаянса. Производство фарфора - чрезвычайно древняя отрасль хозяйства. Родина фарфора - Китай. В России фарфор был получен впервые в XVIIIв. Д, И. Виноградовым.
Сырьем для получения фарфора и фаянса, помимо каолина, служат песок и . Смесь каолина, песка и воды подвергают тщательному тонкому размолу в шаровых мельницах, затем отфильтровывают избыток воды и хорошо вымешанную пластичную массу направляют на формовку изделий. После формовки изделия подвергают сушке и обжигу в туннельных печах непрерывного действия, где их сначала разогревают, затем обжигают и, наконец, охлаждают. После этого изделия проходят дальнейшую обработку - покрытие глазурью, нанесение рисунка керамическими красками. После каждой стадии изделия обжигают. В результате фарфор получается белым, гладким и блестящим. В тонких слоях он просвечивает. Фаянс порист и не просвечивает.

Из красной глины формуют кирпичи, черепицу, глиняную посуду, керамические кольца для насадки в поглотительных и промывных башнях разных химических производств, цветочные горшки. Их также обжигают, чтобы они не размягчались водой, стали механически прочными.

Цемент. Бетон

Соединения кремния служат основой для получения цемента - вяжущего материала, незаменимого в строительстве. Сырьем для получения цемента являются глина и известняк. Эту смесь обжигают в огромной наклонной трубчатой вращающейся печи, куда непрерывно загружают сырье. После обжига при 1200-1300° из отверстия, расположенного на другом конце печи, непрерывно выходит спекшаяся масса - клинкер. После размола клинкер превращается в . В состав цемента входят главным образом силикаты. Если смешать с водой до образования густой кашицы, а затем оставить на некоторое время на воздухе, то вступит в реакцию с веществами цемента, образуя кристаллогидраты и другие твердые соединения, что приводит к затвердеванию («схватыванию») цемента. Такой уже не переводится в прежнее состояние, поэтому до употребления цемент стараются беречь от воды. Процесс твердения цемента является длительным, и настоящую прочность он приобретает лишь через месяц. Правда, существуют разные сорта цемента. Рассмотренный нами обычный цемент называется силикатным, или портландцементом. Из глинозема, известняка и двуокиси кремния изготовляют быстро твердеющий глиноземистый цемент.

Если смешать цемент со щебнем или гравием, то получается бетон, являющийся уже самостоятельным строительным материалом. Щебень и гравий называются наполнителями. Бетон обладает высокой прочностью и выдерживает большие нагрузки. Он водостоек, огнестоек. При нагревании почти не теряет прочности, так как теплопроводность его очень мала. Бетон морозостоек, ослабляет радиоактивные излучения, поэтому его используют как строительный материал для гидротехнических сооружений, для защитных оболочек ядерных реакторов. Бетоном обмуровывают котлы. Если смешать цемент с пенообразователем, то образуется пронизанный множеством ячеек пенобетон. Такой бетон является хорошим звукоизолятором и еще меньше, чем обычный бетон, проводит тепло.

Наиболее часто в природе встречается каменный уголь. Достаточно часто находят залежи графита. Он является более устойчивой аллотропной модификацией по сравнению с алмазом, поэтому в земной коре его больше, чем алмаза. Графит залегает в земле в виде чешуйчатых и пластинчатых масс. Учёные считают, что он образовался из каменного угля под воздействием высокого давления. Алмазы встречаются редко. Полагают, что они образуются из углеродсодержащих веществ при высоких температуре и давлении на глубине примерно 100 км.

Применение углерода и его соединений

1) Сначала алмазы использовали только для изготовления бриллиантов, которые всегда ценились как самые дорогие украшения.

Высокая твёрдость алмазов позволяет использовать их и для изготовления бурового и режущего инструментов, обработки других камней, металлов, твёрдых материалов. Алмазные свёрла применяют для сверления бетонных плит. С помощью алмазного инструмента можно с высокой точностью обработать камни, применяемые в часовых механизмах. Тонкие алмазные пластинки наносят на хирургические инструменты. Применение алмаза в технике удешевляет и ускоряет производственные процессы.

Широко в технике и промышленности применяется графит. Жаропрочность и химическая инертность делают его незаменимым материалом для изготовления огнеупорных изделий, а также химически устойчивых труб и аппаратов.

В электротехнической промышленности используют электропроводность графита. Из него делают электроды, гальванические элементы, контакты электрических машин. Графит имеет большое сопротивление. Поэтому из него изготовляют нагреватели для электропечей.

Очень чистый графит применяют в ядерных реакторах.

Графит служит в качестве карандашных стержней. Благодаря отслаиванию чешуек, стержень оставляет след на бумаге.

Каменный уголь применяется в качестве топлива. Его перерабатывают в кокс, который содержит меньше примесей, чем уголь.

