Высокоактивные радиоактивные отходы. Атомный могильник: как хранят радиоактивные отходы. От Сибири до Австралии

Существование на земле живых организмов (люди, птицы, животные, растения) во многом зависит от того, насколько среда, в которой они обитают, защищена от загрязнения. Каждый год человечество накапливает огромное количество мусора, и это приводит к тому, что радиоактивные отходы становятся угрозой всему миру, если их не уничтожать.

Сейчас уже есть немало стран, где проблеме загрязнения среды, источниками которой служат бытовые, промышленные отходы, уделяют особое внимание:

  • разделяют бытовой мусор, а затем применяют способы безопасной его переработки;
  • строят заводы по утилизации отходов;
  • образовывают специально оборудованные площадки для захоронения опасных веществ;
  • создают новые технологии по переработке вторичного сырья.

Такие страны, как Япония, Швеция, Голландия и другие некоторые государства к вопросам захоронения радиоактивных отходов и утилизации бытового мусора относятся серьезно.

Результатом же безответственного отношения становится образование гигантских свалок, где отходы жизнедеятельности разлагаются, превращаясь в горы токсичного мусора.

Когда появились отходы

С появлением человека на Земле появились и отходы. Но если древние жители не знали, что такое лампочки, стекло, полиэтилен и другие современные достижения, то сейчас над проблемой уничтожения химических отходов работают научные лаборатории, куда привлекаются талантливые ученые. До сих пор до конца не ясно, что ждет мир через сотни, тысячи лет, если отходы будут накапливаться.

Первые бытовые изобретения появились с развитием стекольного производства. Вначале его производили немного, и никто не задумывался над проблемой образования отходов. Промышленность, шагая в ногу с научными достижениями, стала активно развиваться к началу XIX века. Стремительно вырастали фабрики, где использовали машинное оборудование. В атмосферу выбрасывались тонны переработанного угля, который загрязнял атмосферу из-за образования едкого дыма. Сейчас промышленные гиганты «подкармливают» реки, моря и озера огромным количеством токсичных выбросов, природные источники поневоле становятся местами их захоронения.

Классификация

В России действует Федеральный Закон №190 от 11.07.2011 года, где отражены основные Положения по сбору и обращению с радиоактивными отходами. Главные критерии оценки, по которым происходит классификация радиоактивных отходов:

  • удаляемые - радиоактивные отходы, не превышающие риски радиационного воздействия и затраты при извлечении из хранилища с последующим захоронением или обращением с ними.
  • особые - радиоактивные отходы, превышающие риски радиационного воздействия и затраты при последующем захоронении или извлечении.

Источники радиации опасны своим губительным влиянием на организм человека, и поэтому необходимость локализации активных отработок крайне важна. Атомные электростанции почти не производят «парниковых» газов, но с ними связана другая сложная проблема. Отработанным топливом заполняют емкости, они остаются радиоактивными еще на протяжении длительного времени, а количество его постоянно растет. Еще в 50-х годах предпринимались первые попытки исследований с целью решения проблемы радиоактивных отходов. Высказывались предложения отправлять их в космос, хранить на дне океана и других труднодоступных местах.

Существуют разные планы захоронения отходов, но решения об использовании территорий оспариваются общественными организациями и экологами. Государственные научные лаборатории работают над проблемой уничтожения самых опасных отходов почти с тех пор, как появилась ядерная физика.

В случае успеха это позволит сократить количество образования радиоактивных отходов атомных электростанций до 90 процентов.

На атомных электростанциях происходит следующее: топливный стержень с оксидом урана находится в цилиндре из нержавеющей стали. Его помещают в реактор, уран распадается, выделяет тепловую энергию, она приводит в движение турбину и производит электричество. Но после того как всего 5 процентов урана подверглось радиоактивному распаду, весь стержень загрязняется другими элементами, и от него необходимо избавляться.

Получается так называемое отработанное радиоактивное топливо. Оно больше не пригодно для производства электричества и становится отходом. Вещество содержит примеси плутония, америция, церия и других побочных продуктов ядерного распада - это опасный радиоактивный «коктейль». Американские ученые проводят эксперименты с применением особых аппаратов для искусственного завершения цикла ядерного распада.

Захоронение отходов

Объекты, где осуществляют хранение радиоактивных отходов, не обозначены на картах, на дорогах нет никаких опознавательных знаков, периметр тщательно охраняется. При этом систему охраны показывать запрещено кому бы то ни было. По территории России разбросано несколько десятков таких объектов. Здесь строят хранилища радиоактивных отходов. Одно из таких объединений перерабатывает ядерное топливо. Полезные вещества отделяют от активных отходов. Их утилизируют, ценные компоненты снова идут на продажу.

