Рельсотрон — оружие будущего. Самая мощная рельсовая пушка бросила снаряд на штурм рекорда Принцип работы рельсотрона

Неужели резерв для дальнейшего развития разных видов оружия близок к исчерпанию и придать ему новый импульс способно только появление его разновидностей, действующих на основании совершенно иных физических принципов? Да, это так, но первые кандидаты на роль оружия будущего уже имеются. Наиболее перспективными из них считаются "рельсотроны".

Сегодня у публицистов и футурологов стало хорошим тоном рассказывать про остановку прогресса. "Техническая история человечества, — говорят они — прекратила течение свое. В каждое новое открытие приходится вкладывать миллионы денег, сотни тысяч человеко-часов, а прогресс в результате уже не идет семимильными шагами, а ползет с скоростью миллиметр в год ".

В отношении огнестрельного оружия это утверждение отчасти кажется справедливым. Если мысленно положить рядом китайское "огненное копье" X века (бамбуковую палку с трубкой., начиненную порохом и камешками) и современную штурмовую винтовку — прогресс кажется очевидным. А уж если мысленно поставить неподалеку, скажем, французскую кулеврину "Убийцу" образца XIV века и САУ "Коалиция -СВ", то все эти орудия из музеев и вовсе начинают казаться чем-то вроде дубины неандертальца.

А вот если "разобрать и посмотреть что там внутри", то выяснится что огнестрельное оружие за 7 веков своего развития прошло куда меньший путь чем авиация со времен опытов Бартоломеу де Гусмана и полета братьев Монгольфье, и никаких "революций", подобных появлению летательных аппаратов тяжелее воздуха в его истории не наблюдалось. Фактически и САУ "Коалиция" и "огненное копье" используют один и тот же принцип — вместо мускульной или механической энергии, снаряд в сторону противника выбрасывается при помощи газа, образующегося в ограниченном объеме в ходе химической реакции самоокисления, то есть сгорания вещества, из которого состоит метательный заряд. Все инновации в этой области можно пересчитать по пальцам: многовековая эволюция системы заряжания от засыпки пороха прямо в ствол до унитарных зарядов, путь от вставлявшегося в отверстие фитиля до современной автоматики, обеспечивающей скорострельность в 6000 выстрелов в минуту, нарезка канала ствола, изобретение нитроцеллюлозы и баллистита…

Сегодня инженерная мысль нацелена на решение трех основных проблем: полного сгорания гильзы, совершенствования активно-реактивных боеприпасов и создания пуль с корректируемой траекторией полета для ручного огнестрельного оружия. Общий принцип остается точно таким же, каким он был в X веке. Резерв для дальнейшего развития и модернизации близок к исчерпанию и придать развитию новый импульс способно только появление оружия, действующего на основании совершенно иных физических принципов.

Первую попытку сойти в сторону с проторенного пути предпринял не кто иной, как Леонардо да Винчи, предложивший выталкивать снаряд из ствола при помощи пара. С тех пор паровую пушку пытались изобрести неоднократно, но каждый новый образец по своим баллистическим характеристикам, надежности и сложности изготовления бесславно проигрывал соревнование с "традиционными" пороховыми системами. Скорострельность наиболее известного экземпляра отечественного парового орудия — 7-линейной (17,5 мм) пушки Карелина по меркам 1829 года, была впечатляющей — 50 выстрелов в минуту и все равно она осталась экспонатом Артиллерийского музея в Санкт-Петербурге, существующим в единственном экземпляре. Такая же судьба постигла и современную ей паровую пушку Перкинса, делавшую на 10 выстрелов в минуту больше.

Интереснее сложилась история орудий, принцип действия которых основывался на выталкивании метательного снаряда из ствола при помощи силы сжатого газа. Но, несмотря на то, что дело дошло до вооружения специальных подразделений и даже до корабельной артиллерии, понятие "пневматика" у нас в большей степени ассоциируется в основном с игрушечным, спортивным и охотничьим оружием, но никак не с боевым. Почему так сложилось — тема для отдельной публикации, пока лишь можно заметить, что одним из важнейших препятствий на пути внедрения "воздушек" стал непреложный закон, выявившийся в ходе конструирования всех подобных систем: при достижении баллистических характеристик сходных с пороховым аналогом, вес пневматического орудия увеличивается в три раза.

Одним словом, ни пар, ни сжатый газ на роль "оружия будущего" не подходят хотя бы потому, что основной принцип действия паровых пушек и пневматики фактически просто имитирует порох другими средствами. Период бурного развития науки и техники в конце XIX-первой половине XX века породил совершенно новые концепции того, чем предстоит заменить привычный "огнестрел", но их практическое воплощение пока что остается уделом авторов фантастических романов и создателей компьютерных игр. Инженерная мысль пока лишь осторожными шагами приближается к практическому воплощению оружия на новых физических принципах и существует оно,в основном, в виде лабораторных установок. Но "тройка лидеров" уже определилась — это лазер, пушка Гаусса и рельсовая пушка, она же "рельсовый ускоритель массы".

"Рельсотроны" и "гауссы" наиболее близки к нашим устоявшимся представлениям об оружии. Поражение цели в них осуществляется материальным снарядом, а не "лучами смерти", действенность которых ограничивается прежде всего самой атмосферой Земли, и, например, тем, что человеческое тело более чем на 70% состоит из воды, нагреть которую тепловым лучом на порядок сложнее. Зато электромагнитное оружие, способное выбросить снаряд со скоростью почти девятикратно превышающей скорость звука дает множество неоспоримых преимуществ в сравнении с "традиционным" огнестрелом.

"Гауссы", несмотря на внешнюю простоту схемы пока что безнадежно проигрывают соревнование "рельсотронам" и, скорее всего, боевое оружие, основанное на данном принципе вряд ли появится вообще. Разгон снаряда обеспечивается за счет прохождения пули, сделанной из электропроводящего материала, по стволу из диэлектрика, через ряд создающих магнитное поле катушек. На примере домашних поделок, способных загнать гвоздик в мишень для дартса с расстояния в несколько метров, выглядит эффектно, но при этом дает крайне низкий КПД (1-2 процента).

