Применение минерального сырья в строительстве. Использование вторичного сырья в производстве строительных материалов. Классификация: виды и классы сырья минерального происхождения

Министерство науки и образования Украины

Киевский национальный университет строительства и архитектуры

Кафедра строительного материаловеденья

Реферат на тему: «Использование вторичных продуктов в изготовлении строительных материалов»


ПЛАН:

1. Проблема промышленных отходов и основные направления ее решения

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

в) Материалы из отходов лесохимии и переработки древесины

4. Список литературы

1. Проблема промышленных отходов и основные направления ее решения.

а) Развитие промышленности и накопление отходов

Характерной особенностью научно-технического процесса является увеличение объема общественного производства. Бурное развитие производительных сил вызывает стремительное вовлечение в хозяйственный оборот все большего количества природных ресурсов. Степень их рационального использования остается, однако, в целом весьма низкой. Ежегодно человечество использует приблизительно 10 млрд. т. минеральных и почти столько же органических сырьевых продуктов. Разработка большинства важнейших полезных ископаемых в мире идет быстрее, чем наращиваются их разведанные запасы. Около 70% затрат в промышленности приходится на сырье, материалы, топливо и энергию. В то же время 10…99% исходного сырья превращаются в отходы, сбрасываемые в атмосферу и водоемы, загрязняющие землю. В угольной промышленности, например, ежегодно образуется примерно 1,3 млрд. т. Вскрышных и шахтных пород и около 80 млн. т. Отходов углеобогащения. Ежегодно выход шлаков черной металлургии составляет около 80 млн. т., цветной 2,5, зол и шлаков ТЭС 60…70 млн. т., древесных отходов около 40 млн. м³.

Промышленные отходы активно влияют на экологические факторы, т.е. оказывают существенное влияние на живые организмы. В первую очередь это относится к составу атмосферного воздуха. В атмосферу поступают газообразные и твердые отходы в результате сгорания топлива и разнообразных технологических процессов. Промышленные отходы активно воздействуют не только на атмосферу, но и на гидросферу, т.е. водную среду. Под влиянием промышленных отходов, сосредоточенных в отвалах, шлаконакопителях, хвостохранилищах и т.д., загрязняется поверхностный сток в районе размещения промышленных предприятий. Сброс промышленных отходов приводит, в конечном счете, к загрязнению вод Мирового океана, которое приводит к резкому снижению его биологической продуктивности и отрицательно влияет на климат планеты. Образование отходов в результате деятельности промышленных предприятий негативно сказывается на качестве почвы. В почве накапливаются избыточные количества губительно действующих на живые организмы соединений, в том числе канцерогенные вещества. В загрязненной «больной» почве идут процессы деградации, нарушается жизнедеятельность почвенных организмов.

Рациональное решение проблемы промышленных отходов зависит от ряда факторов: вещественного состава отходов, их агрегатного состояния, количества, технологических особенностей и т.д. Наиболее эффективным решением проблемы промышленных отходов является внедрение безотходной технологии. Создание безотходных производств осуществляется за счет принципиального изменения технологических процессов, разработке систем с замкнутым циклом, обеспечивающих многократное использование сырья. При комплексном использовании сырьевых материалов промышленные отходы одних производств являются исходными сырьевыми материалами других. Важность комплексного использования сырьевых материалов можно рассматривать в нескольких аспектах. Во-первых, утилизация отходов позволяет решить задачи охраны окружающей среды, освободить ценные земельные угодья, занимаемые под отвалы и шламохранилища, устранить вредные выбросы в окружающую среду. Во- вторых, отходы в значительной степени покрывают потребность ряда перерабатывающих отраслей в сырье. В-третьих, при комплексном использовании сырья снижаются удельные капитальные затраты на единицу продукции и уменьшается срок их окупаемости.

Из отраслей-потребителей промышленных отходов наиболее емкой является промышленность строительных материалов. Установлено, что использование промышленных отходов позволяет покрыть до 40% потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10…30% снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, экономия капитальных вложений достигает 35..50%.


б) Классификация промышленных отходов

К настоящему времени отсутствует всесторонняя классификация промышленных отходов. Это обусловлено чрезвычайной пестротой их химического состава, свойств, технологических особенностей, условий образования.

Все отходы промышленности можно разделить на две большие группы: минеральные (неорганические) и органические. Наибольшее значение для производства строительных материалов имеют минеральные отходы. На их долю падает преобладающая доля всех отходов, производимых добывающими и перерабатывающими отраслями промышленности. Эти отходы и в большей мере изучены, чем органические.

Баженовым П.И. предложено классифицировать промышленные отходы в момент выделения их из основного технологического процесса на три класса: А; Б; В.

Продукты класса А (карьерные остатки и остатки после обогащения на полезное ископаемое) имеют химико-минералогический состав и свойства соответствующих горных пород. Область их применения обусловлена агрегатным состоянием, фракционным и химическим составом, физико-механическими свойствами.

Продукты класса Б – искусственные вещества. Они получены как побочные продукты в результате физико-химических процессов, протекающих при обычных или чаще высоких температурах. Диапазон возможного применения этих промышленных отходов шире, чем продуктов класса А.

Продукты класса В образуются в результате физико-химических процессов, протекающих в отвалах. Такими процессами могут быть самовозгорание, распад шлаков и образование порошка. Типичными представителями отходов этого класса являются горелые породы.


2. Опыт применения отходов металлургии, топливной промышленности и энергетики


а) Вяжущие материалы на основе шлаков и зол

Основная масса отходов при получении металлов и сжигании твердого топлива образуется в виде шлаков и зол. Кроме шлаков и зол при производстве металла в больших количествах образуются отходы в виде водных суспензий дисперсных частиц-шламы.

Ценным и весьма распространенным минеральным сырьем для производства строительных материалов являются горелые породы и отходы углеобогащения, а также вскрышные породы и отходы обогащения руд.

Производство вяжущих материалов относится к наиболее эффективным областям применения шлаков. Шлаковые вяжущие можно подразделить на следующие основные группы: шлакопортландцементы, сульфатно-шлаковые, известково-шлаковые, шлако-щелочные вяжущие.

Шлаки и золы можно рассматривать как в значительной мере подготовленное сырье. В их составе окись кальция (CaO) связана в различных химических соединениях, в том числе и в виде двухкальциевого силиката - одного из минералов цементного клинкера. Высокий уровень подготовки сырьевой смеси при применении шлаков и зол обеспечивает повышение производительности печей и экономии топлива. Замена глины доменным шлаком позволяет снизить на 20% содержание известкового компонента, уменьшить при сухом производстве клинкера удельный расход сырья и топлива на 10…15%, а также повысить производительность печей на 15%.

Применением маложелезистых шлаков – доменных и феррохромовых – и созданием восстановительных условий плавки получают в электропечах белые цементы. На основе феррохромовых шлаков окислением металлического хрома в расплаве можно получить клинкеры, при использовании которых цементы с ровной и стойкой окраской.

Сульфатно-шлаковые цементы – это гидравлические вяжущие вещества, получаемые совместным тонким измельчением доменных гранулированных шлаков и сульфатного возбудителя твердения – гипса или ангидрида с небольшой добавкой щелочного активизатора: извести, портландцемента или обожженного доломита. Наиболее широкое распространение из группы сульфатно-шлаковых получил гипсошлаковый цемент, содержащий 75…85% шлака, 10…15% двуводного гипса или ангидрида, до2% окиси кальция или 5% портландцементного клинкера. Высокая активизация обеспечивается при использовании ангидрита, обожженного при температуре около 700º С, и высокоглиноземистых основных шлаков. Активность сульфатно-шлакового цемента существенно зависит от тонкости измельчения. Высокая удельная поверхность (4000…5000 см²/г) вяжущего достигается с помощью мокрого помола. При достаточно высокой тонкости измельчения в рациональном составе прочность сульфатно–шлакового цемента не уступает прочности портландцемента. Как и другие шлаковые вяжущие, сульфатно-шлаковый цемент имеет не большую теплоту гидратации – к 7 сут., что позволяет применять его при возведении массивных гидротехнических сооружений. Этому способствует также его высокая стойкость к воздействию мягких сульфатных вод. Химическая стойкость сульфатно-шлакового цемента выше, чем шлакопортландцемента, что делает его применение особенно целесообразным в различных агрессивных условиях.

Известково-шлаковые и известково-зольные цементы – это гидравлическиевяжущие вещества, получаемые совместным помолом доменного гранулированного шлака или золы уноса ТЭС и извести. Их применяют для приготовления строительных растворов марок не более М 200. Для регулирования сроков схватывания и улучшения других свойств этих, вяжущих при изготовлении их вводится до 5% гипсового камня. Содержание извести составляет 10%...30%.

Известково-шлаковые и зольные цементы по прочности уступают сульфатно-шлаковым. Их марки: 50, 100, 150 и 200. Начало схватывания должно наступать не ранее чем через 25 мин., а конец – не позднее чем через 24 ч. после начала затворения. При снижении температуры, особенно после 10º С, нарастание прочности резко замедляется и, наоборот, повышение температуры при достаточной влажности среды способствует интенсивному твердению. Твердение на воздухе возможно лишь при после достаточного продолжительного твердения (15…30 сут.) во влажных условиях. Для этих цементов характерна низкая морозостойкость, высокая стойкость в агрессивных водах и малая экзотермия.

Шлакощелочные вяжущие состоятиз тонкоизмельченногогранулированного шлака (удельная поверхность≥3000 см²/г) и щелочного компонента – соединений щелочных металлов натрия или калия.

Для получения шлакощелочного вяжущего приемлемы гранулированные шлаки с различным минералогическим составом. Решающим условием их активности является содержание стекловидной фазы, способной взаимодействовать со щелочами.

Свойства шлакощелочного вяжущего зависят от вида, минералогического состава шлака, тонкости его помола, вида и концентрации его раствора щелочного компонента. При удельной поверхности шлака 3000…3500 см²/г количество воды для образования теста нормальной густоты составляет 20…30% массы вяжущего. Прочность шлакощелочного вяжущего при испытании образцов из теста нормальной густоты составляет 30…150 МПа. Для них характерен интенсивный рост прочности как в течении первого месяца, так и в последующие сроки твердения. Так, если прочность портландцемента через 3 мес. твердения в оптимальных условиях превышает марочную примерно в 1,2 раза, то шлакощелочного вяжущего в 1,5 раза. При тепловлажностной обработке процесс твердения ускоряется также интенсивнее, чем при твердении портландцемента. При обычных режимах пропаривания, принятых в технологии сборного железобетона, в течение 28 сут. достигается 90…120% марочной прочности.

Щелочные компоненты, входящие в состав вяжущего, выполняют роль противоморозной добавки, поэтому шлакощелочные вяжущие достаточно интенсивно твердеют при отрицательных температурах.


б) Заполнители из шлакозольных отходов


Шлаковые и зольные отходы представляют богатейшую сырьевую базу для производства как тяжелых, так и легких пористых заполнителей бетона. Основными видами заполнителей на основе металлургических шлаков являются шлаковый щебень и шлаковая пемза.

Из топливных шлаков и зол изготавливают пористые заполнители, в том числе аглопорит, Зольный гравий, глинозольный керамзит.

К эффективным видам тяжелых заполнителей бетона, не уступающим по физико-механическим свойствам продукта дробления плотных природных каменных материалов, относится литой шлаковый щебень. При производстве этого материала литой огненно-жидкий шлак из шлаковозных ковшей сливается слоями толщиной 200…500 мм на специальные литейные площадки или в тарпециевидные ямы-траншеи. При выдерживании в течение 2…3 ч. на открытом воздухе температура расплава в слое снижается до 800° С, и шлак кристаллизуется. Затем он охлаждается водой, что приводит к развитию в слое шлака многочисленных трещин. Шлаковые массивы на литейных площадках или в траншеях разрабатываются эскаваторами с последующим дроблением.

Литой шлаковый щебень характеризуется высокими морозо и жаростойкостью, а также сопротивлением истиранию. Стоимость его в 3…4 раза ниже, чем щебня из природного камня.