Требования иностранного покупателя просты: он берет топливо, использует его, радиоактивные отходы возвращает обратно. Их везут на завод по железной дороге, погрузкой занимаются роботы, а человеку приближаться к этим контейнерам смертельно опасно. Герметичные, прочные емкости устанавливают в специальные вагоны. Большой вагон переворачивают, специальными машинами укладывают контейнеры с топливом, затем его возвращают на рельсы и специальными составами с предупрежденными железнодорожными службами, органами МВД отправляют с атомной станции к пункту предприятия.

В 2002 году прошли демонстрации «зеленых», они протестовали против ввоза в страну ядерных отходов. Российские атомщики считают, что их провоцируют иностранные конкуренты.

На специализированных фабриках перерабатывают отходы средней и низкой активности. Источники – все, что окружает людей в обычной жизни: облученные части медицинских приборов, детали электронной техники и другие приборы. Их привозят в контейнерах на специальных машинах, которые доставляют радиоактивные отходы обычными дорогами в сопровождении полиции. Внешне от стандартного мусоровоза их отличает только окраска. На входе - санпропускник. Здесь каждый должен переодеться, сменить обувь.

Только после этого можно попасть на рабочее место, где запрещается принимать пищу, употреблять спиртные напитки, курить, пользоваться косметикой и находиться без спецовки.

Для сотрудников таких специфических предприятий это обычная работа. Разница в одном: если на пульте управления вдруг загорается красный свет, нужно немедленно убегать: источники радиации невозможно ни увидеть, ни почувствовать. Контрольные приборы установлены во всех помещениях. Когда все в порядке - горит зеленая лампа. Рабочие помещения делятся на 3 класса.

1 класс

Здесь перерабатывают отходы. В печи радиоактивные отходы превращаются в стекло. Людям заходить в такие помещения запрещено - это смертельно опасно. Все процессы автоматизированы. Войти можно только в случае аварии в особых средствах защиты:

  • изолирующий противогаз (специальная защита из свинца, поглощающая радиоактивное излучение, щитки для защиты глаз);
  • специальное обмундирование;
  • дистанционные средства: щупы, захваты, особенные манипуляторы;

Работая на таких предприятиях и выполняя безукоризненно меры предосторожности, люди не подвергаются опасности облучения радиацией.

2 класс

Отсюда оператор управляет печами, на мониторе он видит все, что в них происходит. Ко второму классу также относятся комнаты, где работают с контейнерами. В них бывают отходы разной активности. Здесь три основных правила: «стой дальше», «работай быстрее», «не забывай о защите»!

Контейнер с отходами голыми руками не возьмешь. Есть опасность получения серьезного облучения. Респираторы и рабочие рукавицы надевают только один раз, когда их снимают, они тоже становятся радиоактивными отходами. Их сжигают, золу дезактивируют. Каждый работник всегда носит индивидуальный дозиметр, который показывает, сколько радиации собрано за рабочую смену и суммарную дозу, если она превышает норму, то человека переводят на безопасную работу.

3 класс

К нему относятся коридоры и вентиляционные шахты. Здесь работает мощная система кондиционирования. Каждые 5 минут воздух полностью заменяется. На заводе по переработке радиоактивных отходов чище, чем на кухне у хорошей хозяйки. После каждой перевозки машины поливают специальным раствором. Несколько человек работают в резиновых сапогах со шлангом в руках, но процессы автоматизируют, чтобы они становились не такими трудоемкими.

2 раза в день территорию цеха моют водой с обыкновенным стиральным порошком, пол покрыт пластикатом, углы закруглены, швы хорошо заклеены, нет плинтусов и труднодоступных мест, которые нельзя хорошо вымыть. После уборки вода становится радиоактивной, она стекает в специальные отверстия, по трубам собирается в огромную емкость под землей. Жидкие отходы тщательно фильтруют. Воду очищают так, что ее можно пить.

Радиоактивные отходы прячут «под семью замками». Глубина бункеров обычно составляет 7‒8 метров, стены железобетонные, пока хранилище заполняется, над ним устанавливают металлический ангар. Для хранения очень опасных отходов используют контейнеры с высокой степенью защиты. Внутри такого контейнера свинец, в нем всего лишь 12 маленьких лунок размером с оружейный патрон. Менее опасные отходы устанавливают в огромные железобетонные контейнеры. Все это опускают в шахты и закрывают люком.

Эти емкости в дальнейшем могут быть извлечены и отправлены на последующую переработку, чтобы произвести захоронение радиоактивных отходов окончательно.