Даже при применении многоступенчатой системы разгона с последовательным переключением катушек, в кинетическую энергию переходит только 27 процентов заряда (для сравнения — у современного огнестрельного оружия этот показатель колеблется в районе 30-35 процентов). Достаточно высокий расход энергии в сочетании с большим весом установки и относительно низкой разгонной скоростью снаряда, делает развитие "гауссов" делом бесперспективным, по крайней мере — на нынешнем уровне технологий.

Схема рельсовых ускорителей дает конструкторам оружия будущего куда больше преимуществ над порохом, в первую очередь за счет возможности разгонять сверхмалые массы до сверхвысоких скоростей. В общем виде схема выглядит следующим образом: по двум электродам, подключенным к источнику постоянного тока, силой воздействия электромагнитного поля разгоняется, снаряд, одновременно замыкая цепь. Сам принцип, согласно которому электрическая энергия переходит в кинетическую в физике называется "силой Лоренца" .

Первый патент на рельсовое оружие был получен французом Андрэ Луи-Октавом Фошоном Виепле еще в 1902 году. Испытания проводились с 1916 по 1918-й год, причем велись крайне небрежно, измерения силы тока и начальной скорости снаряда не проводились, и в результате удалось установить только саму возможность создания такого оружия.

Во время следующей мировой войны трофейными материалами по рельсовым пушкам заинтересовалось руководство германского Управления вооружений, судорожно хватавшееся за любой проект, который мог бы сыграть роль чудо-оружия. Тема по электромагнитному оружию (включавшая как рельсотроны, так и пушки Гаусса) была поручена доктору Иоахиму Хэнслеру, испытания проводились в 1944-45 годах в железнодорожном тоннеле близ города Клайс в Верхней Баварии. Первый созданный группой Хэнслера прототип рельсовой пушки LM-2 с длиной направляющих в 2 метра разгонял алюминиевый цилиндр весом в 10 граммов до скорости в 1080 м/с; при наращивании длины ствола вдвое, скорость возросла до 1200 м/c. Для сравнения — лучшее германское зенитное орудие периода Второй мировой войны — 12,8 sm. Flak 40 имело начальную скорость всего в 880 м/c.

Неудивительно что результатами испытаний очень заинтересовалось командование Люфтваффе, выдавшее Хэнслеру заказ на рельсовое зенитное орудие, способное вести огонь снарядами, содержащими по полкило взрывчатого вещества, со скоростью разгона в 2000 м/c и скорострельностью в 10-15 выстрелов в минуту. Однако такое орудие так и не было построено, а прототип LM-2 в 1945 году был захвачен американцами, выдавшими после новой серии испытаний следующее заключение: баллистические характеристики безусловно выдающиеся, однако для каждого выстрела требуется количество электроэнергии, "которого хватило бы на освещение половины Чикаго".

И тем не менее попытки продолжались. Новые модели рельсотронов разрабатывались в США, Австралии, Великобритании, СССР и даже в Югославии. Но о том что эпоха оружия без пороха все-таки уже видна на горизонте, все заговорили только после того, как 10 декабря 2010 года в США успешно прошли испытания рельсовой пушки разработки компании BAE Systems мощностью в 33 мегаджоуля с начальной скоростью снаряда в 2520 м/с. С тех пор прототип успел сделать более десятка тысяч выстрелов (видео можно посмотреть на Youtube) и речь уже идет об установке первого поколения таких орудий на эсминцы типа DDG-1000 Zumwalt.

Скорость снаряда в дальнейшем планируется довести до 5,8 тысячи м/c, скорострельность — до 6-15 выстрелов в минуту, а дальность прицельного огня — до 370 километров. Мощность приэтом возрастет до 64 мегаджоулей и энергии такая установка будет потреблять не менее 16 Мвт, что существенно даже по меркам корабельных 72 Мвт газотурбинных генераторов, которые планируется установить на "Цумвальты". Пока же энергетическая установка, необходимая для произведения выстрела из рельсотрона, занимает небольшой зал в Центре разработки надводного вооружения ВМС США Дальгрен, где проходят его испытания. Судя по тому, что программу до сих пор не подвели под сокращение военного бюджета — результаты были признаны значимыми и появления рельсовых орудий на вооружении американского флота следует ожидать в течении 10-15 лет.

В России разработкой рельсового оружия занимаются ученые из Шатурского филиала Объединенного института высоких температур РАН, причем там пошли по пути несколько отличному от американского. Создатели отечественной "рельсы", не мудрствуя лукаво, решили что все новое — это хорошо забытое старое и предложили для решения проблемы подачи энергии устройство, в чем-то напоминающее о привычных нам артиллерийских снарядах. Роль гильзы с порохом в "рельсотроне Арцимовича" играет взрывомагнитный генератор, полное сгорание которого создает мощный электромагнитный импульс, необходимый для разгона снаряда силой Лоренца.

Внутри генератора находится… еще одна пушка, на сей раз — электротермическая, в которую изначально и помещен снаряд. От рельсовой пушки она отличается отсутствием собственно "рельс", разгон осуществляется при помощи давления, создаваемого мгновенным выбросом высокотемпературной плазмы. Кадры с испытаний, хоть и выглядят не столь красочно как у американцев, тем не менее, впечатляют: отлитая из легких полимеров пулька весом всего в 2 грамма насквозь прошибает несколько поставленных в ряд мишеней из сплава стали с дюралем, оставляя в каждой из них огромные рваные дыры.

Сотрудники шатурского филиала, кстати, предлагают использовать свои "гильзы" отдельно от рельсовой пушки — в качестве боевых частей зенитных ракет, что даст возможность не только наносить воздушным целям физические повреждения, но и выжигать всю их электронную "начинку" импульсом от подрыва взрывомагнитного генератора.

На сей оптимистической ноте заставим фанфары умолкнуть и поговорим о тех проблемах, к решению которых разработчики "рэйлганов" и "рельсотронов" еще не приступали. Источниками энергии их список далеко не исчерпывается, для нового оружия понадобятся еще и новые материалы. Дело в том что пресловутая сила Лоренца в момент выстрела действует не только на снаряд, но еще и на сами рельсы, стремясь развести их в разные стороны. Кроме того, разгоняющийся снаряд от нагревания расширяется и, ускоряясь, буквально снимает с рельсов стружку.