Кокс является хорошим восстановителем, его используют в металлургической промышленности для получения металлов.

2) Диоксид углерода используют как хладагент, применяют при тушении пожаров, используют в медицине. Его добавляют в кислород, которым дышат тяжелобольные. Углекислый газ потребляется для приготовления газированной воды и других напитков.

3) Наибольшее применение имеет карбонат кальция. Из него получают негашёную известь, используемую в строительстве. Карбонаты натрия (сода) и калия (поташ) используют в мыловарении, для производства стекла, в фармацевтической промышленности, для получения удобрений.

Кремний

Кремний не менее значим в природе и жизни человека, чем углерод. Если углерод образует вещества живой природы, то кремний является основой веществ, составляющих всю планету Земля.

Применение кремния и его соединений

1) Поскольку кремний является хорошим восстановителем, его используют для получения металлов в металлургической промышленности.

Кремний применяют в электронике благодаря его свойству при определённых условиях проводить электрический ток. Из кремния изготавливают фотоэлементы, полупроводниковые приборы для производства радиоприёмников, телевизоров, компьютеров.

Углерод и кремний являются химическими элементами IVA-группы периодической системы. Находятся во 2 и 3 периоде соответственно. Углерод и креУглерод и кремний являются химическими элементами IVA-группы
периодической системы. Находятся во 2 и 3 периоде соответственно.
Углерод и кремний – элементы неметаллы.

У углерода на внешнем энергетическом уровне 4 электрона – 2s22p2, как и у кремния – 3s23p2.

Вследствие этого, в соединениях с другими элементами
атомы углерода и кремния чаще всего проявляют степени
окисления -4, +2, +4. В простом веществе степень окисления
элементов равна 0.

История открытия

C
В 1791 году английский химик Теннант
первым получил свободный углерод; он
пропускал пары фосфора над прокалённым
мелом, в результате чего образовывались
фосфат кальция и углерод. То, что алмаз
при сильном нагревании сгорает без
остатка, было известно давно. Ещё в 1751 г.
германский император Франц I согласился
дать алмаз и рубин для опытов по
сжиганию, после чего эти опыты даже
вошли в моду. Оказалось, что сгорает лишь
алмаз, а рубин (окись алюминия с
примесью хрома) выдерживает без
повреждения длительное нагревание в
фокусе зажигательной линзы. Лавуазье
поставил новый опыт по сжиганию алмаза с
помощью большой зажигательной машины
и пришёл к выводу, что алмаз представляет
собой кристаллический углерод. Второй
аллотроп углерода - графит - в
алхимическом периоде считался
видоизменённым свинцовым блеском и
назывался plumbago; только в 1740 г. Потт
обнаружил отсутствие в графите какойлибо примеси свинца.
Si
В чистом виде он был впервые
выделен в 1811 году
французскими учёными
Жозефом Луи Гей-Люссаком и
Луи Жаком Тенаром.

Происхождение названия

C
В начале XIX века в русской
химической литературе иногда
применялся термин «углетвор»
(Шерер, 1807; Севергин, 1815); с
1824 года Соловьёв ввёл название
«углерод». Соединения углерода
имеют в названии часть карб(он)
- от лат. carbō (род. п. carbōnis)
«уголь».
Si
В 1825 году шведский химик Йёнс
Якоб Берцелиус действием
металлического калия на
фтористый кремний SiF4 получил
чистый элементарный кремний.
Новому элементу было дано
название «силиций» (от лат. silex
- кремень). Русское название
«кремний» введено в 1834 году
российским химиком Германом
Ивановичем Гессом. В переводе c
др.-греч. κρημνός - «утёс, гора».

Физические свойства простых веществ углерода и кремния.

Углерод
существует во множестве аллотропных модификаций с очень
разнообразными физическими свойствами. Разнообразие модификаций
обусловлено способностью углерода образовывать химические связи разного
типа.
Известны следующие аллотропные модификации углерода: графит, алмаз, карбин
и фуллерены.
a) алмаз
b) графит
c) лонсдейлит
d) фуллерен - бакибол C60
e) фуллерен C540
f) фуллерен C70
g) аморфный углерод
h) углеродная нанотрубка

Алмаз –бесцветное (иногда желтоватое, коричневатое, зеленое, черное, синее, красноватое) прозрачное вещество, очень сильно преломляющее лу

Алмаз –бесцветное (иногда желтоватое, коричневатое, зеленое, черное, синее, красноватое)
прозрачное вещество, очень сильно преломляющее лучи света.
По твердости превосходит все известные природные вещества. Но обладает хрупкостью.
Химически инертен, плохо проводит тепло и электрический ток.
Плотность 3,5 г/см3.
Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами
которого служат четыре ближайших атома. Именно прочная связь атомов углерода объясняет
высокую твердость алмаза.
Графит –наиболее распространенная форма.
Это очень мягкое черное вещество с металлическим блеском, хорошо проводит
электрический ток и тепло. Жирный на ощупь, при трении расслаивается на отдельные
чешуйки.
tплавл = 3750 °С (плавится при давлении 10 МПа, при обычном давлении возгоняется).
Плотность 2,22 г/см3.
Структура графита образована параллельными слоями сеток, состоящих из
шестиугольников с атомами углерода в вершинах. Атомы в каждом отдельно взятом слое
связаны достаточно прочно, а между слоями связь слабая.