Заполненные хранилища засыпают особым сортом глины, в случае землетрясения она склеит трещины. Хранилище закрывают железобетонными плитами, цементируют, асфальтируют и засыпают землей. После этого радиоактивные отходы не представляют опасности. Часть из них распадается на безопасные элементы только через 100‒200 лет. На секретных картах, где обозначены хранилища, стоит гриф «хранить вечно»!

Полигоны, где происходит захоронение радиоактивных отходов, находятся на значительном удалении от городов, поселков и водоемов. Атомная энергетика, военные программы - проблемы, которые волнуют все мировое сообщество. Они заключаются не только в том, чтобы обезопасить человека от влияния источников образования РАО, но и тщательно их охранять от террористов. Не исключено, что полигоны, где хранятся радиоактивные отходы, могут стать объектом для мишени при военных конфликтах.

Радиоактивные отходы (РАО) – побочные продукты технической деятельности, содержащие биологически опасные радионуклиды. РАО образуются:

  • на всех этапах атомной энергетики (от производства топлива до работы ядерных энергетических установок (ЯЭУ), в том числе атомных электростанций (АЭС);
  • при производстве, использовании и уничтожении ядерного оружия при производстве и применении радиоактивных изотопов.

РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т 1/2), по активности (интенсивности излучения).

Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые, в основном возникающие при работе атомных электростанций, других ЯЭУ и на радиохимических заводах по получению и переработке ядерного топлива. Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Радионуклиды, содержащиеся в РАО, претерпевают спонтанный (самопроизвольный) распад, при котором происходит один (или последовательно несколько) из видов излучений: a -излучение (поток a -частиц – дважды ионизированных атомов гелия), b -излучение (поток электронов), g -излучение (жесткое коротковолновое электромагнитное излучение), нейтронное излучение.

Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени числа радиоактивных ядер, при этом продолжительность жизни радиоактивных ядер характеризуется периодом полураспада Т 1/2 – промежутком времени, за который число радионуклидов уменьшится в среднем наполовину. Периоды полураспада некоторых радиоизотопов, образующихся при распаде основного ядерного топлива – урана-235 – и представляющих наибольшую опасность для биологических объектов, приведены в таблице.

Таблица

Периоды полураспада некоторых радиоизотопов

США, активно проводившие в свое время испытания атомного оружия в Тихом океане, использовали один из островов для захоронения РАО. Складируемые на острове контейнеры с плутонием были закрыты мощными железобетонными панцирями с надписями-предостережениями, видимыми за несколько миль: держаться подальше от этих мест в течение 25 тыс. лет! (Напомним, что возраст человеческой цивилизации – 15 тыс. лет.) Некоторые контейнеры под влиянием непрекращающихся радиоактивных распадов разрушились, уровень радиации в прибрежных водах и донных породах превышает допустимые нормы и опасен для всего живого.

Радиоактивные излучения вызывают ионизацию атомов и молекул вещества, в том числе вещества живых организмов. Механизм биологического действия радиоактивных излучений сложен и до конца не изучен. Ионизация и возбуждение атомов и молекул в живых тканях, происходящие при поглощении ими излучений, лишь начальный этап в сложной цепи последующих биохимических превращений. Установлено, что ионизация приводит к разрыву молекулярных связей, изменению структуры химических соединений и в конечном итоге к разрушению нуклеиновых кислот и белка. Под действием радиации поражаются клетки, прежде всего их ядра, нарушаются способность клеток к нормальному делению и обмен веществ в клетках.

Наиболее чувствительны к радиационному воздействию кроветворные органы (костный мозг, селезенка, лимфатические железы), эпителий слизистых оболочек (в частности, кишечника), щитовидная железа. В результате действия радиоактивных излучений на органы возникают тяжелейшие заболевания: лучевая болезнь, злокачественные опухоли (нередко со смертельным исходом). Облучение оказывает сильное влияние на генетический аппарат, приводя к появлению потомства с уродливыми отклонениями или врожденными заболеваниями.

Рис. 2

Специфической особенностью радиоактивных излучений является то, что они не воспринимаются органами чувств человека и даже при смертельных дозах не вызывают у него болевых ощущений в момент облучения.

Степень биологического воздействия радиации зависит от вида излучения, его интенсивности и продолжительности воздействия на организм.

Единица радиоактивности в системе единиц СИ – беккерель (Бк): 1 Бк соответствует одному акту радиоактивного распада в секунду (внесистемная единица – кюри (Ки): 1 Ки = 3,7 10 10 актов распада за 1 с).

Поглощенная доза (или доза излучения ) – энергия любого вида излучения, поглощенная 1 кг вещества. Единица измерения дозы в системе СИ – грей (Гр): при дозе 1 Гр в 1 кг вещества при поглощении радиации выделяется энергия в 1 Дж (внесистемная единица – рад : 1 Гр = 100 рад, 1 рад = 1/100 Гр).