Шлаковая пемза (тормозит) – одно из наиболее эффективных видов искусственных пористых заполнителей. Ее получаю поризацией шлаковых расплавов в результате их быстрого охлаждения водой, воздухом или паром, а также воздействием минеральных газообразователей. Из технологических способов получения шлаковой пемзы наиболее часто применяются бассейновый, струйный и гидроэкранный способы.

Топливные шлаки и золы являются лучшим сырьем для производства искусственного пористого заполнителя – аглопорита. Это обусловлено, во-первых, способностью золошлакового сырья так же, как глинистых пород и других алюмосиликатных материалов, спекаться на решетках агломерационных машин, во-вторых, содержанием в нем остатка топлива, достаточных для процесса агломерации. При использовании обычной технологии аглопорит получают в виде щебня из песка. Из зол ТЭС можно получать и аглопоритовый гравий, имеющий высокие технико-экономические показатели.

Главная особенность технологии аглопоритового гравия в том, что в результате агломерации сырья образуется не спекшийся корж, а обожженные гранулы. Сущность технологии производства аглопоритового гравия заключается в получении сырцовых зольных гранул крупностью 10…20 мм, укладке их на колосники ленточной агломерационной машины слоем толщиной 200…300 мм и термической обработке.

Производство аглопритового по сравнению с обычным производством аглопорита характеризуется снижением на 20…30% расхода технологического топлива, более низким разрежением воздуха в вакуум-камерах и увеличением удельной производительности в 1,5…3 раза. Аглопоритовый гравий имеет плотную поверхностную оболочку и поэтому при практически равной объемной массе со щебнем отличается от него более высокой прочностью и меньшим водопглощением. Расчеты что замена 1 млн. м³ привозного природного щебня агдопортовым гравием из золы ТЭС лишь за счет сокращения транспортных расходов при перевозках на расстояние 500…1000 км дает экономии 2 млн. рублей. Применение аглопорита на основе зол и шлаков ТЭС позволяет получать легкие бетоны марок 50…4000 с объемной массой от 900 до 1800 кг/м³ при расходе цемента от 200 до 400 кг/м³.

Зольный гравий получают гранулированием подготовленной золошлаковой смеси или золы-уноса ТЭС с последующим спеканием и вспучиванием во вращающейся печи при температуре 1150…1250° С. На зольном гравии получают легкие бетоны с такими же примерно показателями, как и при использовании аглопоритного гравия. При производстве зольного гравия эффективны лишь вспучивающие золы ТЭС с содержанием топливных остатков не более 10%.

Глинозольный керамзит – продукт вспучивания и спекания во вращающейся печи гранул, сформированных из смеси глин и золошлаковых отходов ТЭС. Зола может составлять от 30 до 80% всей массы сырья. Введение глинистого компонента улучшает формовочные свойства шихты, способствует выгоранию остатков угля в золе, что позволяет использовать золы с повышенным содержанием несгоревшего топлива.

Объемная масса глинозольного керамзита составляет 400..6000 кг/м³, а прочность при сдавливании в стальном цилиндре 3,4…5 МПа. Главные преимущества производства глинозольного керамзита по сравнению с аглопоритом и зольным гравием – возможность использования золы ТЭС из отвалов во влажном состоянии без использования сушильных и помольных агрегатов и более простой способ формирования гранул.

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

К основным направлениям переработки металлургических и топливных шлаков, а также зол наряду с производством вяжущих, заполнителей и бетонов на их основе относится получение шлаковой ваты, литых материалов и шлакоситталов, зольной керамики и силикатного кирпича.

Шлаковая вата – разновидность минеральной ваты, занимающей ведущее место среди теплоизоляционных материалов, как по объему выпуска, так и по строительно-техическим свойствам. В производстве минеральной ваты доменные шлаки нашли наибольшее применение. Использование здесь шлака вместо природного сырья дает экономию до 150 грн. на 1 т. Для получения минеральной ваты наряду с доменными применяются также ваграночные, мартеновские шлаки и шлаки цветной металлургии.

Требуемое соотношение кислотных и основных оксидов в шихте обеспечивается применением кислых шлаков. Кроме того, кислые шлаки более устойчивы против распада, недопустимого в минеральной вате. Повышение содержания кремнезема расширяет температурный интервал вязкости, т.е. разность температур, в пределах которых возможно волокнообразование. Модуль кислотности шлаков корректируется введением в шихту кислых или основных добавок.

Из расплава металлургических и топливных шлаков отливают разнообразные изделия: камни для мощения дорог и полов промышленных зданий, тюбинги, бордюрный камень, противокоррозионные плитки, трубы. Изготовление шлакового литья началось одновременно с внедрением в металлургию доменного процесса. Литые изделия из шлакового расплава экономически более выгодны по сравнению с каменным литьем, приближаясь к нему по механическим свойствам. Объемная масса плотных литых изделий из шлака достигает 3000 кг/м³, предел прочности на сжатие 500 МПа.

Шлакоситаллы – разновидность стеклокристаллических материалов, получаемых направленной кристаллизацией стекол. В отличие от других ситаллов сырьевыми материалами для них служат шлаки черной и цветной металлургии, а также золы сжигания каменного угля. Шлакоситаллы разработаны впервые в СССР. Они широко применяются в строительстве как конструкционные и отделочные материалы, обладающие высокой прочностью. Производство шлакоситаллов заключается в варке шлаковых стекол, формировании из них изделий и последующей их кристаллизации. Шихта для получения стекол состоит из шлака, песка, щелочесодержащих и других добавок. Наиболее эффективно использование огненно-жидких металлургических шлаков, что экономит до 30…40% всего тепла, затрачиваемого на варку.

Шлакоситаллы все шире применяются в строительстве. Плитами листового шлакосситалла облицовывают цоколи и фасады зданий, отделывают внутренние стены и перегородки, выполняют из них ограждения балконов и кровли. Шлакостиалл – эффективный материал для ступеней, подоконников и других конструктивных элементов зданий. Высокая износостойкость и химическая стойкость позволяют успешно применять Шлакоситаллы для защиты строительных конструкций и аппаратуры в химической, горнорудной и других отраслях промышленности.

Золошлаковые отходы ТЭС могут служить отощающими топливосодержащими добавками в производстве керамических изделий на основе глинистых пород, а также основным сырьем для изготовления зольной керамики. Наиболее широко применяют топливные золы и шлаки как добавки при производстве стеновых керамических изделий. Для изготовления полнотелого и пустотелого кирпича и керамических камней в первую очередь рекомендуется использовать легкоплавкие золы с температурой размягчения до 1200° С. Золы и шлаки, содержащие до 10% топлива, применяют как отощающие, а 10% и более – как топливосодержащие добавки. В последнем случае можно существенно сократить или исключить введение в шихту технологического топлива.

Разработан ряд технологических способов получения зольной керамики, где Золошлаковые отходы ТЭС являются уже не добавочным материалом, а основным сырьевым компонентом. Так, при обычном оборудовании кирпичных заводов может быть изготовлен зольный кирпич из массы, включающей золу, шлак и натриевое жидкое стекло в количестве 3% по объему. Последнее выполняет роль пластификатора, обеспечивая получение изделий с минимальной влажностью, что исключает необходимость сушки сырца.

Зольную керамику выпускают в виде прессованных изделий из массы, включающей 60…80% золы-уноса, 10…20% глины и друге добавки. Изделия поступают на сушку и обжиг. Зольная керамика может служить не только стеновым материалом, обладающим стабильной прочностью и высокой морозостойкостью. Она характеризуется высокой кислотостойкостью и низкой истераемостью, что позволяет изготавливать из нее тротуарные и дорожные плиты и изделия, обладающие высокой долговечностью.

В производстве силикатного кирпича зола ТЭС используется как компонент вяжущего или заполнителя. В первом случае расход ее достигает 500 кг., во втором – 1,5…3,5 т. на 1 тыс. шт. кирпича. При введении угольной золы расход извести снижается на 10…50%, а сланцевые золы с содержанием CaO+MgO до 40…50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но и способствует пластификации смеси и повышению в 1,3…1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков.


г) Золы и шлаки в дорожно-строительных и изоляционных материалах

Крупнотоннажным потребителем топливных зол и шлаков является дорожное строительство, где золы и золошлаковые смеси используют для устройства подстилающих и нижних слоев оснований, частичной замены вяжущих при стабилизации грунтов цементом и известью, как минеральный порошок в асфальтовых бетонах и растворах, как добавки в дорожных цементных бетонах.

Золы, полученные при сжигании углей и горючих сланцев, применяются в качестве наполнителей кровельных и гидроизоляционных мастик. Золошлаковые смеси в дорожном строительстве применяют неукрепленными и укрепленными. Неукрепленные золошлаковые смеси используют в основном в качестве материала для устройства подстилающих и нижних слоев оснований дорог областного и местного значения. При содержании не более 16% пылевидной золы их применяют для улучшения грунтовых покрытий, подвергаемых поверхностной обработке битумной или дегтевой эмульсией. Конструктивные слои дорог можно выполнить из золошлаковых смесей с содержанием золы не более 25…30%. В гравийно-щебеночных основаниях в качестве уплотняющей добавки целесообразно применять золошлаковую смесь с содержанием пылевидной золы до 50%, Содержание несгоревшего угля в топливных отходах ТЭС, применяемых для возведения дорог, не должно превышать 10%.

Также как и природные каменные материалы относительно высокой прочности, золошлаковые отходы ТЭС служат для изготовления битумоминеральных смесей, применяемых для создания конструктивных слоев дорог 3-5 категорий. Из топливных шлаков, обработанных битумом или дегтем (до 2% по массе), получают черный щебень. Смешивая подогретую до 170…200° С золу с 0,3…2% раствора битума в зеленом масле, получают гидрофобный порошок с объемной массой 450…6000 кг/м³. Гидрофобный порошок одновременно может выполнять функции гидро- и теплоизоляционного материала. Распространено применение зол в качестве наполнителя мастик.


д) Материалы на основе шламов металлургических производств

Для производства строительных материалов промышленное значение имеют нефелиновые, бокситовые, сульфатные, белые и многокальциевые шламы. Объем одних лишь нефелиновых шламов, пригодных для использования, составляет ежегодно свыше 7 млн.т.

Основным направлением применения шламовых отходов металлургической промышленности являются изготовление бесклинкерных вяжущих, материалов на их основе, получение портландцемента и смешенных цементов. В промышленности особенно широко используется нефелиновый (белитовый) шлам, получаемый при извлечении глинозема из нефелиновых пород.

Под руководством П.И. Баженова разработана технология изготовления нефелинового цемента и материалов на его основе. Нефелиновый цемент является продуктом совместного помола или тщательного перемешивания предварительного измельченных нефелинового шлама (80…85%), извести или другого активизатора, например портландцемента (15…20%) и гипса (4…7%). Начало схватывания нефелинового цемента должно наступать не ранее чем через 45 мин., конец – не позднее чем через 6ч. после его затворения, Его марки 100, 150, 200 и 250.

Нефелиновый цемент является эффективным для кладочных и штукатурных растворов, а также для бетонов нормального и особенно автоклавного твердения. ПО пластичности и времени схватывания растворы на нефелиновом цементе близки к известково-гипсовым растворам. В бетонах нормального твердения нефелиновый цемент обеспечивает получение марок 100…200, в автоклавных – марок 300…500 при расходе 250…300 кг/м³. Особенностями бетонов на нефелиновом цементе является низкая экзометрия, что важно учитывать при строительстве массивных гидротехнических сооружений, высокое сцепление со стальной арматурой после автоклавной обработки, повышенная стойкость в минерализованных водах.

Близким по составу к нефелиновому цементу являются вяжущие на основе бокситового, сульфатного и других шламов металлургических производств. Если значительная часть этих минералов гидратирована, для проявления вяжущих свойств шламов необходима их сушка в интервале 300…700° С. для активизации этих вяжущих целесообразно введение добавок извести и гипса.

Шламовые вяжущие относятся к категории местных материалов. Наиболее рационально применять их для изготовления изделий автоклавного твердения. Однако они могут, применятся и в строительных растворах, при отделочных работах, изготовлении материалов с органическими заполнителями, например фибролита. Химический состав ряда металлургических шламов позволяет применять их в качестве основного сырьевого компонента портландцементного клинкера, а также активной добавки в производстве портландцемента и смешанных цементов.