Направляющие у американской пушки сделаны из покрытой серебром бескислородной меди, и после каждых двух-трех выстрелов их приходится менять, так что скорострельность в 10-15 выстрелов в минуту может быть достигнута лишь теоретически. Кроме того, не очень понятно из чего должен быть сделан снаряд, учитывая что даже наиболее тугоплавкие из используемых нами материалов, на скорости, превышающей 7500 м/с, попросту разрушаются от трения о воздух, превращаясь в сгустки плазмы. А еще придется создать совершенно иные системы наведения и прицелы, пригодные для решения задачи "попасть пулей в пулю". Работы, как говорится — непочатый край.

Осталось ответить на последний вопрос — а зачем вообще все это нужно? Зачем тратить огромные средства на создание оружия на новых физических принципах, если существуют проверенные сотнями войн пороховые пушки и винтовки для которых, к тому же, активно разрабатываются "умные" снаряды и пули, способные достать цель практически при любых обстоятельствах?

Главное преимущество "рельсового оружия" заключается в его способности поражать цель снарядом относительно малого калибра на скорости, превышающей скорость распространения звука в материале, из которого состоит эта цель. И, разумеется, в возможности регулировать скорость полета снаряда в зависимости от того эффекта, которого мы хотим добиться.

К примеру при стрельбе из "рэйлгана" по танку по желанию можно будет пробить броню, устроить взрыв на ее поверхности или добиться такой силы соударения, что снаряд превратится в поток ионизированных частиц, гарантированно уничтожающих всю электронику, а заодно и весь экипаж. Того же эффекта можно будет добиться и при стрельбе по укрытым живым целям.

Еще можно будет создать зенитные орудия для того чтобы "снимать" спутники с низкой орбиты. И рельсовые катапульты для того чтобы их же туда запускать. Как видите, осталось всего-то навсего решить пару десятков физических и инженерных проблем — и будущее уже не за горами.

Высокий показатель рельсотронного разгона обусловлен работой электромагнитных сил Лоренца в механизме пушки. Они возникают и начинают действовать на снаряд при коротком замыкании двух параллельных токонесущих (со знаком минус и со знаком плюс) направляющих рельсов после подачи на них очень мощного, но очень короткого импульса тока. В качестве токозамыкательного элемента используется специальная арматура со встроенным в нее снарядом или сам снаряд, лежащий на рельсах и их замыкающий. Силы Лоренца направлены так, чтобы вытолкнуть снаряд из пушки, и он вылетает из ствола с гиперзвуковой скоростью. Разгону снаряда также способствует давление плазмы, которая образуется за снарядом от действия мощного дугового разряда. Плазма со скоростью 50−100 км/ч действует на снаряд, как своеобразная мощная реактивная струя.

Рельсы — дорогие и уязвимые

В американских опытах по созданию электромагнитного оружия в качестве арматуры, как правило, используется специальной формы «башмак», в котором закреплен снаряд. Такая конструкция исключает контакт снаряда с рельсами. Направляющие, изготовленные из бескислородной меди с серебряным покрытием, сильно подвержены износу от трения и эрозии. При использовании металлических снарядов, выполняющих замыкание своим «телом», замена рельсов требуется после двух-трех выстрелов.

Название «рельсотрон» в 50-е годы прошлого века придумал академик Л. Арцимович, мировой специалист в области термояда и физики высокотемпературной плазмы. Изобретенный им ускоритель плазмы был выдвинут на Нобелевскую премию, но СССР снял кандидатуру ученого с обсуждения из-за секретности разработки.

Сам снаряд изготавливают из тугоплавкого вольфрама. Высокая плотность этого металла позволяет даже тяжелый снаряд сделать малогабаритным, что решает проблему размещения боеприпасов в ограниченных объемах зарядных отделений или снарядных погребов.

Однако не только быстрый износ рельсов мешает рельсотрону превратиться в супероружие, есть и другие препятствия. Прежде всего это источники питания. Рельсотрон требует мощной системы электропитания в виде униполярных генераторов, компульсаторов, мегаваттных конденсаторов-ионисторов. Эти устройства позволяют формировать очень мощный короткий электрический импульс, передаваемый на рельсы. В лабораторных условиях можно мириться с солидными по размеру и весу блоками аппаратуры. На флоте фактор веса и объема тоже не столь существен: у корабля вполне хватит водоизмещения, чтобы упаковать 130 т оборудования вдобавок к самим стволам пушек.


Рейлган Blitzer производства компании General Atomics (США) размещен на двух трейлерах — на одном собственно пушка, на другом — энергетическая установка. Разработка ЭМП началась в 2005 году и завершилась в 2011-м.

Для наземных же армейских рельсотронов проблема представляется более сложной. Если разместить оборудование на танковых шасси, пришлось бы вести в бой 78-тонного монстра. Выходом стало распределение установки между двумя автомобильными трейлерами (на одном сама пушка, на другом — «энергетика»), этот вариант был реализован в американской армейской пушке Blitzer. Еще один тягач с прицепом отдали станции управления. Для питания корабельных рельсотронов (на напичканных хай-теком эсминцах проекта Zumwalt их предположительно будет два) предусмотрен запас мощности судовой установки (зарезервированный только для рельсотронов) не менее 35−45 МВт. Энергии должно хватить, чтобы обеспечить разгон снаряда до 2000−2500 м/с. Тогда он, получив дульную энергию в 64 МДж, сможет улететь на расстояние до 400 км и, сохранив 20 МДж энергии, поразить цель мощным кинетическим ударом. Уже подсчитано, что попадание такого снаряда весом 18−20 кг в авианосец произведет эффект ядерного удара.

32 «Гольфа» по цели

У армейских пушек меньшая дальность стрельбы — 80−160 км, отчего «энергетики» на выстрелы потребуется примерно вдвое меньше корабельной. Для справки: энергией 1 МДж обладает легковой Golf при скорости 160 км/ч. Снаряд рельсотрона весом 10 кг с дульной энергией 32 МДж при скорости 2500 м/с способен пробить три бетонные стенки или шесть 12-миллиметровых стальных листов, что по эффекту равносильно взрыву 150 кг тротила.


Серьезными препятствиями на пути широкого использования рейлганов являются резонансные явления в рельсовой системе и эффект расталкивания рельсов от действия сил Лоренца, электромагнитная совместимость с электронными системами пушки, необходимость охлаждения ствола и блоков электроники и др.