Карбин –синтетическая модификация углерода. Черный мелкокристаллический порошок. Плотность 1,9–2 г/см3. Полупроводник.

Фуллерены представляют собой шарообразные молекулы, образованные пяти- и шестиугольниками из атомов углерода, соединенных между собой. Вн

Фуллерены представляют собой шарообразные молекулы,
образованные пяти- и шестиугольниками из атомов углерода,
соединенных между собой. Внутри молекулы полые. В
настоящее время получены фуллерены состава С60, С70 и др.

10. Кремний. Кристаллический кремний – вещество темно-серого цвета с металлическим блеском, имеет кубическую структуру алмаза, но значительн

Кремний.
Кристаллический кремний – вещество темно-серого цвета с металлическим
блеском, имеет кубическую структуру алмаза, но значительно уступает ему по
твердости, довольно хрупок. Температура плавления 1415 °C, температура
кипения 2680 °C, плотность 2,33 г/см3. Обладает полупроводниковыми
свойствами, его сопротивление понижается при повышении температуры.
Аморфный кремний – порошок бурого цвета на основе сильно разупорядоченной
алмазоподобной структуры. Обладает большей реакционной способностью, чем
кристаллический кремний.

11. Химические свойства

С
Взаимодействие с неметаллами
С + 2S = CS2. С + О2 = СО2, С + 2F2 = CF4. C + 2H2 = CH4.
не взаимодействует с азотом и фосфором.
Взаимодействие с металлами
Способен взаимодействовать с металлами, образуя карбиды:
Ca + 2C = CaC2.
Взаимодействие с водой
C + H2O = CO + H2.
Углерод способен восстанавливать многие металлы из их
оксидов:
2ZnO + C = 2Zn + CO2.
Концентрированные серная и азотная кислоты при нагревании
окисляют углерод до оксида углерода (IV):
C + 2H2SO4 = CO2 + 2SO2 + 2H2O;

12.

Si
Взаимодействие с неметаллами
Si + 2F2 = SiF4. Si + 2Cl2 = SiCl4. Si + O2 = SiO2.
Si + C = SiC Si + 3B = B3Si. 3Si + 2N2 = Si3N4.
С водородом не взаимодействует.
Взаимодействие с галогеноводородами
Si + 4HF = SiF4 + 2H2,
Взаимодействие с металлами
2Ca + Si = Ca2Si.
Взаимодействие с кислотами
3Si + 4HNO3 + 18HF = 3H2 + 4NO + 8H2O.
Взаимодействие со щелочами
Si + 2NaOH + H2O = Na2SiO3 + H2.

13. Нахождение в природе В виде углекислого газа углерод входит в состав атмосферы (0,03% по объему). Уголь, торф, нефть и природный газ - продукты

Нахождение в природе
В виде углекислого газа углерод входит в состав атмосферы (0,03% по
объему).
Уголь, торф, нефть и природный газ - продукты разложения
растительного мира Земли древнейших времен.

14.

Природные неорганические соединения
углерода – карбонаты. Минерал кальцит
CaCO3 является основой осадочных
горных пород – известняков. Другие
модификации карбоната кальция
известны как мрамор и мел

15. Кремний в природе

Он широко распространен в виде кремнезема SiO2 и различных
силикатов.
Например, гранит содержит более 60% кремнезема, а кристаллический
кварц является самым чистым из природных соединений кремния с
кислородом.
{
Листья крапивы покрыты колючими волосками из чистого оксида
кремния(IV), которые представляют собой полые трубочки длинной 1-2 мм.
Трубочки заполнены жидкостью, содержащей муравьиную кислоту.

16. Применение углерода

Графит используется в карандашной промышленности. Также его используют в
качестве смазки при особо высоких или низких температурах.
Алмаз, благодаря исключительной твердости, незаменимый абразивный материал.
Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого,
ограненные алмазы - бриллианты используются в качестве драгоценных камней в
ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и
стечению исторических обстоятельств, бриллиант неизменно является самым
дорогим драгоценным камнем.
{
В фармакологии и медицине широко используются различные соединения
углерода - производные угольной кислоты и карбоновых кислот.
Карболен (активированный уголь), применяется для абсорбции и выведения из
организма различных токсинов.