е) Применение горелых пород, отходов углеобогащения, добычи и обогащения руд

Основная масса горелых пород является продуктом обжига пустых пород, сопутствующих месторождениям каменных углей. Разновидностями горелых пород являются глиежи – гилинстые и глинисто-песчанные породы, обожженные в недрах земли при подземных пожарах в угольных пластах, и отвальные, перегоревши шахтные породы.

Возможности применения горелых пород и отходов углеобогащения в производстве строительных материалов весьма разнообразны. Горелые породы, как и другие обожженные глинистые материалы, обладают активностью по отношению к извести и используются в роли гидравлических добавок в вяжущих известково-пуццоланового типа, портландцементе, пуццолановом портландцементе и автоклавных материалах, Высокая адсорбционная активность и сцепление с органическими вяжущими позволяют применять их в асфальтовых и полимерных композициях. Естественно, обжигаемые в недрах земли или в терриконах угольных шахт горелые породы – аргиллиты, алевролиты и песчаники – имеют керамическую природу и могут, применятся в производстве жаростойких бетонов и пористых заполнителей. Некоторые горелые породы являются легкими нерудными материалами, что обусловливает их использование как заполнителей для легких растворов и бетонов.

Отходы углеобогащения – ценный вид минералогического сырья, в основном используемый в производстве стеновых керамических материалов и пористых заполнителей. По химическому составу отходы углеобогащения близки к традиционному глинистому сырью. В роли вредной примеси в них выступает сера, содержащаяся в сульфатных Ии сульфидных соединениях. Теплотворная способность их колеблется в широких пределах – от 3360 до 12600 кДж\кг и более.

в производстве стеновых керамических изделий отходы углеобогащения применяют как отощающую или выгорающую топливосодержащую добавку. До введения в керамическую шихту кусковые отходы дробят. Предварительное дробление не требуется для шлама размером частиц менее 1мм. Шлам предварительно подсушивается до влажности 5…6%. Добавка отходов при получении кирпича пластическим способом должна составлять 10…30%. Введение оптимального количества топливо содержащей добавки в результате более равномерного обжига значительно улучшает прочностные показатели изделий (до 30…40%), экономит топливо (до30%), исключает необходимость введения в шихту каменного угля, повышает производительность печей.

Возможно применение шлама углеобогащения сравнительно высокой теплотворной способности (18900…21000кДж/кг) в качестве технологического топлива. Он не требует дополнительного дробления, хорошо распределяется по садке при засыпке через топливные отверстия, что способствует равномерному обжигу изделий, а главное намного дешевле угля.

Из некоторых разновидностей отходов обогащения каменного угля можно производить не только аглопорит, но и керамзит. Ценным источником нерудных материалов являются попутно добываемые породы горнодобывающих отраслей промышленности. Основным направлением утилизации этой группы отходов является производство прежде всего заполнителей бетонов и растворов, дорожно-строительных материалов, бутового камня.

Строительный щебень получают из попутных пород при добыче железной и других руд. Высококачественным сырьем для производства щебня являются безрудные железистые кварциты: роговики, кварцитовые и кристаллические сланцы. Щебень из попутных пород при добычи железной руды получают на дробильно-сортировочных установках, а также сухой магнитной сепарацией.


3. Опыт применения отходов химико-технологических производств и переработки древесины

а) Применение шлаков электротермического производства фосфора

Важным источником строительного сырья являются также сельскохозяйственные отходы растительного происхождения. Ежегодный выход, например, отходов стеблей хлопчатника составляет около 5 млн. т. в год, а льняной костры более 1 млн. т.

Отходы древесины образуются на всех стадиях ее заготовки и переработки. К ним относятся ветви, сучья, вершины, откомплевки, козырьки, опилки, пни, корни, кора и хворост, в сумме составляющие около 21% всей массы древесины. При переработке древесины на пиломатериалы выход продукции достигает 65%, остальная часть образует отходы в виде горбыля (14%), опилок (12%), срезок и мелочи (9%). При изготовлении из пиломатериалов строительных деталей, мебели и других изделий возникают отходы в виде стружки, опилок и отдельных кусков древесины – срезок, составляющих до 40% массы переработанных пиломатериалов.

Наибольшее значение для производства строительных материалов и изделий имеют опилки, стружка и кусковые отходы. Последние используют как непосредственно для изготовления клееных строительных изделий, так и переработки на технологическую щепу, а затем стружку, дробленку, волокнистую массу. Разработана технология получения строительных материалов из коры и одубины – отхода производства дубильных экстрактов.

Фосфорные шлаки - это побочный продукт производства фосфора термическим способом в электропечах. При температуре 1300…1500° С фосфат кальция взаимодействует с углеродом кокса и кремнеземом, в результате чего образуется фосфор и шлаковый расплав. Шлак сливается из печей в огненно-жидком состоянии и гранулируется мокрым способом. На 1 т. фосфора приходится 10…12т шлака. На крупных химических предприятиях получают до двух млн. т. шлака в год. Химический состав фосфорных шлаков близок к составу доменных.

Из фосфорно-шлаковых расплавов можно получать шлаковую пемзу, вату и литые изделия. Шлаковую пемзу получают по обычной технологии без изменения состава фосфорных шлаков. Она имеет объемную насыпную массу 600…800 кг/м³ и стекловидную мелкопористую структуру. Фосфорно-шлаковая вата характеризуется длинными тонкими волокнами и объемной массой 80…200 кг/м³. Фосфорно-шлаковые расплавы могут перерабатывается в литой щебень по траншейной технологии, применяемой на металлургических предприятиях.


б) Материалы на основе гипссодержащих и железистых отходов


Потребность промышленности строительных материалов в гипсовом камне в настоящее время превышает 40 млн.т. В то же время потребность в гипсовом сырье может быть в основном удовлетворенна за счет гипссодержащих отходов химической, пищевой, лесохимической промышленности. В 1980 г. в нашей стране выход отходов и побочных продуктов, содержащих сульфаты кальция, достиг примерно 20 млн. т в год, в том числе фосфогипса – 15,6 млн. т.

Фосфогипс - отходсернокислотной обработки апатитов или фосфоритов в фосфорную кислоту или концентрированные фосфорные удобрения. Он содержит 92…95% двуводного гипса с механической примесью 1…1,5% пятиокиси фосфора и некоторого количества других примесей. Фосфогипс имеет вид шлама влажностью 20…30% с высоким содержанием растворимых примесей. Твердая фаза шлама тонкодисперсная и более чем на 50% состоит из частиц размером менее 10мкм. Стоимость транспортирования и хранения фосфогипса в отвалах составляет до 30% общей стоимости сооружений и эксплуатации основного производства.

При производстве фосфорной кислоты способом экстракции по полугидратной схеме отходом является фосфополугидрат сульфата кальция, содержащий 92…95% - основного компонента высокопрочного гипса. Однако наличие на поверхности кристаллов полугидрата пассивирующих пленок заметно сдерживает проявление вяжущих свойств у этого продукта без специальной его технологической обработке.

При обычной технологии гипсовые вяжущие на основе фосфогипса низкокачественны, что объясняется высокой водопотребностью фосфогипса, обусловленной большой пористостью полугидрата в результате наличия крупных кристаллов в исходном сырье. Если водопотребность обычного строительного гипса 50…70%, то для получения теста нормальной густоты из фосфогипсового вяжущего без дополнительной обработки требуется воды 120…130%. Отрицательно влияют на строительные свойства фосфогипса и содержащиеся в нем примеси. Это влияние несколько снижается при домоле фосфогипса и формирования изделий методом виброукладки. В этом случае качество фосфогипсового вяжущего повышается, хотя и остается ниже, чем строительного гипса из природного сырья.

В МИСИ на основе фосфогипса получено композиционное вяжущее повышенной водостойкости, содержащее 70…90% α-полугидрата, 5…20% портландцемента и 3…10% пуццолановых добавок. При удельной поверхности 3000…4500 см²/г водопотребность вяжущего составляет 35…45%, схватывание начинается через 20…30 мин, кончается через 30…60 мин., предел прочности на сжатие равен 30…35 МПа, коэффициент размягчения 0,6…0,7. водостойкое вяжущее получают при гидротермальной обработке в автоклаве смеси фосфогипса, портландцемента и добавок, содержащих активный кремнезем.

В цементной промышленности Фосфогипс применяют как минерализатор при обжиге клинкера и вместо природного гипса как добавку для регулирования схватывания цемента. Добавка 3…4% в шлам позволяет увеличить коэффициент насыщения клинкера с 0.89…0,9 до 0,94…0,96 без снижения производительности печей, повысить стойкость футеровки в зоне спекания вследствие равномерного образования устойчивой обмазки и получить легко размалываемый клинкер. Установлена пригодность фосфогипса для замены гипса при помоле цементного клинкера.

Широкое применение фосфогипса как добавки в производстве цемента возможно лишь при его подсушке и гранулировании. Влажность гранулированного фосфогипса не должна превышать 10…12%. Сущность основной схемы гранулирования фосфогипса заключается в обезвоживании части исходного фосфогипсового шлама при температуре 220…250° С до состояния растворимого ангидрида с последующим смешиванием его с остальной частью фосфогипса. При смешении фосфоангидрида с фосфогипсом во вращающемся барабане обезвоженный продукт гидратируется за счет свободной влаги исходного материала, и в результате образуются твердые гранулы двуводногофосфогипса. Возможен и другой метод гранулирования фосфогипса – с упрочняющей добавкой пиритных огарков.

Кроме производства вяжущих и изделий на их основе известны и другие пути утилизации гипссодержащих отходов. Опыты показали, что добавкадо 5% фосфогипса в шихту при производстве кирпича интенсифицирует процесс сушки и способствует повышению качества изделий. Объясняется это улучшением керамико-технологических свойств глиняного сырья за счет присутствия основного компонента фосфогипса – двуводного сульфата кальция.

Из железистых отходов наиболее широко применяются пиритные огарки . В частности в производстве портландцементного клинкера их используют как корректирующую добавку. Однако огарки, расходуемые в цементной промышленности, составляют лишь небольшую часть их общего выхода на предприятиях по производству серной кислоты, потребляющих в качестве основного исходного сырья серный колчедан.

Разработана технология изготовления высокожелезистых цементов. Исходными компонентами для получения таких цементов служат мел (60%) и пиритные огарки (40%). Сырьевую смесь обжигают при температуре 1220…1250º С. Высокожелезистые цементы характеризуются нормальными сроками схватывания при введении в сырьевую смесь до 3% гипса. Прочность их на сжатие в условиях водного и воздушно-влажного твердения в течении 28 сут. соответствует маркам 150 и 200, а при пропаривании в автоклавной обработке увеличивается в 2 …2,5 раза. Высокожелезистые цементы являются безусадочными.

Пиритные огарки в производстве искусственных заполнителей бетонов могут служить как добавкой, так и основным сырьем. Добавку пиритных огарков в количестве 2…4% общей массы вводят для увеличения газотворной способности глин при получении керамзита. Этому способствует распад в огарках при 700…800º С остатков пирита с образованием сернистого газа и восстановлением оксидов железа под влиянием органических примесей, присутствующих в глинистом сырье, с выделением газов. Железистые соединения, особенно в закисной форме, действуют как плавни, вызывая разжижение расплава и уменьшение температурного интервала изменения его вязкости.

Железосодержащие добавки применяют в производстве стеновых керамических материалов для снижения температуры обжига, повышения качества и улучшения цветовых характеристик. Положительные результаты дает предварительное прокаливание огарков для разложения примесей сульфидов и сульфатов, образующих при обжиге газообразные продукты, присутствие которых снижает механическую прочность изделий. Эффективно введение в шихту 5…10% огарков, особенно в сырье с низким количеством плавней и недостаточной спекаемостью.

В производстве фасадных плиток полусухим и шлинкерным способами прокаленные огарки могут добавляться в шихты в количестве от 5 до 50% по массе. Использование огарков позволяет выпускать цветные керамические фасадные плитки без дополнительного введения в глину шамота. При этом температура обжига плиток из тугоплавких и огнеупорных глин снижается на 50…100° С.