В процессе натурных испытаний была выявлена также необходимость в быстром перезаряжании пушки для увеличения темпа стрельбы по крайней мере до 6−10 выстрелов в минуту. В этом году работающая в кооперации с американским ВПК британская компания BAE Systems провела огневые испытания на полигоне ВМС США в штате Виргиния. Как заявляют британцы, они рассчитывают в ближайшие пару лет увеличить скорострельность своей установки до 10 выстрелов в минуту при весе снаряда 16 кг, так что эта проблема постепенно находит решение.



Предполагаемый вес снаряда: 18 кг; Дульная скорость: 2,5 км/с (7,5 Маха), вдвое больше, чем у обычных пушек; Дальность действия: 400 км (у обычных корабельных орудий — не более 80 км); Снаряд: уничтожает цель за счет энергии удара, взрывчатых веществ не содержит; Длина ствола орудия: 10 м

Неубиваемая электроника

Снаряд имеет наиболее приемлемую для гиперзвука коническую удлиненную форму с небольшим затуплением носка — это своего рода заостренный стержень. Стабилизатор в хвостовой части позволяет удерживать снаряд на траектории полета. Создание такого боеприпаса — это еще одна проблемная область рельсотронной программы.

США с 2012 года ведет разработку унифицированного гиперзвукового снаряда HVP, сегодня он уже проходит испытания стрельбой. Унифицированный он потому, что будет использоваться не только в рельсотронах, но и в обычных корабельных пушках разных калибров, которые хотят оставить в смешанном составе с рельсотронами на эсминцах Zumwalt. Эти же боеприпасы будут применяться и в наземных пушках.

Чтобы HVP подходил для пушек разных калибров, его будут изготавливать в вариантах подкалиберных выстрелов со снарядом в поддоне под каждый конкретный калибр. Поддон при вылете сборки из ствола разбивается на части, дальше летит только снаряд. В испытаниях 2015 года стреляли HVP калибром 90 мм и длиной 609 мм. Собственно снаряд весит 12,7 кг, а вся сборка — 18,5 кг. Остальные 5,8 кг — это поддон.


Снаряд помещается между двух токопроводящих рельсов. Арматура защищает рельсы от непосредственного соприкосновения со снарядом

Снаряды HVP планируют сделать корректируемыми в полете, для чего их оснастят модулем точного наведения, работающим с системой GPS. Американцы заявили, что у них уже имеются работоспособные электронные системы управления, выдерживающие перегрузки 30 000 — 40 000 g при разгоне, воздействие плазмы температурой 20 000 — 25 000 градусов и электромагнитные поля сверхвысокой мощности. Есть данные об успешных испытаниях подобных снарядов в 2016 году. Ожидается, что полная отработка HVP завершится к 2020 году, а в серию они будут переданы к 2025 году. Блок управления приведет к удорожанию снаряда, который и в исходном (без электроники) варианте стоит 25 тысяч долларов. Но все равно это существенно дешевле корабельных управляемых ракет ценой 0,5−1,5 млн.

Три грамма чудовищной мощи

Особенность американского подхода к разработке рельсотрона состоит в поэтапном наращивании возможностей с последовательным достижением улучшенных параметров: скорости разгона снаряда от 2000 до 3000 м/с, дальности стрельбы с 80−160 до 400−440 км, дульной энергии снаряда от 32 до 124 МДж, веса снаряда от 2−3 до 18−20 кг, скорострельности от 2−3 выстрелов в минуту до 8−12, мощности источников энергии от 15 до более чем 40−45 МВт, ресурса ствола от промежуточных 100 выстрелов к 2018 году до 1000 выстрелов к 2025 году, длины ствола от начальной 6 м до конечной 10 м.


Подобных сведений официально в России не публикуют, однако в прошлом году первый заместитель председателя Комитета Совета Федерации по обороне Франц Клинцевич за-явил, что в нашей стране активно ведутся работы в области создания электромагнитного оружия.

Хорошо известны успешные испытания рельсотрона (правда, не боевого, а лабораторного класса) в подмосковной Шатуре, которые провели в филиале Объединенного института высоких температур РАН под руководством академика В. Фортова. Рельсотрон с длиной ствола 2 м стрелял пульками массой в единицы-десятки граммов. Российское ноу-хау — предварительный разгон снаряда перед подачей в ствол — позволяет получать дульные скорости выше американских. Так, в январе 2017 года снаряд из плотного пластика весом 15 г был разогнан до скорости 3000 м/с и пробил мишень из металла толщиной во много сантиметров. Несколько раньше снаряд весом 3 г был разогнан до скорости 6250 м/с (почти первая космическая) и при попадании в стальную мишень попросту ее испарил.


Китай, по сообщениям прессы, находится на стадии НИР и НИЭР, которые сосредоточены в специально созданной корпорации CASIC в научном центре Ухань (WUHAN). Представители КНР заявили, что разрабатывают наземный рельсотрон наподобие американского Blitzer и обещают по проекту 055А к 2020 году создать орудие калибра 130 мм.

Относится к электромагнитным ускорителям масс (или, если мыслить понятиями военных, пуль и снарядов). Правда рассчитывать на применение рельсотрона в легком стрелковом вооружении пока не приходится, этот вопрос так и остается прерогативой писателей-фантастов. Однако если говорить об оснащении им тяжелой боевой техники и кораблей ВМФ, то здесь дела обстоят совершенно иначе. Уже через какие-то 5-6 лет боевые рельсотроны могут быть запущены в серию, после чего интенсивно начнут вытеснять пороховые артиллерийские системы.

Но начнем все по порядку, для чего выясним, что именно представляет собой рельсотрон и как он работает.

Основными частями установки являются:
1. Источник электропитания. Он представляет собой батарею конденсаторов, которая создает короткий токовый импульс огромной мощности (Речь идет о сотнях или даже тысячах килоджоулей).
2. Коммутирующая аппаратура. Иными словами это десятки толстенных кабелей, способных передать накопленную энергию и при этом не расплавиться.
3. Пусковая установка. Устройство напоминает орудийный ствол, стянутый многочисленными усилителями прочности. Они необходимы чтобы система могла выдержать внутреннее давление более 1000 атмосфер и температуру 20000-30000 градусов. Внутри ствола, вдоль всей его длины, расположены два длинных параллельных электрода или рельса (Отсюда и название).