17. Применение кремния

Кремний находит применение в полупроводниковой
технике и микроэлектронике, в металлургии в качестве
добавки к сталям и в производстве сплавов.
Соединения кремния служат основой для производства
стекла и цемента. Производством стекла и цемента
занимается силикатная промышленность. Она также
выпускает силикатную керамику - кирпич, фарфор,
фаянс и изделия из них.
Широко известен силикатный клей, применяемый в
строительстве как сиккатив, а в пиротехнике и в быту
для склеивания бумаги.

Введение

2.1.1 Степень окисления +2

2.1.2 Степень окисления +4

2.3 Карбиды металлов

Глава 3. Соединения кремния

Список литературы

Введение

Химия - одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах".

Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемиа (греческое Chemia, встречается у Плутарха), которое производится от "хем" или "хаmе" - черный и означает "наука черной земли" (Египта), "египетская наука" .

Современная химия тесно связана, как с другими естественными науками, так и со всеми отраслями народного хозяйства.

Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химиейи химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества).

До конца 18 века термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ. Через органическую и биоорганическую химию химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Как уже было сказано выше, химия рассматривает химические элементы и образуемые ими вещества, а также законы, которым подчиняются эти превращения. Один из этих аспектов (а именно, химические соединения на основе кремния и углерода) и будет рассмотрен мной в данной работе.

Глава 1. Кремний и углерод - химические элементы

1.1 Общие сведения об углероде и кремнии

Углерод (С) и кремний (Si) входят в группу IVA.

Углерод не принадлежит к числу очень распространенных элементов. Несмотря на это, значение его огромно. Углерод-основа жизни на земле. Он входит в состав весьма распространенных в природе карбонатов (Са, Zn, Mg, Fe и др.), в атмосфере существует в виде СО 2 , встречается в виде природных углей (аморфного графита), нефти и природного газа, а также простых веществ (алмаза, графита).

Кремний по распространенности в земной коре занимает второе место (после кислорода). Если углерод - основа жизни, то кремний-основа земной коры. Он встречается в громадном многообразии силикатов (рис 4) и алюмосиликатов, песка.

Аморфный кремний - порошок бурого цвета. Последний легко получить в кристаллическом состоянии в виде серых твердых, но довольно хрупких крис таллов. Кристаллический кремний - полупроводник.

Таблица 1. Общие химические данные об углероде и кремнии.

Устойчивая при обычной температуре модификация углерода - графит - представляет собой непрозрачную, серую жирную массу. Алмаз - самое твердое вещество на земле - бесцветен и прозрачен. Кристаллические структуры графита и алмаза приведены на рис.1.

Рисунок 1. Структура алмаза (а); структура графита (б)

Углерод и кремний имеют свои определенные производные.

Таблица 2. Наиболее характерные производные углерода и кремния

1.2 Получение, химические свойства и применение простых веществ

Кремний получают восстановлением оксидов углеродом; для получения в особо чистом состояний после восстановления вещество переводят в тетрахлорид и снова восстанавливают (водородом). Затем сплавляют в слитки и подвергают очистке методом зонной плавки. Слиток металла нагревают с одного конца так, чтобы в нем образовалась зона расплавленного металла. При перемещении зоны к другому концу слитка примесь, растворяясь в расплавленном металле лучше, чем в твердом, выводится, и тем самым металл очищается.

Углерод инертен, но при очень высокой, температуре (в аморфном состоянии) взаимодействует с большинством металлов с образованием твердых растворов или карбидов (СаС 2 , Fе 3 С и т.д.), а также со многими металлоидами, например:

2С+ Са = СaC 2, С + 3Fe = Fe 3 C,

Кремний более реакционно способен. С фтором он реагирует уже при обычной температуре: Si+2F 2 =SiF 4

У кремния очень большое сродство также и к кислороду:

Реакция с хлором и серой протекает около 500 К. При очень высокой температуре кремний взаимодействует с азотом и углеродом:

С водородом кремний непосредственно не взаимодействует. Кремний растворяется в щелочах:

Si+2NaOH+H 2 0=Na 2 Si0 3 +2H 2 .

Кислоты, кроме плавиковой, на него не действуют. С HF идет реакция

Si+6HF=H 2 +2H 2 .

Углерод в составе различных углей, нефти, природных (в основном СН4), а также искусственно полученных газов - важнейшая топливная база нашей планеты

Графит широко используется для изготовления тиглей. Стержни из графита применяются как электроды. Много графита идет на производство карандашей. Углерод и кремний применяются для производства различных сортов чугуна. В металлургии углерод используется как восстановитель, а кремний из-за большого сродства к кислороду-как раскислитель. Кристаллический кремний в особо чистом состоянии (не более 10 -9 ат.% примеси) используется как полупроводник в различных устройствах и приборах, в том числе в качестве транзисторов и термисторов (приборов для очень тонких измерений температур), а также в фотоэлементах, работа которых основана на способности полупроводника при освещении проводить ток.