в) Материалы из отходов лесохимии и переработки древесины


Для производства строительных материалов наиболее ценным сырьем из отходов химической промышленности являются шлаки электротермического производства фосфора, гипссодержащие и известковые отходы.

К отходам зимико-технологических производств можно отнести изношенную резину и вторичное полимерное сырье, а также ряд побочных продуктов предприятий строительных материалов: цементную пыль, осадки в водоочистительных аппаратах асбестоцементных предприятий., бой стекла и керамики. Отходы составляют до 50% всей массы перерабатываемой древесины, большая часть из них в настоящее время сжигается или вывозится в отвал.

Предприятия строительных материалов, расположенные вблизи гидролизных заводов, могут успешно утилизировать лигнин – один из наиболее емких отходов лесохимии. Опыт работы ряда кирпичных заводов позволяет считать лигнин эффективной выгорающей добавкой. Он хорошо смешивается с другими компонентами шихты, не ухудшает ее формировочных свойств и не затрудняет резку бруса. Наибольший эффект его применения имеет место при сравнительно небольшой карьерной влажности глины. Запрессованный в сырец лигнин при сушке не горит. Горючая часть лигнина полностью улетучивается при температуре 350…400º С, зольность его составляет 4…7%. Для обеспечения кондиционной механической прочности обыкновенного глиняного кирпича лигнин следует вводить в формировочную шихту в количестве до 20…25% ее объема.

В производстве цемента лигнин можно использовать как пластификатор сырьевого шлама и интенсификатор измельчения сырьевой смеси и цемента. Дозировка лигнина в этом случае составляет 0,2…0,3%. Разжижающееся действие гидролизного лигнина объясняется присутствием в нем веществ фенольного характера, хорошо снижающих вязкость известняково-глинистых суспензий. Действие лигнина при помоле заключается главным образом в уменьшении слипания мелких фракций материала и их налипании на мелющие тела.

Древесные отходы без предварительной переработки (опилки, стружка) или после измельчения (щепа, дробленка, древесная шерсть) могут служить заполнителями в строительных материалах на основе минеральных и органических вяжущих, эти материалы характеризуются невысокой объемной массой и теплопроводностью, а также хорошей обрабатываемостью. Пропиткой древесных заполнителей минерализаторами и последующим смешиванием с минеральными вяжущими обеспечивается биостойкость и трудносгораемость материалов на их основе. Общие недостатки материалов на древесных заполнителях – высокое водопоглащение и сравнительно низкая водостойкость. По назначению эти материалы делятся на теплоизоляционные и конструктивно-теплоизоляционные.

Главными представителями группы материалов на древесных заполнителях и минеральных вяжущих являются арболит, фибролит и опилкобетоны.

Арболит - легкий бетон на заполнителях растительного происхождения, предварительно обработанных раствором минерализатора. Он применяется в промышленном, гражданском и сельскохозяйственном строительстве в виде панелей и блоков для возведения стен и перегородок, плит перекрытий и покрытий зданий, теплоизоляционных и звукоизоляционных плит. Стоимость зданий из арболита на 20…30% ниже чем из кирпича. Арболитовые конструкции могут эксплуатироваться при относительной влажности воздуха помещений не более 75%. При большой влажности требуется устройство пароизоляционного слоя.

Фибролит в отличие от арболита в качестве заполнителя и одновременно армирующего компонента включает древесную шерсть – стружку длинной от 200 до 500 мм., шириной 4…7 мм. и толщиной 0,25…0,5 мм. Древесную шерсть получают из неделовой древесины хвойных, реже лиственных пород. Фибролит отличается высокой звукопоглащаемостью, легкой обрабатываемостью, гвоздимостью, хорошим сцеплением со штукатурным слоем и бетоном. Технология производства фибролита включает приготовление древесной шерсти, обработки ее минерализатором, смешиванием с цементом, прессование плит и их термическую обработку.

Опилкобетоны – это материал на основе минеральных вяжущих и древесных опилок. К ним относятся ксилолит, ксилобетон и некоторые другие материалы, близкие к ним по составу и технологии.

Ксилолитом называется искусственный строительный материал, полученный в результате твердения смеси магнезиального вяжущего и древесных опилок, затворенной раствором хлорида или сульфата магния. В основном ксилолит применяется для устройства монолитных или сборных покрытий пола. Преимущества ксилолитовых полов – относительно небольшой коэффициент теплоусвоения, гигиеничность, достаточная твердость, низкая истираемость, возможность разнообразной цветной окраски.

Ксилобетоны - разновидность легкого бетона, заполнителем которого служат опилки, а вяжущим – цемент или известь и гипс, ксилобетон при объемной массе 300…700 кг/м³ и прочности на сжатии 0,4…3 МПа применяют как теплоизоляционный, а при объемной массе 700…1200 кг/м³ и прочности на сжатие до 10 МПА – как конструктивно-теплоизоляционный материал.

Клееная древесина относится к наиболее эффективным строительным материалам. Она может быть слоистой или полученной из шпона (фанера, древеснослоистые пластики); массивной из кусковых отходов лесопиления и деревообработке (панели, шиты, брусья, доски) и комбинированной (столярные плиты). Преимущества клееной древесины – низкая объемная масса, водостойкость, возможность получения из маломерного материала изделий сложной формы, крупных конструктивных элементов. В клееных конструкциях ослабляется влияние анизотропности древесины и его пороков, они характеризируется повышенной глиностойкостью и низкой возгораемостью, не подвержены усушке и короблении. Клееные деревянные конструкции по срокам и трудозатратам при возведении зданий, стойкости при возведении агрессивной воздушной среды часто успешно конкурируют со стальными и железобетонными конструкциями. Их применение эффективно при возведении сельскохозяйственных и промышленных предприятий, выставочных и торговых павильонов, спортивных комплексов, зданий и сооружений сборно-разборного типа.

Древесно-стружечные плиты – это материал, полученный горячим прессованием измельченной древесины, смешанной со связующими веществами – синтетическими полимерами. Преимуществами этого материала являются однородность физико-механических свойств в различных направлениях, сравнительно небольшие линейные изменения при переменной влажности, возможность высокой механизации и автоматизации производства.

Строительные материалы на основе некоторых отходов древесины могут изготавливаться без применения специальных вяжущих. Частицы древесины в таких материалах связываются в результате сближения и переплетения волокон, их когезионной способности и физико-химических связей, возникающих в процессе обработки пресс-массы при высоких давлении и температуры.

Без применения специальных связующих получают древесно-волокнистые плиты.

Древесно-волокнистые плиты – материал, формируемый из волокнистой массы с последующей тепловой обработкой. Примерно 90% всех древесно-волокнистых плит изготовляют из древесины. Исходным сырьем служат неделовая древесина и отходы лесопильного и деревообрабатывающего производств. Плиты можно получать из волокон лубяных растений и из другого волокнистого сырья, обладающего достаточной прочностью и гибкостью.

В группу древесных пластиков входят: Древесно-слоистые пластики – материал из листов шпона, пропитанных синтетическим полимером резольного типа и склеенных в результате термической обработки давлением, лигноуглеводные и пьезотермопластики, производимые из древесных опилок высокотемпературной обработкой пресс-массы без ввода специальных вяжущих. Технология лигноуглеводных пластиков состоит из подготовки, сушки и дозировки древесных частиц, формования ковра, холодной его подпрессовке, горячего прессования и охлаждения без снятия давления. Область применения лигноуглеводных пластиков такая же, как древесно-волокнистых и древесно-стружечных плит.

Пьезотермопластики могут изготавливаются из опилок двумя способами – без предварительной обработки и с гидротермальной обработкой исходного сырья. По второму способу кондиционные опилки обрабатываются в автоклавах паром при температуре 170…180º С и давлении 0,8…1 МПа в течении 2 ч. Гидролизованная пресс-масса частично высушивается и при определенной влажности последовательно подвергается холодному и горячему прессованию.

Из пьезотермопластиков выпускают плитки для пола толщиной 12мм. Исходным сырьем могут служить опилки или измельченная древесина хвойных и лиственных пород, льняная или конопляная костра, камыш, гидролизный лигнин, одубина.


г) Утилизация собственных отходов в производстве строительных материалов

Опыт предприятий Крымской автономной республики, разрабатывающих известняк-ракушечник для получения стенового штучного камня, показывает эффективность изготовления из отходов камнепиления ракушечно-бетонных блоков. Блоки формируются в горизонтальных металлических формах с откидными бортами. Дно формы покрывается раствором из ракушечника толщиной 12..15 мм для создания внутреннего фактурного слоя. Форма заполняется крупнопористым или мелкозернистым бетоном из ракушечника. Фактура внешней поверхности блоков может создаваться специальным раствором. Ракушечно-бетонные блоки применяют для кладки фундаментов и стен при строительстве производственных и жилых зданий.

В производстве цемента в результате переработки тонкодисперсных минеральных материалов образуется значительное количество пыли, Общее количество улавливаемой пыли на цементных заводах может составлять до 30% всего объема выпускаемой продукции. До 80% всего количества пыли выбрасывается с газами клинкерообжигательных печей. Пыль, выносимая из печей, является полидесперсным порошком, содержащим при мокром способе производства 40…70, а при сухом – до 80% фракций размером менее 20мкм. Минералогическими исследованиями установлено, что в составе пыли содержится до 20% клинкерных минералов, 2…14% свободной окиси кальция и от 1 до 8% щелочей. Основная масса пыли состоит из смеси обожженной глины и неразложившегося известняка. Состав пыли существенно зависит от типа печей, вида и свойств применяемого сырья, способа улавливания.

Основным направлением утилизации пыли на цементных заводах является использование ее в самом процессе производства цемента. Пыль из пылеосадительных камер возвращается во вращающуюся печь вместе со шламом. Основное же количество свободной окиси кальция, щелочей и серного ангидрида. Добавка 5…15% такой пыли к сырьевому шламу вызывает его коагуляцию и уменьшение текучести. При повышенном содержании в пыли щелочных окислов также снижается качество клинкера.

Асбестоцементные отходы содержат большое количество гидратированных цементных минералов и асбеста. При обжиге в результате обезвоживании гидратных составляющих цемента и асбеста они приобретают вяжущие свойства. Оптимальная температура обжига находится в интервале 600…700º С. В этом температурном диапазоне завершается дегидратация гидросиликатов, разлагается асбест и образуется ряд минералов, способных к гидравлическому твердению. Вяжущие с выраженной активностью можно получить смешиванием термически обработанных асбестоцементных отходов с металлургическим шлаком и гипсом. Из асбестоцементных отходов изготавливают облицовочные плитки и плитки для пола.

Эффективным видом вяжущего в композициях из асбестоцементных отходов является жидкое стекло. Облицовочные плиты из смеси высушенных и измельченных в порошок асбестоцементных отходов и раствора жидкого стекла плотностью 1,1…1,15 кг/см³ получают при удельном давлении прессования 40…50 МПа. В сухом состоянии эти плиты имеют объемную массу 1380…1410 кг/м³, предел прочности на изгиб 6,5…7 МПа, на сжатие 12…16 МПа.

Из отходов асбестоцементного можно изготавливать теплоизоляционные материалы. Изделия в виде плит, сегментов и скорлуп получают из обожженных и измельченных отходов с добавкой извести, песка и газообразователей. Газобетон на основе вяжущих из асбестоцементных отходов имеют прочность на сжатие 1,9…2,4 МПа и объемную массу 370…420 кг/м³. Отходы асбестоцементной промышленности могут служить наполнителями теплых штукатурок, асфальтовых мастик и асфальтовых бетонов, а также заполнителями бетонов с высокой ударной вязкостью.

Стекольные отходы образуются как при производстве стекла, так и при использовании стеклоизделий на строительных объектах и в быту. Возврат стеклобоя в основной технологический процесс производства стекла является основным направлением его утилизации.

Из порошка стекольного боя с газообразователями спеканием при 800…900° получают один из наиболее эффективных теплоизоляционных материалов – пеностекло. Плиты и блоки из пеностекла имеют объемную массу 100…300 кг/м³, теплопроводность 0,09…0,1 Вт и предел прочности на сжатие 0,5…3 МПа.