Принцип действия:
На рельсы подается мощнейший токовый импульс. Сила разряда превышает энергию молнии более чем в сотню раз. Между рельсами (электродами) тут же загорается плазменная дуга. Некоторые разработчики предлагают перед подачей напряжения помещать в ствол легкоплавкую металлическую вставку. Она поспособствует зажиганию дуги, а расплавившись, превратится в плазму, чем значительно увеличит ее количество. От одного рельса к другому через плазму потечет ток. Ток вызывает возникновение мощнейшего электромагнитного поля, которое будет воздействовать на все устройство. Так как рельсы закреплены жестко, то единственным подвижным элементом системы окажется плазма, через которую, словно через обычный металлический проводник, продолжает течь ток. Под действием силы Лоренца этот самый проводник (плазма) начнет быстро перемещаться вдоль ствола.
Сгусток плазмы называют «плазменным поршнем», он как бы является аналогом порохового заряда в огнестрельном оружии. Если впереди поршня был размещен метательный снаряд, то его скорость при выходе из ствола может составить до 13-15 км/с (Для справки, современные артиллерийские орудия способны разгонять снаряд максимум до 2 км/с). Любопытно, что рельсотрон может оставаться смертоносным оружием и без применения снарядов. В этом случае установка сможет стрелять плазменными сгустками, и скорость их будет воистину фантастической ― порядка 50 км/с.

Достоинства оружия:
1. Огромная скорость снаряда. В боевых системах она должна составлять до 10 км/с. Как говорилось выше, рельсотрон может обеспечить и гораздо большую скорость разгона, но из-за резко возрастающего сопротивления воздуха, которое будет буквально останавливать выпущенный снаряд, добиваться этого не имеет смысла. Огромная скорость ускоряемого тела ― это основное свойство рельсотрона, ради которого он и создавался. Из этого свойства и вытекают большинство других достоинств данного оружия.
2. Огромная пробивная сила. На лабораторных испытаниях, проведенных на настольном экземпляре рельсотрона, двухграммовая мягкая полимерная пулька пробивала толстые металлические пластины. При этом часть металла превращалась в плазму и просто испарялась. Из этого примера отчетливо видно, что настоящий боевой рельсотрон способен пробивать любые ныне существующие материалы и виды брони. От него практически нет защиты. Не спасет даже мощная активная защита, так как гексоген, используемый в ней, просто не успеет взорваться.
3. Большая дальность прямого выстрела. Она может составлять 8-9 км, причем это расстояние снаряд преодолевает меньше, чем за секунду. Само собой увернуться от такого удара практически невозможно. Кроме того значительно упрощается прицеливание. При стрельбе из рельсотрона не требуется давать поправки на упреждение, силу ветра и т. д. Бей в то, что видишь и не промахнешься.
4. Большая дальность стрельбы. Снаряд, выпущенный из рельсотрона, может преодолеть до 400 километров. Понятно, что с такими показателями это оружие отправляет в прошлое не только традиционную артиллерию, но и все виды тактических ракет.
5. Дешевизна, простота изготовления, безопасность хранения боеприпасов. Рельсотроны, предназначенные для боя в прямой видимости (например, танковые или зенитные), будут оснащаться снарядами без взрывчатого вещества. По своей сути это просто болванки. Дело в том, что при скорости 4 км/с и выше снаряд уже не нуждается во взрывчатке. Его кинетическая энергия столь велика, что при попадании в цель происходит не удар, а настоящий взрыв, по своей мощи превышающий взрыв любого из ныне существующих взрывчатых веществ.

Недостатки и проблемы современных рельсотронов:
1. Огромные размеры и недостаточная мощность источников питания. Для питания ныне существующих рельсотронов используются батареи конденсаторов, занимающие целые комнаты. Именно поэтому они могут устанавливаться лишь на боевых кораблях и в укрепрайонах. Однако американская компания General Atomics уже ведет разработку передвижного сухопутного комплекса Blitzer, который будет размещаться на базе грузового автомобиля. Правда для питания этой пушки планируется применять мобильные электростанции, которые займут еще два грузовика.
2. Быстрый износ ствола. Гигантские перегрузки и воздействие плазмы практически уничтожают ствол. Его ресурс пока удалось довести лишь до тысячи выстрелов. Стоимость одного выстрела (с учетом стоимости износа ствола) по некоторым данным составляет 25000 долларов. Чтобы продлить жизнь дорогостоящему орудию, конструкторы экспериментируют с передовыми композитными материалами, разрабатывают новые системы охлаждения.
3. Нагрузка на боеприпасы в момент выстрела. Эта проблема особо касается боеприпасов, содержащих взрывчатое вещество.
4. Мощный шумовой эффект. При выстреле рельсотрона грохот сравним с раскатом грома. Возникает он, когда вырвавшаяся из ствола плазма оказывается на открытом воздухе и резко расширяется.
5. Низкая скорострельность. Пока по всем перечисленным выше причинам говорить о скорострельности рельсотрона не приходится. Но американские военные поставили перед разработчиками задачу: в ближайшие пять лет довести скорострельность установки до 6-10 выстрелов в минуту.

Подводя итог, хочется сказать, что современные рельсотроны еще далеки от совершенства, но они уже существуют и не просто существуют, а развиваются, модернизируются семимильными шагами. Над ними работают крупнейшие мировые производители оружия, и результат этого должен сказаться уже в самое ближайшее время. Так ВМФ США уже в 2020 году планирует оснастить боевыми рельсотронами специально спроектированные для этого эсминцы серии DDG-1000 «Zumwalt». Израильские танкостроители спят и видят, как поставят «рельсы» на свои новые боевые машины, чем сделают их практически непобедимыми. Так же существуют проекты размещения электромагнитных пушек на орбите. Что ж, поживем ― увидим, не так уж и долго осталось.

Олег Шовкуненко

Отзывы и комментарии:

Эдуард 03.04.14
Не думал, что это такая мощная "машина". Казался маленьким.

читатель 02.12.14
Примерно знаю как это соорудить, для этого подойдут разработки 2-3 физиков и холодный ядерный синтез, плазма разгонит хоть до 3 световой скорости снаряд.