Глава 2. Химические соединения углерода

Для углерода характерны прочные ковалентные связи между собственными атомами (С-С) и с атомом водорода (С-Н), что нашло отражение в обилии органических соединений (несколько сот миллионов). Кроме прочных связей С-Н, С-С в различных классах органических и неорганических соединений, широко представлены связи углерода с азотом, серой, кислородом, галогенами, металлами (см. табл.5). Столь высокие возможности образования связей обусловлены малыми размерами атома углерода, позволяющими его валентным орбиталям 2s 2 , 2p 2 максимально перекрываться. Важнейшие неорганические соединения описаны в таблице 3.

Среди неорганических соединений углерода уникальными по составу и строению являются азотсодержащие производные.

В неорганической химии широко представлены производные уксусной СНзСООН и щавелевой H 2 C 2 О 4 кислот - ацетаты (типа М"СНзСОО) и оксалаты (типа M I 2 C 2 О 4).

Таблица 3. Важнейшие неорганические соединения углерода.

2.1 Кислородные производные углерода

2.1.1 Степень окисления +2

Оксид углерода СО (угарный газ): по строению молекулярных орбиталей (табл.4).

СО аналогичен молекуле N 2 . Подобно азоту СО обладает высокой энергией диссоциации (1069 кДж/ моль), имеет низкую Т пл (69 К) и Т кип (81,5 К), плохо растворим в воде, инертен в химическом отношении. В реакции СО вступает лишь при высоких температурах, в том числе:

СО+Сl 2 =СОСl 2 (фосген),

СО+Вг 2 =СОВг 2, Сг+6СО=Сг (СО) 6 -карбонил хрома,

Ni+4CO=Ni (CO) 4 - карбонил никеля

СО+Н 2 0 пар =НСООН (муравьиная кислота).

Вместе с тем молекула СО имеет большое сродство к кислороду:

СО +1/202 =С0 2 +282 кДж/моль.

Из-за большого сродства к кислороду оксид углерода (II) используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.). В лаборатории оксид СО получают обезвоживанием муравьиной кислоты

В технике оксид углерода (II) получают восстановлением С0 2 углем (С+С0 2 =2СО) или окислением метана (2СН 4 +ЗО 2 = =4Н 2 0+2СО).

Среди производных СО представляют большой теоретический и определенный практический интерес карбонилы металлов (для получения чистых металлов).

Химические связи в карбонилах образуются в основном по донорно-акцепторному механизму за счет свободных орбиталей d- элемента и электронной пары молекулы СО, имеет место также л-перекрывание по дативному механизму (металл СО). Все карбонилы металлов - диамагнитные вещества, характеризующиеся невысокой прочностью. Как и оксид углерода (II), карбонилы металлов токсичны.

Таблица 4. Распределение электронов по орбиталям молекулы СО

2.1.2 Степень окисления +4

Диоксид углерода С0 2 (углекислый газ). Молекула С0 2 линейна. Энергетическая схема образования орбиталей молекулы С0 2 приведена на рис.2. Оксид углерода (IV) может взаимодействовать с аммиаком по реакции.

При нагревании этой соли получают ценное удобрение - карбамид СО (МН 2) 2:

Мочевина разлагается водой

CO (NH 2) 2 +2HaO= (МН 4) 2СОз.

Рисунок 2. Энфгетическая диаграмма образования молекулярных орбиталей С0 2.

В технике оксид СО 2 получают разложением карбоната кальция или гидрокарбоната натрия:

В лабораторных условиях его обычно получают по реакции (в аппарате Киппа)

СаСОз+2НС1=СаС12+С02+Н20.

Важнейшими производными С0 2 являются слабая угольная кислота Н 2 СО з и ее соли: M I 2 СОз и M I НСОз (карбонаты и гидрокарбонаты соответственно).

Большинство карбонатов нерастворимо в воде. Растворимые в воде карбонаты подвергаются значительному гидролизу:

COз 2- +H 2 0 COз-+OH - (I ступень).

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Cr 3+ , ai 3 +, Ti 4+ , Zr 4+ и др.

Практически важными являются Ка 2 СОз (сода), К 2 СОз (поташ) и СаСОз (мел, мрамор, известняк). Гидрокарбонаты в отличие от карбонатов растворимы в воде. Из гидрокарбонатов практическое применение находит NaHCО 3 (питьевая сода). Важными основными карбонатами являются 2СиСОз-Си (ОН) 2 , РЬСО 3 Х ХРЬ (ОН) 2 .