В смеси с пластичными глинами стекольный бой может служить основным компонентом керамических масс. Изделия из таких масс изготавливают по полусухой технологии, их отличает высокая механическая прочность. Введение стекольного боя в керамическую массу снижает температуру обжига и повышает производительность печей. Выпускают стеклокерамические плитки из шихты, включающей от 10 до 70% боя стекла, измельченного в шаровой мельнице. Массу увлажняют до 5…7%. Плитки прессуют, сушат и обжигают при 750…1000º С. Водопоглащение плиток – не более 6%. морозостойкость более 50 циклов.

Битое стекло также применяют как декоративный материал в цветных штукатурках, молотые стекольные отходы можно использовать как присыпку по масляной краске, абразив – для изготовления наждачной бумаги и как компонент глазури.

В керамическом производстве отходы возникают на различных стадиях технологического процесса, Сушильный брак после необходимого измельчения служит добавкой для снижения влажности исходной шихты. Бой глиняного кирпича используется после дробления как щебень в общестроительных работах и при изготовлении бетона. Кирпичный щебень имеет объемную насыпную массу 800…900 кг/м³ , на нем можно получать бетоны с объемной массой 1800…2000 кг/м³, т.е. на 20% легче, чем на обычных тяжелых заполнителях. Применение кирпичного щебня эффективно для изготовления крупно пористых бетонных блоков с объемной массой до 1400 кг/м³. Количество кирпичного боя резко сократилось благодаря контейнеризации и комплексной механизации работ по погрузке и разгрузке кирпича.


4. Список литературы:


Боженов П.И. Комплексное использование минерального сырья для производства строительных материалов. – Л.-М.: Стройиздат, 1963.


Гладких К.В. Шлаки – не отходы, а ценное сырье. – М.: Стройиздат, 1966.


Попов Л.Н. Строительные материалы из отходов промышленности. – М.: Знание, 1978.


Баженов Ю.М., Шубенкин П.Ф., Дворкин Л.И. Применение промышленных отходов в производстве строительных материалов. – М.: Стройиздат, 1986.


Дворкин Л.И., Пашков И.А. Строительные материалы из отходов промышленности. – К.: Выща школа, 1989.



Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В качестве строительного минерального сырья используется большой пере­чень горных пород, пользующихся широким, а некоторые - весьма ограничен­ным распространением на территории Крымского полуострова. Среди большо­го разнообразия строительного минерального сырья по его предназначению и практическому использованию выделяется более 10 групп . Так, в качестве цементного сырья в Крыму используются мергель и суглинки, запасы которых в большом количестве (188,1млн.т) сосредоточены в Бахчисарайском комплексном месторождении. На их основе функционирует одноименный цементный завод, который полностью обеспечивает потребность Республики в цементе высокого качества. Для производства цемента предназначены также запасы трепельных глин Баксинского месторождения в количестве 680 тыс.тонн в Ленинском районе, однако они в данное в Ремя не используются. В качестве сырья для производства стекла многие годы использовался чистый кварцевый песок Заморского месторождения в Ленинском Районе. К настоящему времени разведанные запасы этого месторождения отработаны. Других месторождений высококачественного песка для стекольного производства не выявлено, так как он имеет весьма ограниченное распространение в нашем регионе (Рас.Ю).

В качестве сырья для строительной керамики используются преимуществен-

0 глины, имеющие широкое распространение на полуострове(рис.П). Глинистые

°Роды приурочены к отложениям различного возраста от триаса и сред-

е и юры до четвертичного. Практическое значение имеют глины нижнего мела,

°бенно пластичные глины аптского яруса, которые широко используются для

производства строительного кирпича. Разведано и учтено Государственным ба­лансом 12 месторождений этого сырья: Марьинское, Партизанское, Керченское, Феодосийское, Балаклавское, Баксинское, Васильковское, Зеленогорское, Марь-яновское, Вилинское, Константиновское и Молочное. Общие разведанные запасы их значительные (млн.м 3): глины обычной - 23,8; глины аргиллитоподобной - 6,4; глины трепельной - 0,5; суглинков - 3,2. Эксплуатируются 2 месторождения.

Сырьем для производства строительного камня (бута, щебня, крошки, искус­ственного песка) являются карбонатные и изверженные горные породы(рис.12).

Карбонатные породы широко распространены. Они представлены 4-мя разновидностями: высокопрочными мраморизованными известняками верхней юры и сходными по качеству известняками нижнего мела; известняками средней прочности сарматского и мэотического возраста на Керченском полуострове и малопрочными известняками сарматского, мэотического и понтического возраста в Равнинном Крыму и на Тарханкутском полуострове. Учтено 23 месторождения известняков с разведанными запасами 119,1 млн. м 3 и предварительно разведанными 25,5 млн. м 3 .

Извержанные горные породы представленны диоритами, диабазами, диабазовыми порфиритами и плагиогранитами. Распространены они весьма ограниченно. Большая часть тел этих пород сосредоточена в районах между г. Алушта и Гурзуфом, к югу и юго-востоку от г. Симферополя, в долинах рек Салгирка, Альмы и Бодрака. Они слагают небольшие тела в виде лакколитов, пластовых залежей и штоков. Разведано 5 месторождений изверженных горных пород с общими запасами 41,1 млн. м 3 . Кроме того, разведано 1 месторождение песчаника Бугаз на территории Судакского городского совета с запасами 175 тыс. м 3 , из них 150 тыс. м 3 разведанные.

Всего в Крыму выявленно 29 месторождений строительного камня с общими запасами 186,3 млн. м 3 . Разрабатываются 15 месторождений, годовой объем добычи составляет 170 тыс. м 3 .

В строительной индустрии широко применяются стеновые блоки и камни из горных пород - так называемых пильных известняков. В качестве сырья для про­изводства стеновых блоков используются мшанковые известняки датского яруса нижнего палеогена и нуммулитовые известняки симферопольского яруса средне­го палеогена, а стенового камня - менее прочные известняки-ракушечники нижнего палеогена, нуммулитовые известняки симферопольского яруса среднего палеогена, известняки-ракушечники верхнего сармата, оолитовые и детритовые известняки мэотиса, раковинно-детритовые известняки понтического яруса. Разведано 96 месторождений известняка, из которых 36 находятся в эксплуатации и 12 месторождений подготавливаются к промышленному освоению. Общие разведанные запасы этого сырья составляют 308,1 млн. м 3 и 4,4 млн. м 3 - предварительно раведанные. Годовой объем добычи в 1999 г. составил 513 тыс. м 3 , что в 6,2 раза меньше по сравнению с добычей в 1988 г. Потери сырья при добыче составили 30,8%. Сырьем для производства керамзита служат глинистые породы, которые при скоростном обжиге без добавок или с неорганическими (с содержанием железа и алюминия) и органическими (мазут, соляровое масло, древесные опилки, бурый

уголь, торф, отработанное машинное масло и др.) добавками, вспучиваются, образуя легковесный гравий . В качестве керамзитового сырья пригодны глинистые сланцы таврической серии (триас - нижняя юра), глины майкопской серии (олигоцен - нижний миоцен), миоцена (нижнего подъяруса сарматского яруса) и плиоцена. Особенностью этих глин является преобладание в их составе монтмориллонита, гидрослюд, а также наличие примеси органического вещества.

Разведано 4 месторождения с общими запасами 28,5 млн.м 3 ; периодически разрабатывается одно Плодовское месторождение.

Пески, пригодные для строительства, вне пляжей не имеют широкого распро­странения. Они представляют собой смесь в разной степени окатанных зерен минералов и горных пород четвертичного, неогенового, палеогенового и мелового возраста. Наибольший интерес имеют морские и озерные пески, однако разработка морских песков запрещена, так как это приводит к разрушению пляжной зоны морского побережья и к активизации оползневых процессов. Разведано 2 месторождения: Донузлавское, приуроченное к донным отложениям оз. Донузлав, с разведанными запасами в количестве 10,5 млн. м 3 и предварительно разведанными 854 тыс. м 3 , и Крымрозовское с разведанными запасами песка 1,8 млн. м 3 . Разрабатывается только Донузлавское месторождение; в 1999 г. было добыто 246 тыс. м 3 песка.

Разведано также одно Сасыкское месторождение песчано-гравийной смеси на оз. Сасык-Сиваш с запасами 3,7 млн. м 3 . В 1999 г. здесь было добыто 61,0 тыс.м смеси.

Для производства извести используются обычные известняки. Для этих целей разведано 7 месторождений с запасами 154,6 млн.тонн, из них разрабатывается одно Евпаторийское месторождение с запасами известняка 64,8 млн.тонн. В1999 г. здесь было добыто 573 тыс. т. известняка. Разведано одно Элькеджи-Элинское месторождение гипса в Ленинском районе с запасами 2,1 млн. т. Разведано 2 месторождения строительного мергеля: Барасханское с запасами 661 тыс. т. и Феодосийское с запасами 861 тыс. т. В 1999 г. была добыта всего 1 т. мергеля на Барасханском месторождении.

Подготовлена сырьевая база облицовочных материалов. С этой целью разве­дано 3 месторождения: Белинское (Ленинский район), представленное мшанко- выми рифогенными известняками, Биюк-Янкойское (Симферопольский район) и Гаспринское (Ялтинский горсовет) мраморовидных известняков. Запасы их значительные, порядка 9.75 млн.м 3 , а за исключением Гаспринского месторож­дения, где вряд-ли возможны горные разработки, - 3.5 млн.м 3 . Месторождения не разрабатываются.

На мощной минерально-сырьевой базе в Крыму налажено производство строительной минеральной продукции широкого ассортимента. В табл. 4 приводится динамика производства строительных материалов в период с 1980 г. по 1999 г. Несмотря на большой перечень производимой минеральной продукции, Крым не полностью обеспечивает свою потребность в некоторых видах стройматериалов.

Таблица 4.

Динамика производства строительных материалов за период

с 1980 по 1999 год (по данным Комитета Автономной

Республики Крым по статистике).

Виды продукции

Единицы измерения

Стеновые материалы

млнлнт.уо1кир.

Кирпич строителышй

млилкусаиф.

Стеновые блоки мелкие

млнлит.усл.кир

Стеновые блоки из природного камня

млнлгЕуаъкир.

Стеновые блоки крупные

млнлпт.усшкир.

Кирпич и камни пустотелые

млнлгг.услкир.

Известь строительная

Гипс строительный

Мука известняковая

Перегородочные плиты и панели для крупнопанельного строительства

Плитки керамичес­кие для внутренней облицовки

Облицовочные изде­лия из природного камня

Пористые заполни­тели (керамзит)

Бутовый камень

Песок строительный

Песчано-гравийная смесь

Мел строительный

Из-за ограниченности разведанных запасов и подготовленных к разработке объектов некоторые предприятия продолжают завозить из других регионов Украины строительный песок, высокопрочный щебень и высококачественные облицовочные материалы (мрамор, гранит, лабрадорит). Как видно из таблицы, объем производства минеральной продукции для строительства в период 1990 -1999гт. последовательно с каждым годом сокращался и в 1999 году по отноше­нию к 1990 году составил 63,1% по стеновым блокам, 54,3% по песчано-гравийной смеси, 37, 3% по бутовому камню, 35,7% по цементу, 17,0% по кирпичу строительному, 12,9% по стеновым материалам, 12,5% по щебню, 11,6% по строительной извести. Объем производства остальных видов продукции составил от 1,1% до 6,0%. Сократилась также в 3 раза по сравнению с 1990 годом добыча известняка для производства металлургического флюса в районе Балаклавы и на Керченском полуострове, что объясняется значительным сокращением (более чем в 2 раза) выплавки чугуна и стали в Украине. Резкий спад производства минеральной продукции для строительства полностью отражает кризисное состояние экономики. Конечно, сокращение горных работ с целью добычи полезных ископаемых есть благо с точки зрения экологии, а именно снижения техногенных нагрузок на окружающую среду. Однако постоянно высокая потребность в строительных материа­лах и экономическая нецелесообразность их транспортировки на большие расстоя­ния из других регионов Украины предопределяют необходимость освоения собст­венных сырьевых баз минеральных ресурсов в разумных пределах и с соблюде­нием норм природоохранного законодательства.