интересующийся 22.02.15
Что что, а ХЯС ещё нужно доказать, а в России это врятли произойдёт - комиссия по лженаукам непозволит, инквизиторы хреновы!

николай 18.12.15
Есть возможность поднять энергию снаряда в разы при условии сохранения силы тока, пропускаемой через снаряд

Олег Шовкуненко
Николай, наверняка действительно существуют возможности увеличить скорость разгона снаряда в рельсотроне, но как я уже писал в статье, делать ее выше 10 км/сек просто нет смысла. Причина – резкое увеличение сопротивления воздуха. Вопрос станет актуальным только после разработки новых снарядов, использующих принцип плазменной рубашки или воздушной кавитации или еще что-нибудь другое.

Критик 26.05.16
Какие нафиг 10 км/с! Выше 6-7 махов в реальных условиях, а не в стерильных, снаряды еще не летали.

Олег Шовкуненко
Критик, возможность поднять скорость снаряда с 2 км/с до 10 км/с – в этом-то и заключается изюминка рельсотрона, его превосходство над обычной артиллерией.

Pasha 30.05.16
Озадачивает количество потребляемой электроэнергии. Как-то с трудом представляю во время боевых действий танк, оснащенный рельсотроном, едущий с двумя прицепленными к нему сзади толстенным кабелем генераторами. Касаемо баз - тоже трудно это понять - все тактические ракеты давно поставлены "на колеса", от стационарных давным-давно отказались ввиду известных причин.
Мне кажется это больше имело бы смысл где-нить в космосе, недурно было бы изучить возможность вывода на орбиту чего бы то ни было без использования топлива. К сожалению пока эта штука может стрелять только расплавленными бесформенными кусками металла. В общем энергии ест много, стоит дорого, технологий требует серьёзных (во время войны с этим всегда проблемы) а эффект при таких затратах явно недостаточный. Получится что при эксплуатации на одну такую пушку будет необходима целая бригада обслуживающих ее инженеров, причем очень высокой квалификации, я уж молчу про производство.

фуад 31.05.16
это может быть еффективным как системма пво даже можно создать системму про и затрат будет меньше

Ол 07.06.16
Большая скорость нужна прежде всего для большой дальности. А при большой дальности прицеливание "дула" не имеет смысла - случайные микрофакторы рассеяния все равно исключат точность попадания. Значит снаряд должен иметь свои органы управления и мозги для позиционирования и управления полетом. Какая же электроника выдержит такие ускорения?! Это ж посильнее, чем кувалдой фигачить по микросхемам.

Олег Шовкуненко
Ол, не сомневайтесь, умные головы что-нибудь да придумают, ведь уже есть опыт корректируемых боеприпасов типа «Краснополь» и «Сантиметр». А скорость снаряда требуется не только для дальности. Например, представьте какой кайф мочить из рельсотрона цели на дальности 2-5 км. От такого «подарочка» не увернуться ни кораблю, ни танку, ни вертолету, да и самолету придется очень постараться, чтобы унести ноги… вернее шасси:))

Это может быть еффективным как системма пво даже можно создать системму про и затрат будет меньше

Roman 28.11.16
Стрелять на большие расстояния прямой наводкой не получится потому что g = 9,8 м/с2) , а линия горизонта с высоты 2,5 м менее 6 км (и это при идеальных условиях, не учитывающих рельеф местности и прочих подобных факторов) так что это не более чем байки для несведующих, что мол при стрельбе из рельсотрона не нужно никаких баллистических расчётов)

Олег Шовкуненко
Дальность прямого выстрела – это вообще-то характеристика оружия, а вовсе не указание для артиллеристов бить прямой наводкой по целям, удаленным на 8-9 км. Уловите разницу!

Влад 01.04.17
Ну, ок, стрельба прямой наводкой, допустим с танка очень интересно. Но если стрелять на дистанции 10+ км, там уже нужна точность, а точность=управляемость снаряда. И второй вопрос попадание болванки со скоростью 5-7 км/с сколки кг в тротиловом эквиваленте соответствует?

Олег Шовкуненко
Влад, на мой взгляд (говорить за разработчиков современных боевых рельсотронов я, конечно же, не могу) данный тип оружия наиболее эффективен в 2-х случаях:
первый – бой в прямой видимости, примерно до 5 км;
второй – это обстрел военных баз и прочих стратегических объектов на дистанциях свыше 100 км.
Разумеется, для поражения целей, находящихся на удалении 5+ км., необходимы управляемые или самонаводящиеся ракеты. Глупо считать, что рельсотрон станет универсальным оружием и вытеснит все другие боевые системы.
Если же говорить о мощности взрыва от не снаряженного снаряда рельсотрона, то ее можно легко прикинуть. Воспользуемся формулой кинетической энергии из школьного курса физики. Получается, что энергия снаряда весом в 1 кг. при скорости 5 км/с равна 12,5 106 Дж. В любом справочнике можно отыскать значение для энергии взрыва тротилового заряда. Например, для тринитротолуола она равна 4,184 106 Дж. Сравниваем. Получается, что не снаряженный снаряд (или попросту болванка) в три раза мощнее взрывчатки. И это без учета той страшной пробивной мощи, которой обладает снаряд рельсотрона.

Denis Grabov 31.07.17
Сопротивление воздуха зависит в третьей степени от скорости. А кинетическая энергия – во второй. Уже через десять километров скорость снаряда будет как у обычных снарядов и понадобится взрывчатка в снаряде. Но калибр его невелик, значит это должен быть ядерный снаряд. Единственное преимущество перед ракетой – даже теоретически невозможно сбить. Но нафига это надо, когда рельсотрон применим только на флоте, а у противокорабельных ракет намного больше дальность. Да и если начнут применять ЯО, то по флоту выстрелят МБР а не орудия или ракеты тактической дальности вражеского флота того же театра военных действий. Да и залп РСЗО тоже вряд ли кто собьет.

Наука не стоит на месте, в гонке за мировым господством люди изобретают все более совершенное оружие, угрожающее стабильности земного шара и держащее в узде врагов и недоброжелателей.

Американские ученые в очередной раз собираются удивить весь мир, представив новое оружие, которое уже окрестили «Оружием двадцать первого века». Под этим страшным и многообещающим названием скрывается промышленный прототип электромагнитной пушки. Самая мощная в мире электромагнитная пушка носит название «Рельсотрон» и планирует начать абсолютно новую главу мирового вооружения.