Свойства галогенидов углерода приведены в табл.6. Из галогенидов углерода самое большое значение имеет-бесцветная, достаточно токсичная жидкость. В обычных условиях ССІ 4 химически инертен. Его применяют как невоспламеняющийся и негорючий растворитель смол, лаков, жиров, а также для получения фреона CF 2 CІ 2 (Т кип = 303 К):

Другой используемый в практике органический растворитель - сероуглерод CSa (бесцветная, летучая жидкость с Ткип=319 К) – реакционно способное вещество:

CS 2 +30 2 =C0 2 +2S0 2 +258 ккал/моль,

CS 2 +3Cl 2 =CCl 4 -S 2 Cl 2, CS 2 +2H 2 0==C0 2 +2H 2 S, CS 2 +K 2 S=K 2 CS 3 (соль тиоугольной кислоты Н 2 СSз).

Пары сероуглерода ядовиты.

Циановодородная (синильная) кислота HCN (H-C = N) - бесцветная легко подвижная жидкость, кипящая при 299,5 К. При 283 К она затвердевает. HCN и ее производные чрезвычайно ядовиты. HCN можно получить по реакции

В воде синильная кислота растворяется; при этом она слабо диссоциирует

HCN=H++CN-, К=6,2.10- 10 .

Соли синильной кислоты (цианиды) в некоторых реакциях напоминают хлориды. Например СН -- -ион с ионами Ag+ дает плохо растворимый в минеральных кислотах белый осадок цианида серебра AgCN. Цианиды щелочных и щелочноземельных металлов растворимы в воде. Из-за гидролиза их растворы пахнут синильной кислотой (запах горького миндаля). Цианиды тяжелых металлов плохо растворимы в воде. CN - -сильный лиганд, важнейшими комплексными соединениями являются K 4 и Кз [Ре (СN) 6 ].

Цианиды - непрочные соединения, при длительном воздействии содержащегося в воздухе СO 2 цианиды разлагаются

2KCN+C0 2 +H 2 0=K 2 C0 3 +2HCN.

(CN) 2 - дициан (N=C-C=N) –

бесцветный ядовитый газ; с водой взаимодействует с образованием циановой (HOCN) и синильной (HCN) кислот:

(HCN) кислот:

(CN) 2 +H 2 0==HOCN+HCN.

В этой, как и в реакции, приведенной ниже, (CN) 2 похож на галоген:

СО+ (CN) 2 =CO (CN) 2 (аналог фосгена).

Циановая кислота известна в двух таутомерных формах:

H-N=C=O==H-0-C=N.

Изомером является кислота H-0=N=C (гремучая кислота). Соли HONC взрывают (используются как детонаторы). Родановодородная кислота HSCN - бесцветная, маслянистая, летучая, легко затвердевающая (Тпл=278 К) жидкость. В чистом состоянии очень неустойчива, при ее разложении выделяется HCN. В отличие от синильной кислоты HSCN достаточно сильная кислота (К=0,14). Для HSCN характерно таутомерное равновесие:

H-N = С = S=H-S-C =N.

SCN - ион кроваво-красного цвета (реактив на ион Fe 3+). Производные от HSCN соли-роданиды - легко получить из цианидов путем присоединения серы:

Большинство роданидов растворимо в воде. Нерастворимы в воде соли Hg, Au, Ag, Си. Ион SCN-, как и CN-, склонен давать комплексы типа Мз 1 M" (SCN) 6 , где M""Cu, Mg и некоторые другие. Диродан (SCN) 2 -светло-желтые кристаллы, плавящиеся - 271 К. Получают (SCN) 2 по реакции

2AgSCN+Br 2 ==2AgBr+ (SCN) 2 .

Из других азотсодержащих соединений следует указать цианамид

и его производное - цианамид кальция CaCN 2 (Ca=N-C=N), который используется в качестве удобрения .

2.3 Карбиды металлов

Карбидами называют продукты взаимодействия углерода с металлами, кремнием и бором. Карбиды по растворимости разделяются на два класса: карбиды, растворимые в воде (или в разбавленных кислотах), и карбиды, нерастворимые в воде (или в разбавленных кислотах).

2.3.1 Карбиды, растворимые в воде и разбавленных кислотах

А. Карбиды, при растворении образующие C 2 H 2 К этой группе относятся карбиды металлов первых двух главных групп; близки к ним и карбиды Zn, Cd, La, Се, Th состава MC 2 (LaC 2 , CeC 2 , ТhC 2 .)

CaC 2 +2H 2 0=Ca (OH) 2 +C 2 H 2, ThC 2 +4H 2 0=Th (OH) 4 +H 2 C 2 +H 2 .