Минеральное сырье — это полезные ископаемые, которые используются в производственной сфере, оно играет важную роль в народном хозяйстве, особенно в промышленности. Полезные ископаемые дают почти 75% сырья для производства. Практически все виды транспорта работают на сырье, полученном в процессе переработки полезных ископаемых.

Классификация: виды и классы сырья минерального происхождения

Полезные ископаемые, которые добывают из недр земли, относят к минеральному сырью, которое включает в себя более 200 минералов отличающихся друг от друга по физической форме, составу, применению и другим признакам.

Единой системы классификации минеральных ресурсов не существует, их классифицируют по видам использования и по агрегатному состоянию.

Минеральные ресурсы по видам использования:

  • горючие (нефть, газ, уголь);
  • рудные (алюминий, медь, олово);
  • нерудные (асбест, графит, мрамор).

Минеральные ресурсы могут различаться по состоянию и подразделяться на:

  • жидкие (нефть, минеральная вода);
  • твердые (соль, уголь, мрамор);
  • газообразные (метан, гелий, горючие газы).

Природное минеральное сырье

К природному минеральному сырью относят горные породы и минералы, из которых производят строительные материалы и сырье на основе вяжущих веществ (цемент, гипс, асбест). После термической обработки минеральное сырье используется в стекольной, керамической промышленности, а также применяется в производстве удобрений и минеральных красок.

Техногенное минеральное сырье

Отходы, образующиеся во время получения и обработки металла и отходы горно - металлургических, химических производств, содержащие цветные и благородные металлы, — являются техногенным минеральным сырьем.

Техногенное минеральное сырье разделяется на группы, в зависимости от принадлежности к определенным производственным отраслям.

Различают сырье:

  • горнодобывающих предприятий;
  • обогатительных фабрик;
  • металлургических заводов;
  • химической промышленности;
  • топливной энергетики.

Техногенное минеральное сырье широко используется в строительстве (производство цемента, бетона), при дорожных работах (засыпка карьеров, отсыпка дамб), в производстве минеральных удобрений.

Горючее минеральное сырье

Горючие (топливные) полезные ископаемые по своему состоянию делятся на жидкие (нефть), твердые (уголь, торф) и газообразные (природный и попутный газ).

Нефть и газ служат источником энергии и тепла: благодаря им работают двигатели машин, отапливаются помещения.

Уголь является основным источником энергии, который используется на производстве.

Торф применяют как горючее и в качестве теплоизоляции.

Горючее минеральное сырье является самым важным видом полезных ископаемых. Благодаря ему было создано множество отраслей промышленности.

Стратегическое минеральное сырье

Стратегическое минеральное сырье составляет основу материального производства, которая обеспечивает экономическую и оборонную стабильность страны. Перечень стратегических минеральных ресурсов изменяется в зависимости от геополитической обстановки, внешнеэкономических связей и других обстоятельств.

Среди стратегического минерального сырья России находятся топливно - энергетические ресурсы, руда цветных и редких металлов, драгоценные камни и металлы. К стратегическим ресурсам так же относят водные ресурсы, как основу жизнеобеспечения населения страны.

Что относится к подакцизному минеральному сырью?

Акциз — это косвенный налог, который взымается с налогоплательщиков, производящих или продающих подакцизное сырье. К подакцизным видам минерального сырья относятся природный газ и нефть. Но в случае реализации нефти или газа на экспорт, акциз не взымается. Такое освобождение от уплаты акциза возможно, если вывоз осуществляет производитель продукции.

Химический анализ характеристик и качества минерального сырья

Изучение состава руды и минералов проводилось с древнейших времен. Это требовалось для получения бронзы, железа, драгоценных металлов. Такой анализ минеральных ресурсов был очень важен, он способствовал развитию горно-обогатительных работ, металлургической промышленности.

В начале ХХ века минеральное сырье представляло особый интерес для химиков - аналитиков. Необходимость изучения минеральных ресурсов, развивала новые методы анализа, что способствовало развитию химии.

На сегодняшний день применяются новейшие методы для химического анализа минерального сырья, которые позволяют узнать состав образца и увидеть его структуру.

Методы проведения химического анализа:

  • Газовая хроматография с месс-спектрометрическим детектированием позволяет определить широкий спектр веществ, находящихся в образце, дает возможность анализировать газовые смеси.
  • Жидкостная хроматография с масс-спектрометрическим детектированием такой метод обладает широким спектром определяемых веществ, дает возможность проводить анализ без испарения.
  • ИК-спректрометрия позволяет установить молекулу вещества, дает возможность анализировать твердые металлы без растворения.
  • Атомно-эмиссионная спектроскопия позволяет обнаружить очень низкие содержания элементов и их количество.
  • Электронная микроскопия. Уникальный метод, который дает возможность получить данные об элементном составе образца и увидеть его структуру.

Добыча, производство, обработка и переработка минерального сырья

Россия очень богата различными видами минерального сырья (уголь, руда, калийные соли, алмазы), а так же занимает ведущее место по добыче и экспорту нефти и природного газа.

Добыча минеральных ресурсов может происходить разными методами:

  • подземная разработка месторождений;
  • открытая разработка месторождений;
  • бурение скважин;
  • разработка морского дна.

После добычи полезные ископаемые подвергаются переработке. На этом этапе происходит отделение ценного минерального сырья от отходов.

Переработка минерального сырья — включает в себя много различных процессов и является самой важной частью во всей работе по добыче минеральных ресурсов.

Переработка минерального сырья применяется в различных отраслях: добыча угля, никеля, нефтеносного песка, калиевых солей, железной руды и других.

В зависимости от вида минерального сырья применяют комплексную переработку (для твердых ископаемых) или комбинированную (для твердых и жидких ископаемых).

Сырье для производства минеральных удобрений

Азотная промышленность занимает ведущее место в производстве минеральных удобрений (около 50% всех производимых азотных удобрений в России).

Исходным сырьем для производства удобрений служит природный газ и коксующий уголь.

Существует несколько методов производства минеральных удобрений:

  1. Аммиачный способ основывается на использовании коксового газа, который образуется при коксовании угля (во время производства кокса на коксохимическом производстве) в черной металлургии. При использовании данного метода, азотно - туковые предприятия располагаются в угольных бассейнах или рядом с металлургическим производством.
  2. Способ конверсии природного газа. Предприятия, которые используют данный метод для производства удобрений, располагаются в районах газовых ресурсов или вдоль трасс магистральных газопроводов.
  3. Способ электролиза воды. Такие предприятия располагаются рядом с источником дешевой энергии.
  4. Способ с применением отходов нефтепереработки. В таких случаях предприятия располагаются рядом с нефтеперерабатывающими заводами.
  5. Фосфорные удобрения, получают путем измельчения фосфатов. Такие производства не привязаны к сырьевой базе и могут располагаться в любом месте.

Технология обогащения минерального сырья

Обогащение минерального сырья (переработка) включает в себя несколько процессов обработки сырья для отделения от пустых пород, а также разделения ценных минералов. При обогащении можно получить как конечный продукт (асбест, графит), так и концентраты, которые можно переработать химическим или металлургическим путем.

Минеральное сырье подвергают трем операциям: подготовительной, основной и вспомогательной.

Подготовительные процессы включают в себя — дробление и измельчение, грохочение и классификацию.

Основные процессы заключаются в отделении одного или нескольких полезных компонентов.

Заключительные (вспомогательные) процессы — сгущение пульпы, обезвоживание (зависит от характеристик материала).

Обогащение минерального сырья подразделяется на виды, в зависимости от того в какой среде происходил процесс:

  • сухое;
  • мокрое;
  • в электрическом, гравитационном или магнитном поле.

Использование минерального сырья

Все виды минерального сырья содержат ценные компоненты. От того, насколько качественно их переработали, зависит количество содержания ценных компонентов в отходах производства.

Комплексное использование минерального сырья позволяет повысить эффективность производства, увеличить ассортимент продукции, снизить расходы на содержание сырьевых баз и предотвратит загрязнение окружающей среды отходами производства.

Минеральное сырье для химической промышленности

Особенностью химической промышленности является — материалоемкость. Для изготовления определенного количества продукции сырья требуется во много раз больше. Поэтому качественное минеральное сырье для химической продукции — залог успешного развития отрасли.

Основным сырьем для химической промышленности являются нефть и природный газ. Именно на этом минеральном сырье производится синтетический каучук, пластмасса, искусственная кожа, минеральные удобрения и моющие средства.

В химической промышленности применяют все известные виды и формы минерального сырья — рудное, нерудное, горючее.

Запасы минерального сырья в химической промышленности делят на две группы:

  1. Балансовые — с большим содержанием полезных компонентов.
  2. Забалансовые — с низким содержанием полезных компонентов. Такая группа, при изменении каких либо условий, может перейти в балансовую группу.

Минеральное сырье для строительных материалов

Горные породы — являются основным минеральным сырьем в производстве строительных материалов. Эти породы широко используются в производстве стекла, керамики, металла, бетона, растворов.

Кварц и его разновидности, алюмосиликаты — являются главными породообразующими минералами. Этим минералам характерна высокая прочность и ударная вязкость, а также повышенная плотность.

Глубинные горные породы обладают высокой прочностью, большой плотностью и малой пористостью. Благодаря этим свойствам широко используются в строительстве.

Сульфатные породы — гипс и ангидрид используются для получения вяжущих веществ, иногда применяются как облицовочный материал.

Пористые излившиеся породы (пемза, вулканические туфы, пепел) используют как наполнитель легкого бетона, добавки к цементу, для кладки стен.

Вторичные ресурсы (техногенные) с успехом используются в производстве цемента, бетона, при дорожных работах. Песок, гравий и щебень, так же используется для приготовления строительных смесей.

Минеральная вата

Минеральная вата — самый известный материал для теплоизоляции. Изготавливают этот материал из расплавленного стекла горных пород и пропитывают водоотталкивающим маслом. Как правило, такой утеплитель производится в виде плит или матов.

Существует несколько разновидностей минеральной ваты, в зависимости от сырья, из которого она изготовлена:

  • стекловата. Стекловату изготавливают из стекловолокна, которое получается в результате смешивания битого стекла и минерального сырья (песок, доломит, известняк). Стекловата отличается высокой химической стойкостью и выдерживает температурный диапазон от -60 до +500 градусов;
  • шлаковата. Шлаковату изготавливают из расплавленного доменного шлака. Температурный диапазон составляет от -50 до +300 градусов;
  • каменная вата. Изготавливается из расплавленных габбро - базальтовых горных пород. Температурный диапазон составляет от -45 до +600 градусов;
  • базальтовая вата. Для изготовления ваты используют габбро и диабаз. Базальтовая вата не содержит доменные шлаки и добавочные вещества. Температурный диапазон составляет от -190 до +1000 градусов.

Минеральные воды

Природные минеральные воды — это подземные воды, в которых повышенное содержание биологически активных компонентов и которые обладают особыми физико-химическими свойствами. Благодаря уникальному составу, минеральная вода может применяться как внутрь, так и в качестве наружного лечебного средства.

Природная минеральная вода — это дождевая вода, которая тысячелетиями скапливалась в разных слоях земных пород. На протяжении этого времени в ней растворялись минеральные вещества и чем глубже находится вода, тем больше она очистилась и больше получила углекислоты и полезных веществ.

Природная минеральная вода состоит из шести основных компонентов:

  1. Кальций;
  2. Магний;
  3. Хлор;
  4. Натрий;
  5. Сульфат;
  6. Гидрокарбонат.

Свое название вода получает благодаря преобладанию, какого либо из шести элементов (хлоридная, сульфатная, гидрокарбонатная).

В минеральной воде в микродозах содержится почти вся таблица Менделеева.

Спрос рынка на минеральное сырье

Минеральное сырье относится к истощаемым природным ресурсам. Отработанное месторождение не сможет восстановиться, а разработка нового влечет за собой определенные трудности. Недостаточность минеральных ресурсов влияет на экономику минерального сырья, формируя прирост цен на то сырье, ресурсы которого ограничены. Но многие виды минеральных природных ресурсов, являются взаимозаменяемыми. В таком случае произойдет развитие рынка дешевых продуктов.