RailGun, будучи импульсным электродным ускорителем масс, позволяет превратить электрическую энергию в кинетическую. Название устройства родилось из-за внешнего вида системы. Строго говоря, то, что называют «рельсами», на самом деле параллельно расположенные электроды, подключенные к источнику постоянного тока. Снаряд располагают между ними, и замыкают электрическую цепь, чтоб придать ускорение. Основная цель разработки подобной технологии заключается в перспективном оснащении подобным оружием ВМФ США. Предполагается, что дальность выстрела будет достигать четырехсот километров.

Рельсовая пушка для разгона снаряда, являющегося частью цепи изначально, использует электромагнитную силу (силу Лоуренца).

Преимущества использования рельсотрона несомненны:

  • Высокая разрушительная сила выстрела;
  • Внушительная дальность стрельбы (от 150 до 350 км);
  • Безопасность данного вида оружия в связи с отсутствием пороха/взрывоопасного топлива;
  • Сниженный вес позволит укомплектовать технику бОльшим количеством зарядов;
  • Скорость снаряда может достигать девяти тысяч километров в час.

Промышленный прототип будет отличаться большей износостойкостью. Однако, при кажущейся перспективности, проект множество ограничений, препятствующих быстрому оснащению военных кораблей США:

  • Необходим четкий резкий импульс, который снаряд разгонит и толкнет до того, как он разлетится, или испарится;
  • Огромное количество энергии, с помощью которой будет приводиться в действие импульсная пушка;
  • Неблагоприятное воздействие влаги и соли, подвергающее систему коррозии;
  • Стабилизация системы;
  • Полная демаскировка пусковой установки, возникающая уже после первого выстрела;

Большие суммы, затрачиваемые на испытания и усовершенствование лабораторного образца с неясными сроками полномасштабного внедрения. Для того чтобы решить задачу оснащения RailGun энергией, параллельно ведутся дополнительные исследования. Снаряд должен обладать минимальной массой, материал для изготовления снаряда и рельс должен обладать высокой проводимостью.

Работы над рельсотроном продолжаются

Параллельно с работой над источником энергии, позволяющим совершать многократные выстрелы без полной замены, ученые работают над усовершенствованием системы: ее компактными размерами, материалами, из которых изготавливают части пушки, ее безопасностью.

Если результаты испытания пушки будут успешными, то это станет, поистине, настоящим прорывом в организации военных действий на воде. Американцы, добившись успехов в области внедрения рельсотрона, смогут без проблем доминировать в военной сфере. Станет возможным высокоточное поражение целей на большом расстоянии, а огромная скорость, достигаемая снарядом, будет способствовать огромному разрушительному действию. Немаловажен тот факт, что стоимость снаряда для рельсотрона в разы ниже стоимости прочих противокорабельных снарядов, а обслуживание системы может обеспечиваться всего одним человеком – наводчиком.

Работа над совершенствованием рельсотрона ведется в Соединенных Штатах с переменным успехом. В 2011 году возникла серьезная угроза закрытия проекта, как бесперспективного и «футуристического». Однако, Барак Обама отстоял «оружие 21 века», подписав соответствующий указ. На сегодняшний день над проектом работают ряд крупных компаний, таких как General Atomics и BAE Systems), предполагающих оснащение военных кораблей рельсотронами через десять лет. Для реализации этой программы необходимо доработать источник энергии, приводящий в действие RailGun. Он должен работать по принципу аккумулятора, запасая достаточно большое количество энергии, и полумеры не решат проблемы: какой смысл в дорогостоящем оружии, способном произвести несколько единичных выстрелов? Кроме того, заявленная скорострельность пушки от 6 до 10 выстрелов в минуту является лишь теорией, да и то недостаточной.

Работа над увеличением скорострельности сопряжена с поиском более износостойких материалов: направляющие в пушке приходится менять после каждого второго выстрела. Работа над увеличением скорости приводит к разрушению снарядов в полете, и это тоже становится серьезным препятствием для широкомасштабного внедрения рельсотрона . К этому списку можно добавить необходимость высокоточной системы наведения и прицела, и становится очевидным, что планы американцев можно смело назвать излишне оптимистичными.

История создания RailGun

А ведь первыми испытаниями подобного оружия занимались еще немцы во время второй мировой войны. Оружие испытывалось в железнодорожном тоннеле в Баварии, и результаты внушали надежду на создание грозного электромагнитного оружия. Прототип пушки разгонял десятиграммовый алюминиевый цилиндрик до скорости свыше 4 тысяч км/ч, но был захвачен американцами, которые оценили задумку по достоинству.

Мысли о создании подобного оружия приходили в головы канадских, австралийских, английских ученых. В годы «холодной войны» подобные работы велись и советскими учеными. Эти разработки были строго секретными, однако слухи о достижениях и планируемом вооружении советской армии оружием, основанном на подобном принципе велись до развала державы. У России не хватило экономических возможностей для продолжения работ в этом направлении, и проект был свернут на долгое время. На сегодняшний день работы по созданию электромагнитного оружия ведутся и в нашей стране, а параллельно ведутся дебаты о целесообразности внедрения подобного оружия.

Державе, которой удастся реализовать идею вооружения армии импульсным оружием, сможет диктовать свои условия миру, но пока речь идет лишь о теоретическом господстве.

В небольшом полигоне филиала Объединенного института высоких температур РАН (ОИВТ РАН) в Шатуре людно: ученые собираются провести демонстрационный запуск рельсотрона. Интерес подогрело и разлетевшееся по Интернету видео демонстрации опытного образца рельсотрона для военно-морских сил США в конце мая. Впрочем, при длине американской пушки в 10 метров и весе снаряда более 10 килограмм (если быть точнее, то 25 фунтов) российский рельсотрон выглядит куда скромнее. Длина его ствола составляет 70 сантиметров, а вес ударников, как ученые называют снаряды, пока не доходит даже до десятков граммов. Тем не менее такая компактность не мешает достигать высоких, близких к космическим, скоростей. По словам заведующего лабораторией плазмодинамических процессов ОИВТ РАН Владимира Полищука, максимальная скорость, с которой в России рельсотрон разгонял снаряд, была 5,5 километра в секунду.