АНСз+ 12Н 2 0=4Аl (ОН) з+ЗСН 4, Ве 2 С+4Н 2 0=2Ве (ОН) 2 +СН 4 . По свойствам к ним близок Мn з С:

Мn з С+6Н 2 0=ЗМn (ОН) 2 +СН 4 +Н 2 .

В. Карбиды, при растворении образующие смесь углеводородов и водород. К ним относятся большинство карбидов редкоземельных металлов.

2.3.2 Карбиды, нерастворимые в воде и в разбавленных кислотах

К этой группе относится большинство карбидов переходных металлов (W, Мо, Та и др.), а также SiC, B 4 C.

Они растворяются вокислительных средах, например:

VC + 3HN0 3 + 6HF = HVF 6 + СO 2 + 3NO + 4Н 2 0, SiC+4KOH+2C0 2 =K 2 Si0 3 +K 2 C0 3 +2H 2 0.

Рисунок 3. Икосаэдр B 12

Практически важными являются карбиды переходных металлов, а также карбиды кремния SiC и бора B 4 C. SiC - карборунд - бесцветные кристаллы с решеткой алмаза, по твердости приближающийся к алмазу (технический SiC за счет примесей имеет темную окраску). SiC очень огнеупорен, теплопроводен и при высокой температуре электропроводен, химически чрезвычайно инертен; его можно разрушить только при сплавлении на воздухе со щелочами.

B 4 C - полимер. Решетка карбида бора построена из линейно расположенных трех атомов углерода и групп, содержащих 12 атомов В, расположенных в форме икосаэдра (рис.3); твердость B4C превышает твердость SiC.

Глава 3. Соединения кремния

Отличие химии кремния от углерода в основном обусловлено большими размерами его атома и возможностью использования свободных Зй-орбиталей. Из-за дополнительного связывания (по донорно-акцепторному механизму) связи кремния с кислородом Si-О-Si и фтором Si-F (табл.17.23) более прочны, чем у углерода, а из-за большего размера атома Si по сравнению с атомом С связи Si-Н и Si-Si менее прочны, чем у углерода. Атомы кремния практически не способны давать цепи. Аналогичный углеводородам гомологический ряд кремневодородов SinH2n+2 (си-ланы) получен лишь до состава Si4Hio. Из-за большего размера у атома Si слабо выражена и способность к л-перекрыванию, поэтому не только тройные, но и двойные связи для него малохарактерны.

При взаимодействии кремния с металлами образуются силициды (Ca 2 Si, Mg 2 Si, BaSi 2 , Cr 3 Si, CrSi 2 и др.), похожие во многом на карбиды. Силициды не характерны для элементов I группы (кроме Li). Галогениды кремния (табл.5) более прочные соединения, чем галогениды углерода; вместе с тем водой они разлагаются.

Таблица 5. Прочность некоторых связей углерода и кремния

Наиболее прочным галогенидом кремния является SiF 4 (разлагается только под действием электрического разряда), но так же, как и другие галогениды, подвергается гидролизу. При взаимодействии SiF 4 с HF образуется гексафторокремниевая кислота:

SiF 4 +2HF=H 2 .

H 2 SiF 6 по силе близка к H 2 S0 4 . Производные этой кислоты - фторосиликаты, как правило, растворимы в воде. Плохо растворимы фторосиликаты щелочных металлов (кроме Li и NH 4). Фторосиликаты используются как ядохимикаты (инсектициды).

Практически важным галогенидом является SiCO 4 . Он используется для получения кремнийорганических соединений. Так, SiCL 4 легко взаимодействует со спиртами с образованием эфиров кремниевой кислоты HaSiO 3:

SiCl 4 +4C 2 H 5 OH=Si (OC 2 H 5) 4 +4HCl 4

Таблица 6. Галогениды углерода и кремния

Эфиры кремниевой кислоты, гидролизуясь, образуют силиконы - полимерные вещества цепочечного строения:

(R-органический радикал), которые нашли применение для получения каучуков, масел и смазок.

Сульфид кремния (SiS 2) n-полимерное вещество; при обычной температуре устойчив; разлагается водой:

SiS 2 + ЗН 2 О = 2H 2 S + H 2 SiO 3 .

3.1 Кислородные соединения кремния

Важнейшим кислородным соединением кремния является диоксид кремния SiO 2 (кремнезем), имеющий несколько кристаллических модификаций.

Низкотемпературная модификация (до 1143 К) называется кварцем. Кварц обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидностями кремнезема являются халцедон, опал, агат,. яшма, песок.