Многие промышленные предприятия стали заменять дорогие продукты на дешевые:

  • природный газ вытесняет уголь и мазут;
  • платину заменяют палладием и рением;
  • природный пьезокварц заменил синтетический.

Не всегда замена природных минеральных ресурсов происходит из-за цены. К примеру, в местности, где нет месторождения щебня, его заменяют керамзитовыми окатышами.

Большинство видов минерального сырья являются товарами постоянного спроса. Но для самоцветов, поделочных, декоративных и отделочных камней спрос определяется изменением тенденций. На снижение добычи минерального сырья обладающего токсичными свойствами повлияло ужесточение требований к экологической безопасности. Из-за повышения цен на минеральное сырье и увеличения платежей за размещение отходов, все чаще стали использовать вторичные ресурсы.

Все эти факторы способствуют уменьшению потребления минеральных ресурсов.

Страны-экспортеры богатые минеральным сырьем

Экспорт минерального сырья происходит, когда страна имеет большие запасы полезных ископаемых. Для экспортера сырье является средством пополнения своего финансового положения.

Передовые места по добыче и экспорту минерального сырья занимают:

  • Россия, которая находится на первом месте в мире по количеству запасов природного газа и древесины, на втором месте по величине месторождений угля и на третьем месте по месторождениям золота;
  • США на первом месте по запасам угля и входит в первую пятерку по запасам меди, золота и природного газа;
  • Саудовская Аравия находится на первом месте по добыче нефти и на пятом месте по величине запасов природного газа.;
  • Канада находится на втором месте по запасам урана и третье по величине запасов древесины;
  • Иран находится на третьем месте по добыче нефти;
  • Китай имеет значительный запас угля и редкоземельных минералов;
  • Бразилия имеет большие запасы золота и урана, но наиболее ценным ресурсом является древесина.

Страны бедные минеральным сырьем

Страны, которые не имеют запасов полезных ископаемых, получают сырье из внешних источников.

К таким государствам относятся:

  • Япония. В Японии есть лишь небольшое количество шахт по добыче свинцовых и цинковых руд, известняка и каменного угля. В стране имеются небольшие запасы нефти, и ведется ее добыча. Япония является крупнейшим импортером сырья;
  • Литва и Латвия. Эти государства обладают такими полезными ископаемыми как сланцы, торф, фосфориты, а энергетическое хозяйство держится на привозном топливе.

В Монако, Дании и Ватикане добычи полезных ископаемых не ведется.

Оборудование для добычи и переработки минерального сырья

В зависимости от состояния добываемого минерального сырья (жидкое, твердое, газообразное) — отличаются способы добычи (открытый, шахтный, скважинный). Для каждого способа добычи предусмотрено специализированное оборудование. Существует оборудование для добычи подземным и открытым способом. Сложные системы управления, автоматизации комплексы и приборы для механической обработки.

Производители и перерабатывающие компании минерального сырья

Среди российских предприятий есть серьезные производители и перерабатывающие компании минерального сырья.

АО «Минерально-химическая компания «Евро Хим». Компания «Евро Хим» — крупнейший в России производитель минеральных удобрений. Компания входит в тройку Европейских и десятку мировых производителей химических удобрений и является лидером по производству фосфатных и азотных удобрений. Продукций предприятия пользуется спросом и в России, и за рубежом. В составе компании находится большая сбытовая сеть в России и за рубежом.

«Уральская горно-металлургическая компания». Холдинг берет свое начало в далеком 1702 году с Гумешевского месторождения медистых глин. У предприятия есть собственная научная база, а также строительный комплекс и телекоммуникационный центр.

АО «Фос Агро- Череповец» — крупнейший в Европе производитель фосфорной и серной кислоты, аммиака и фосфорсодержащих удобрений. Компания является крупнейшим экспортером удобрений в страны Западной Европы, Америки, Азии. Компания обеспечивает себя электроэнергией собственной генерации.

Помимо охарактеризованных выше, существует еще множество видов минерального строительного сырья: стекольные пески, керамические огнеупорные и тугоплавкие глины, гипс, различные полевошпатовые материалы, асбест, разнообразные горные породы для получения минеральной ваты и многие другие.

Разведанные запасы и добыча этих полезных ископаемых в целом по стране велики, но размещены очень неравномерно, что приводит к необходимости транспортировки сырья на большие расстояния, затрудняет ритмичную работу предприятий, удорожает стоимость конечной продукции. Кроме того, качество природного сырья не всегда отвечает требованиям промышленности.

Пути решения проблемы многочисленны. С одной стороны - это поиски и разведка новых месторождений, для чего в ряде районов имеются реальные перспективы; с другой - это освоение новых технологий обогащения, позволяющих расширить круг используемых видов природного сырья и получать высококачественные кварцевые, полевошпатовые и другие концентраты. И, наконец, третий путь - это использование техногенного сырья, утилизация которого открывает возможности усовершенствования территориального размещения ресурсов, повышения качества выпускаемых изделий, не говоря уже о том, что оно позволяет экономить природное сырье и улучшать экологическую обстановку в промышленных районах.

Одной из областей, имеющих широкие возможности для утилизации минерального техногенного сырья, является строительная керамика. В этой отрасли могут применяться золошлаковые отходы тепловых электростанций, отходы углеобогащения, хвосты флотации руд цветных металлов, отсевы камнедробления и др.

Возможность использования шлаков ТЭС и золы-уноса при производстве плиток для внутренней облицовки стен и фасадных плиток изучена в НИИСМИ (г. Киев). Составы масс на основе шлаков Приднепровской ГРЭС и технологические параметры производства апробированы в условиях Днепропетровского заводоуправления строительных материалов. В Монастырисском заводоуправлении строительных материалов в Тернопольской области из керамической массы на основе шлаков Бурштынской ГРЭС получены плитки высшей категории качества.

Для производства дренажных труб пригодны молотые отходы добычи и гравитационного обогащения, а также хвосты флотации углей. Трубы, полученные на экспериментально-исследовательском заводе НИИСМИ из отходов флотации углей с содержанием угля 20 % и более, имеют меньшую массу и более высокое водопоглощение черепка, чем изделия, изготовленные из глин. Это может позволить выпуск труб большей длины, что повысит производительность заводов и ускорит сооружение дренирующих систем. Несмотря на экономическую целесообразность использования отходов углеобогащения в качестве добавки в шихту для производства дренажных труб, широкого применения в этой отрасли они пока еще не нашли. На Репнинском заводе стройматериалов в Черниговской области велась отработка технологии производства с добавкой 10-15 % отходов флотации. В ближайшей перспективе намечено использовать отходы углеобогащения для получения дренажных труб в Канско-Ачинском и Экибастузском районах.


Довольно широко освоено промышленное получение керамических кварц-полевошпатовых концентратов из отходов обогащения редкометальных пегматитов на Урале, в Сибири, Казахстане. Высококачественное керамическое кварц-полевошпатовое сырье можно получать по уже разработанным технологиям из каолинит-полевошпато-кварцевых песков. Могут быть утилизированы при составлении керамических масс хвосты обогащения ильменитовых, вольфрам-молибденовых руд, каолина. Применяются в производстве керамических плиток в качестве интенсификаторов спекания нефелин-эгирин-полевошпатовые отходы обогащения редкоземельных руд. Они снижают температуру обжига, уменьшают водопоглощение, увеличивают механическую прочность. Исследования, проведенные Харьковским политехническим институтом, показали, что нефелин-эгирин-полевошпатовые отходы можно использовать также в производстве фасадных плиток и плиток для пола. В настоящее время такие керамические плитки выпускает Мукачевский завод в Закарпатье. Введение в состав масс комбинированных интенсификаторов спекания позволяет получать изделия специального назначения с высокими физико-механическими свойствами.

Перспективным керамическим сырьем, пригодным в качестве плавня, являются некоторые отходы камнедробления. Экспериментальные исследования отсевов переработки сиенитов Кальчикской дробильно-сортировочной фабрики в Донецкой области показали, что их шихтование с гидрослюдисто-каолинитовой глиной обеспечивает интенсификацию спекания. В 1984 г. на Славянском керамическом комбинате выпущено 60 тыс. м 3 керамических плиток с использованием отсева Кальчикской дробильно-сортировочной фабрики.

Широкое применение может получить техногенное сырье и в стекольной промышленности, где оно способно полностью заменять природный кварцевый песок. В этом отношении наиболее перспективны отходы обогащения некоторых полезных ископаемых - ракушняковых фосфоритов, россыпных руд цветных металлов, остаточных каолинов, каолинит-кварцевых песков. Разработанные технологии дообогащения этих отходов позволяют получать не только тарное, но и техническое, а также листовое стекло. Очень ценно то, что перечисленные виды стекольного техногенного сырья имеются в тех районах, где природного сырья недостаточно, а потребности в нем велики,- в Сибири, на Дальнем Востоке, в Средней Азии, в Ленинградской области. Тем не менее, они пока практически не используются.

Некоторые хвосты флотации руд цветных металлов могут находить применение в производстве тарного стекла. Исследования, проведенные в Грузии, показали, что темно-зеленое бутылочное стекло, полученное из отходов обогащения полиметаллических руд Квайсинского рудоуправления, не уступает по качественным показателям стеклу из привозных песков Таманского месторождения в Краснодарском крае. Установлена также пригодность для получения темно-зеленой стеклотары хвостов обогащения медноколчеданных руд Маднеульского ГОКа.

На основе металлургических шлаков и золошлаковых отходов тепловых электростанций получают ценный стеклокристаллический материал - шлако- и золоситаллы, характеризующиеся высокой износостойкостью, огнеупорностью, устойчивостью к действию кислот и щелочей, практически нулевым водопоглощением, декоративностью.

Шлакоситаллы получают из охлажденных доменных кислых и основных шлаков, которые вводятся в шихту в количестве 40-70 %, Технология применения огненно-жидких доменных шлаков пока не отработана.

Золоситаллы - ситаллы на основе золы-уноса тоже пока в СНГ не выпускаются, хотя имеется разработанная технология. Полученные на экспериментальном заводе Кировского филиала Росоргтехстрома золоситалловые плитки характеризуются хорошим качеством и невысокой себестоимостью.

Для производства ситаллов могут быть утилизированы также отходы обогащения титановых руд, хвосты мокрой магнитной сепарации.

Установлено, что отходы мокрой магнитной сепарации железных руд пригодны для получения марблитового стекла, пеностекла. Технология производства марблита с использованием отходов мокрой магнитной сепарации железистых кварцитов КМА апробирована на Константиновском заводе "Автостекло". На Гомельском стекольном заводе им. М.В. Ломоносова выпущена опытная партия пеностекла с использованием тех же отходов. Полученное пеностекло обладает не только звуко- и теплоизоляционными свойствами, но и высокой декоративностью.

В МХТИ им. Д.И. Менделеева на основе доменных шлаков разработан новый декоративный материал сигран - синтетический гранит, по фактуре напоминающий природный. Сигран можно изготавливать в виде непрерывной ленты и прессованных плит. Вводя красители, можно получать материал различной окраски. Плотность сиграна 2600-2800 кг/м 3 , прочность на сжатие - 500-550 МПа. Согласно проекту, выполненному для Калужского завода, технологическая линия по производству сиграна обеспечит выпуск 100 тыс. м 3 плиток в год.

Минеральные отходы могут эффективно использоваться не только в производстве керамических и стекольных изделий, но и многих других, строительных материалов.

В СНГ в больших количествах получают минеральную вату из шлакового щебня. При этом требуется значительно меньше сырья, топлива и электроэнергии, чем при ее производстве из горных пород. Для этих целей наиболее пригодны доменные кислые шлаки, богатые кремнеземом и глиноземом и не содержащие металл. Основные шлаки следует подкислять введением кислых присадок, повышающих текучесть. Применяются также электротермофосфорные шлаки. Требования к качеству шлакового щебня для производства минеральной ваты регламентируются ГОСТом 18866-81.

Минеральную вату можно получать и на основе отходов сжигания углей на тепловых электростанциях. Соответствующая технология разработана в НИИстромпроекте (г. Алма-Ата) .