Где у пушки рельсы

Наш рельсотрон выглядит довольно неожиданно: это металлическое устройство прямоугольной формы, утыканное крепежами, без какого-либо намека на рельсы. Но они есть. Внутри. Это две металлические пластины внутри бандажа, к которым подсоединена батарея. Электрический ток течет от электрода к электроду, а магнитный импульс выталкивает зажатый между рельсами снаряд. Его делают из диэлектрика, то есть материала, не проводящего ток. В ОИВТ РАН его изготавливают из поликарбоната — пластика, из которого часто делают зубные протезы.

Размер ударников, которыми стреляют из рельсотрона в Шатурском филиале ОИВТ РАН, не превышает нескольких сантиметров. Фото: Сергей Савостьянов / ТАСС

«С этим рельсотроном мы можем выйти на массу снаряда в десятки грамм. У нас увеличилась емкость источника энергии в полтора раза. Есть еще четыре секции, но мы их увезли на полигон, — сказал Полищук. — Сейчас у нас здесь запасенной энергии 1 мегаджоуль. В полном комплекте у нас 4 мегаджоуля. Американский накопитель на большую пушку — 32 мегаджоуля, но они собираются его увеличить до 64 мегаджоулей».

Не новая разработка

«Это разработка не новая, мы сейчас выходим на новый уровень энергетики. Мы увеличили энергию примерно в пять раз», — сказал Полищук. Действительно, рельсовые ускорители известны уже более 50 лет. Однако интерес к ним, по словам ученого, появился лет 40 назад, когда научное сообщество заинтересовалось достижением скоростей, близких к космическим, — от 7,9 км/с (первая космическая скорость) и выше.

Мишени, пробитые ударником рельсотрона. Фото: Сергей Савостьянов / ТАСС

«Мировой рекорд, чему можно верить, где-то 6,5 км/с. По нашим представлениям, максимально достижимая скорость — 10-12 км/с. Это очень интересно, такие параметры не освоены», — сказал Полищук.

Физика высоких скоростей

Над лежащей в основе рельсотрона технологией активно работает Китай. По словам участвовавшего в демонстрации на полигоне ОИВТ РАН президента РАН Владимира Фортова, китайские ученые за год опубликовали около 150 статей в этой области. В то же время США сконцентрировались на метании больших масс, а не на увеличении скорости, отмечает Полищук.

«Американцы задачи получения сверхвысоких скоростей свернули. Они занимаются метанием больших масс. Цель — электромагнитная пушка и, что более реально, катапульты для разгона ракет. А пушка — это перспективы, лет через 10, не раньше», — сказал ученый, добавив, что СССР в 80-х годах достиг хороших результатов в разработке катапульт, но технология не получила развития, поскольку у страны почти не было авианосцев, на которых ее можно было бы использовать.

Российские же ученые сейчас заинтересованы не массами, а высокими скоростями и давлением.

«Наша задача — попытаться получить в лабораторных условиях при помощи таких систем такие большие давления и исследовать поведение вещества при экстремальных высоких температурах и давлениях. Это надо для понимания того, как устроена Вселенная, потому что 95% всего видимого вещества Вселенной находится как раз в сильно сжатом и разогретом состоянии. Мы пытаемся при помощи этих систем получать состояния со многими миллионами атмосфер», — сказал Фортов.

От сварки до астероидов

Рельсотрон можно применять не только в военных целях, но и в мирных, даже «благородных». Например, изучение того, как снаряд на очень больших скоростях сталкивается с мишенью, поможет изучить историю обстрела метеоритами планет, включая нашу, и в перспективе создать систему защиты космических аппаратов от небольших частиц в межзвездном пространстве.

Правда, Фортов сильно сомневается в возможности использовать рельсотрон для защиты Земли от крупных астероидов и метеоритов. А Полищук, наоборот, уверен, что выпущенный рельсотроном снаряд со скоростью 10—15 км/с мог бы отклонить с курса астероид размером в десятки или даже сотни метров. Кроме того, принцип рельсотрона в будущем можно будет использовать для ввода термоядерного топлива в реактор.


Выстрел ударником весом 2 грамма со скоростью 3,2 км/с из рельсотрона на полигоне филиала ОИВТ РАН. Видео: ОИВТ РАН

«Нужно вводить частицы дейтерий-тритиевой смеси внутрь токамака (тороидальная камера с магнитными катушками, удерживающая плазму, чтобы создать условия для протекания управляемого термоядерного синтеза — прим. «Чердака» ), скорость должна быть большая: километры в секунду, иначе оно просто не влетит, а испарится по дороге», — сказал Полищук.

Если из рельсотрона убрать ударник, то вылетающий из него сгусток плазмы можно использовать для упрочнения материалов в 3-4 раза, заметил Фортов.

«Кроме того, есть такое направление, как сварка взрывом, когда ударяются две пластины, которые обычно не свариваются, но из-за воздействия больших, хоть и краткосрочных, давлений они дают очень прочную сварку. Эта сварка используется, например, для изготовления ракетных сопел», — добавил президент РАН.

Большой ба-бах

По словам Фортова, российские ученые пока «очень далеки от световых скоростей».
«Ток, который течет по схеме, создает очень большое магнитное давление, оно находится на уровне нескольких тысяч атмосфер. Эти силы пытаются «раздвинуть» электроды. Поэтому конструкция очень мощная. И часто, когда что-то идет не так, то винты разрывает. Есть и другая проблема, связанная с тем, что плазма неустойчива. Когда она разгоняет ударник, она сама расслаивается на элементы и снижается скорость ускорения», — сказал президент РАН.

Президент РАН Владимир Фортов рядом с рельсотроном. Выстрелом из ускорителя вырвало пару крепежных шпилек на вертикальных стенках прибора. Фото: Сергей Савостьянов / ТАСС

Видимо, в этот раз что-то действительно пошло не так. После оглушительного взрыва, пробившись через облако пыли, журналисты увидели, что выстрел двухграммовым ударником, скорость которого была 3,2 км/ч, начисто вырвал пару увесистых крепежных шпилек из рельсотрона.

«Оторвались крепежные шпильки, потому что слишком большое усилие было. Бандаж используется многократно, десятки раз, — сказалась усталость», — объяснил Полищук.

В то же время Фортов заявил, что ученые «на правильном пути» и уже через несколько часов устройство починят.