Кремнезем химически стоек; на него действуют лишь фтор, плавиковая кислота и растворы щелочей. Он легко переходит в стеклообразное состояние (кварцевое стекло). Кварцевое стекло хрупко, химически и термически весьма стойко. Отвечающая SiO 2 кремниевая кислота не имеет определенного состава. Обычно кремниевую кислоту записывают в виде xH 2 O-ySiO 2 . Выделены кремниевые кислоты: H 2 SiO 3 (H 2 O-SiO 2) - метакремниевая (три-оксокремниевая), H 4 Si0 4 (2H 2 0-Si0 2) - ортокремниевая (тетра-оксокремниевая), H 2 Si2O 5 (H 2 O * SiO 2) - диметакремниевая.

Кремниевые кислоты - плохо растворимые вещества. В соответствии с менее металлоидным характером кремния по сравнению с углеродом H 2 SiO 3 как электролит слабее Н 2 СОз.

Отвечающие кремниевым кислотам соли-силикаты-в воде нерастворимы (кроме силикатов щелочных металлов). Растворимые силикаты гидролизуются по уравнению

2SiOз 2 -+H 2 0=Si 2 O 5 2 -+20H-.

Концентрированные растворы растворимых силикатов называют жидким стеклом. Обычное оконное стекло-силикат натрия и кальция-имеет состав Na 2 0-CaO-6Si0 2 . Его получают по реакции

Известно большое разнообразие силикатов (точнее, оксосиликатов). В строении оксосиликатов наблюдается определенная закономерность: все состоят из тетраэдров Si0 4 , которые через атом кислорода соединены друг с другом. Наиболее распространенными сочетаниями тетраэдров являются (Si 2 O 7 6 -), (Si 3 O 9) 6 - , (Si 4 0 l2) 8- , (Si 6 O 18 12 -), которые как структурные единицы могут объединяться в цепочки, ленты, сетки и каркасы (рис 4).

Важнейшими природными силикатами являются, например, тальк (3MgO * H 2 0-4Si0 2) и асбест (SmgO*H 2 O*SiO 2). Как и для SiO 2 , для силикатов характерно стеклообразное (аморфное) состояние. При управляемой кристаллизации стекла можно получить мелкокристаллическое состояние (ситаллы). Ситаллы характеризуются повышенной прочностью.

Кроме силикатов в природе широко распространены алюмосиликаты. Алюмосиликаты - каркасные оксосиликаты, в которых часть атомов кремния заменена на трехвалентный Аl; например Na 12 [ (Si, Al) 0 4 ] 12 .

Для кремниевой кислоты характерно коллоидное состояниепри воздействии на ее соли кислот H 2 SiO 3 выпадает не сразу. Коллоидные растворы кремниевой кислоты (золи) при определенных условиях (например, при нагревании) можно перевести в прозрачную, однородную студнеобразную массу-гель кремниевой кислоты. Гели - высокомолекулярные соединения с пространственной, весьма рыхлой структурой, образованной молекулами Si0 2 , пустоты которой заполнены молекулами H 2 O. При обезвоживании гелей кремниевой кислоты получают силикагель - пористый продукт, обладающий высокой адсорбционной способностью.

Рисунок 4. Строение силикатов.

Выводы

Рассмотрев в своей работе химические соединения на основе кремния и углерода, я пришла к выводу, что углерод, являясь не очень распространённым количественно элементом есть важнейшим составляющим земной жизни, существуют его соединения в воздухе, нефти а также в таких простых веществах как алмаз и графит. Одной из важнейших характеристик углерода есть прочные ковалентные связи между атомами, а также атомом водорода. Важнейшими неорганическими соединениями углерода являются: оксиды, кислоты, соли, галогениды, азотосодержащие производные, сульфиды, карбиды.

Говоря о кремнии необходимо отметить большие количества его запасов на земле, он является основой земной коры и встречается в огромном многообразии силикатов, песка и т.д. В настоящее время использование кремния из-за его качеств полупроводника возврастает. Он используется в электронике при производстве компьютерных процессоров, микросхем и чипов. Соединения кремния с металлами образуют силициды, важнейшим кислородным соединением кремния есть оксид кремния SiO 2 (кремнезем) В природе есть большое разнообразие силикатов - это тальк, асбест, также распространены алюмосиликаты.

Список литературы

1. Большая советская энциклопедия. Третье издание. Т.28. - М.: Советская энциклопедия, 1970.

2. Жиряков В.Г. Органическая химия.4-е изд. - М., "Химия", 1971.

3. Краткая химическая энциклопедия. - М. "Советская энциклопедия", 1967.

4. Общая химия / Под ред. Е.М. Соколовской, Л.С. Гузея.3-е изд. - М.: Изд-во Моск. ун-та, 1989.

5. Мир неживой природы. - М., "Наука", 1983.

6. Потапов В.М., Татаринчик С.Н. Органическая химия. Учебник.4-е изд. - М.: "Химия", 1989.

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.