Огненно-жидкие шлаки являются ценным сырьем для получения литых изделий - высокопрочных, износостойких и химически инертных материалов для облицовки технологических аппаратов и узлов. Производство литых изделий из шлаков значительно экономичнее, чем из природного сырья (базальтов, диабазов и др.). В СНГ оно пока развито слабо. Металлургические шлаки применяются в расплаве с горными породами для футеровки внутреннего слоя трубопроводов. Используются они также при изготовлении литых крупноразмерных плит. В небольших масштабах организовано промышленное производство шлаковой брусчатки на Урале на предприятиях Нижнего Тагила и Чусового.

Изучение возможности использования зол ТЭЦ для получения каменных строительных материалов проводится в ГИСе. Разработана технология применения измельченных шлаков ТЭЦ-22 (г. Москва) для получения наполнителя кислотостойких замазок.

Самые оригинальные и, пожалуй, самые ценные компоненты золы - алюмосиликатные полые микросферы (АСПМ). Представляют собой полые, почти идеальной формы силикатные шарики с гладкой поверхностью, диаметром от 10 до нескольких сотен микрометров, в среднем около 100 мкм. Толщина стенок от 2 до 10 мкм, температура плавления 1400-1500°С, плотность 580- 690 кг/м 3 .

Образование микросфер происходит следующим образом. При высоких температурах силикатный минеральный материал углей плавится и в газовом потоке продуктов сгорания дробится на мельчайшие капли. Газовые включения в минеральных частицах при нагреве расширяются и раздувают отдельные капли расплава. Те капли, в которых внутреннее давление газа уравновешивается силами поверхностного натяжения, образуют полые шарики. В остальных происходит разрыв капель (внутреннее давление больше сил поверхностного натяжения), либо они остаются просто силикатными шариками, сплошными или пористыми (поверхностное натяжение больше внутреннего давления). Содержание АСПМ в золошлаковых материалах составляет обычно десятые доли процента, тем не менее, их «производство» на крупных теплоэлектростанциях России может достигать нескольких тысяч тонн в год.

Ценность АСПМ определяется тем, что они - идеальные наполнители. Для придания многим изделиям из пластмасс и керамики необходимых свойств, например для снижения плотности (веса) изделий, повышения тепло-, электро- и звукоизоляционных характеристик, в их состав вводятся изготавливаемые промышленными способами стеклянные микросферы. Это довольно сложный процесс. Так почему бы не использовать для этих целей уже готовые микросферы - АСПМ из золы угольных теплоэлектростанций? По приблизительным подсчетам, стоимость таких микросфер в десять и более раз ниже, чем микросфер, получаемых промышленными методами.

Полимерные материалы с микросферами (так называемые сферопластики) используются при изготовлении разных плавсредств (лодок, сигнальных буёв, блоков плавучести, спасательных жилетов и др.), мебели, радиопрозрачных теплоизоляционных экранов для радиотехнической аппаратуры, изоляции теплотрасс, дорожно-разметочных термопластиков и пр. АСПМ успешно применяют в составе цементных растворов при изготовлении «лёгких» бетонов и теплоизоляционных жаростойких бетонов. Имеются патенты на использование АСПМ при бурении геологоразведочных и эксплуатационных скважин. Это далеко не полный перечень возможностей применения АСПМ.

Важно отметить, что в отличие от других компонентов полые микросферы сравнительно просто выделяются из золы. Благодаря низкой плотности они всплывают на поверхность воды гидротехнических сооружений (прудов-отстойников, каналов оборотной воды) и могут быть собраны любыми, в том числе самыми простыми, средствами.

АСПМ пользуются большим спросом за рубежом. Однако готовые приобретать их фирмы требуют высокой степени очистки материала от посторонних примесей. Кроме того, во многих технологиях используются только микросферы определённого размера (диаметра). Всё это требует соответствующей производственной базы. Высокая стоимость подготовленных подобным образом АСПМ на мировых рынках минерального сырья гарантирует экономическую эффективность предприятий по их «производству».

Большие перспективы открывает использование продуктов камнеобработки в производстве отделочных материалов - клеевых плит, мозаичных плиток на цементном вяжущем и крошке. Для этих целей пригодны отходы обработки большинства облицовочных и пильных камней, многих рудоносных пегматитов.

В СНГ не нашел пока еще применения шлам камнеобработки -порошкообразный продукт резания, составляющий 25-33 % от массы поступающего на обработку камня. Однако установлено, что и этот шлам можно использовать, частично заменяя цемент в производстве прессованных облицовочных плит. Результаты промышленных испытаний показали, что при замене шламом до 50 % цемента получаются плиты более высокого качества, чем на одном цементе.

В заключение следует сказать, что возможности утилизации отходов обогащения полезных ископаемых, металлургических и электротермофосфорных шлаков, золошлаковых отходов тепловых электростанций значительно шире, чем было показано выше. Так, из отходов переработки слюдяных пегматитов можно получать мелкоразмерную слюду, из хвостов обогащения вермикулита - оливиновый концентрат, из отходов флотации сульфидно-никелевых руд - тальковый концентрат и т.д. Металлургические шлаки можно применять в стекольном производстве. Многие отходы переработки карбонатных пород пригодны для получения извести. Большие возможности использования в промышленности строительных материалов имеют отходы производства фосфорной кислоты - фосфогипсы, из которых можно получать гипсовые вяжущие, сульфатизированные цементы, известь и др. Отходы флотации серных медно-колчеданных, марганцевых руд, золошлаковые отходы тепловых электростанций являются хорошими наполнителями асфальтобетонов.

Утилизация техногенного сырья почти всегда очень эффективна. Однако при этом следует учитывать, что она требует тщательного изучения качества отходов, его соответствия требованиям государственных, отраслевых стандартов и технических условий. Требуются новые технологии дообогащения отходов и производства изделий из них. Для реализации проектов использования отходов необходимы немалые капитальные затраты.

Своему появлению минеральная вата обязана извержению вулкана и Эдварду Перри, английскому инженеру. Именно он обратил внимание на то, что во время извержения выбрасываются не только лава и пепел, но также образуются тончайшие волокна расплавленного и застывшего на лету шлака. Из множества таких волокон получался отличный теплоизоляционный материал с качествами, совершенно не свойственными базальту. Если сказать проще, минеральная вата — это камень со свойствами одеяла, которое можно сворачивать в рулон, заматывать в него, оборачивать вокруг чего-нибудь, сжимать, резать и т. д.

Производство минеральной ваты

Первые попытки наладить производство минерального утеплителя на основе базальтового волокна были предприняты еще в середине XIX века. Но из-за низкой эффективности технологического процесса и исключительной вредности производства на тот момент от него пришлось отказаться вплоть до 80-х годов XIX века.

Суть современной технологии производства в целом идентична первоначально изобретенной. С той разницей, что в качестве сырья могут выступать не только такие горные породы, как базальт, доломит, диабаз, известняк, но и шлак, образующийся в результате работы доменной металлургии.

Для производства стекловаты используют смесь известняка, соды и песка, или стеклянный бой. Предварительно подготовленную смесь нагревают до температуры 1300-1500 °С и помещают в центрифугу. Дальше на высокой скорости горячую смесь разбивают специальные валки. В результате получают миллионы тончайших каменных нитей, которые смешивают в специальных формах со связующим, в качестве коего выступает формальдегидная смола.

Базальтовый утеплитель в строительстве

Утеплитель на основе минерального волокна по праву считается наиболее универсальным вариантом теплоизоляции. Такой материал имеет длительный срок эксплуатации и, как следствие, используется там, где необходима многолетняя и надежная теплоизоляция.

Он широко используется в современном строительстве. Уникальные свойства минеральной ваты существенно расширяют область ее применения, делая незаменимым материалом при термоизоляции многоэтажных зданий, возведении кровли промышленных сооружений, утеплении загородных коттеджей и пр. Широко применяется минвата и для теплоизоляции оборудования и трубопроводов в осенне-зимний период.

Такие производители, как ROCKWOOL и ISOVER выпускают свою продукцию в соответствии с требованиями европейских стандартов безопасности. Современная минеральная вата относится к классу негорючих материалов и способна активно противостоять распространению пламени, в связи с чем может быть использована в качестве противопожарной изоляции и огнезащиты, защищающей конструкцию от воздействия высокой температуры, вплоть до 1000 °С.

Эта отличительная особенность минваты позволяет эффективно использовать ее при теплоизоляции трубопроводов и других объектов с высокими рабочими температурами.

Минеральную вату в качестве теплоизоляционного материала применяют в различных областях строительства:

  • утепление любых видов кровли, в том числе плоской крыши ;
  • применение в системе наружной теплоизоляции;
  • для утепления вентилируемых фасадов;
  • утепление слоистой кладки и в сэндвич-панелях;
  • теплоизоляция судовых корпусных конструкций и судовых помещений;
  • термоизоляция трубопроводов при температуре от -120 до +1000 °С;
  • огнезащита строительных конструкций и вентиляционных систем.

Для установки на объектах, где минвата во время монтажа или в процессе эксплуатации подвергается воздействию сильных нагрузок, производят жесткий базальтовый утеплитель. Прочность на сжатие такой теплоизоляции варьируется в зависимости от плотности и содержания связующего.

Выпускают также различные модификации, состоящие из двух слоев разной плотности, и рекомендованные для теплоизоляции вентилируемых фасадов. Устанавливают такую термоизоляцию более плотной частью наружу (со стороны вентиляционного зазора), а менее плотной — к стене здания.

Основные характеристики утеплителя из минеральной ваты

Теплоизоляция

Минеральная вата — это высокопрочный теплоизоляционный материал. Хаотичная структура расположения базальтовых волокон обеспечивает устойчивость минваты к механическим нагрузкам. Строго нормированный для кровельных и фасадных теплоизоляционных систем показатель — прочность материала на сжатие. У каменной ваты он, при десятипроцентной деформации, от 5 до 80 кПа. Стабильность формы и высокая структурная прочность базальтовых утеплителей обеспечивают долговечную и надежную изоляцию конструкций. При соблюдении технологии установки и правил эксплуатации утепление может прослужить до 70 лет.

Водоотталкивающие свойства

Одно из важнейших качеств минерального утеплителя — это его водоотталкивающие свойства, позволяющие не допустить попадания влаги в воздушные поры материала и, как следствие, увеличение коэффициента теплопроводности. Такое преимущество минваты делает ее незаменимой при утеплении помещений с повышенным уровнем влажности, таких, как бани или сауны, спортивные помещения, предприятия общественного питания.

Звукоизоляция

Кроме теплоизоляционных свойств, базальтовый утеплитель обладает прекрасными шумоизоляционными характеристиками, препятствуя распространению звуковых волн между смежными поверхностями стены. Он идеально подходит для установки между листами гипсокартона в простенках.

Паропроницаемость

Одним из немаловажных качеств минеральной ваты можно назвать высокую паропроницаемость. Она способна свободно пропускать избыточную влагу, содержащуюся в воздухе, оставаясь сухой и не теряя теплоизоляционных качеств.

Устойчивость к химическому воздействию

Среди важнейших преимуществ базальтового утеплителя, определяющих его конкурентоспособность, можно назвать устойчивость к химическому воздействию. Базальтовое волокно — это химически пассивная среда, которая не провоцирует коррозию контактирующих с ней металлических конструкций. По тем же причинам она не подвержена гниению и образованию грибка и плесени.

Экологичность

Несмотря на бытующее мнение, нет причин опасаться выделения фенола при эксплуатации базальтовой ваты. Дело в том, что в процессе производства происходит полная нейтрализация фенола. Это и послужило основанием к международной классификации базальтовых утеплителей как наиболее экологически безопасных материалов.

Особенности утепления минеральной ватой деревянных домов

Минеральная вата — единственный утеплитель, который подходит для деревянных домов. Благодаря своей структуре она формирует дышащий слой — в отличие от герметизирующих утеплителей, создающих эффект термоса.

Так как каменная вата — это негорючий строительный материал, она будет препятствовать распространению огня. Напротив, популярный из-за своей невысокой стоимости пенополистирол (пенопласт) при горении выделяет смертельный для человека газ.

Грызуны, вероятность встречи с которыми в деревянных домах совсем не исключена, совершенно равнодушны к базальту, а вот утеплитель из органических веществ они разрушают регулярно.

На видео демонстрируется процесс производства минеральной ваты .