Радиоактивная чувствительность живых организмов и их органов различна: смертельная доза для бактерий составляет 10 4 Гр, для насекомых – 10 3 Гр, для человека – 10 Гр. Максимальная доза излучения, не причиняющая вреда организму человека при многократном действии, – 0,003 Гр в неделю, при единовременном действии – 0,025 Гр.

Эквивалентная доза излучения – основная дозиметрическая единица в области радиационной безопасности, введена для оценки возможного ущерба здоровью человека от хронического воздействия. Единица эквивалентной дозы в системе СИ – зиверт (Зв): 1 Зв – доза излучения любого вида, производящая такое же действие, как образцовое рентгеновское излучение в 1 Гр, или в 1 Дж/кг, 1 Зв = 1 Гр = 1 Дж/кг (внесистемная единица – бэр (биологический эквивалент рентгена), 1 Зв = 100 бэр, 1 бэр = 1/100 Зв).

Энергия источника ионизирующего излучения (ИИИ) измеряется обычно в электронвольтах (эВ): 1 эВ = 1,6 10 –19 Дж, для человека допустимо получать в год от ИИИ не более 250 эВ (разовая доза – 50 эВ).

Единица измерения рентген (Р) используется для характеристики состояния среды, подвергнувшейся радиоактивному загрязнению: 1 Р соответствует образованию в 1 см 3 воздуха при нормальных условиях 2,082 млн пар ионов обоих знаков, или 1 Р = 2,58 10 –4 Кл/кг (Кл – кулон).

Естественный радиоактивный фон – допустимая мощность эквивалентной дозы от естественных источников радиации (поверхности Земли, атмосферы, воды и т. д.) составляет в России 10–20 мкР/ч (10–20 мкбэр/ч, или 0,1–0,2 мкЗв/ч).

Радиоактивное заражение имеет глобальный характер не только по пространственным масштабам своего влияния, но и по времени действия, угрожая жизни людей в течение многих десятилетий (последствия кыштымской и чернобыльской аварий) и даже столетий. Так, основная «начинка» атомных и водородных бомб – плутоний-239 (Рu-239) – имеет период полураспада 24 тыс. лет. Даже микрограммы этого изотопа, попав в организм человека, вызывают раковые заболевания различных органов; три «апельсина» из плутония-239 потенциально могут уничтожить все человечество без всяких ядерных взрывов.

Ввиду безусловной опасности РАО для всех живых организмов и для биосферы в целом они нуждаются в дезактивации и (или) тщательном захоронении, что до сих пор является нерешенной проблемой. Проблема борьбы с радиоактивным загрязнением окружающей среды выдвигается на первый план среди других экологических проблем ввиду его огромных масштабов и особо опасных последствий. По мнению известного эколога А.В.Яблокова, «экологическая проблема № 1 в России – ее радиоактивное заражение».

Неблагоприятная радиологическая обстановка в отдельных регионах мира и России – результат прежде всего многолетней гонки вооружений в период холодной войны и создания оружия массового поражения.

Для производства оружейного плутония (Рu-239) в 1940-е гг. были построены первые ЯЭУ – реакторы (для атомного оружия требуются десятки тонн Рu-239; одну тонну этой «взрывчатки» производит ядерный реактор на медленных нейтронах мощностью 1000 МВт – такую мощность имеет один блок обычной АЭС типа Чернобыльской). Испытания ядерными державами (США, СССР, а затем Россией, Францией и другими странами) ядерного оружия в атмосфере и под водой, подземные ядерные взрывы в «мирных» целях, на которые сейчас наложен мораторий, привели к сильному загрязнению всех компонентов биосферы.

По программе «Мирный атом» (термин предложен американским президентом Д.Эйзенхауэром) в 1950-е гг. строительство АЭС началось сначала в США и СССР, а затем и в других странах. В настоящее время доля АЭС в производстве электрической энергии в мире составляет 17% (в структуре электроэнергетики России на долю АЭС приходится 12%). В России девять АЭС, из которых восемь расположены в европейской части страны (все станции были построены еще в период существования СССР), в том числе самая крупная – Курская – мощностью 4000 МВт.

Помимо арсенала ядерного оружия (бомб, мин, боеголовок), ЯЭУ, производящих взрывчатое вещество, и АЭС, источниками радиоактивного заражения окружающей среды в России (и на прилегающих к ней территориях) являются:

  • атомный ледокольный флот, самый мощный в мире;
  • подводные и надводные военные корабли с силовыми ЯЭУ (и несущие ядерное оружие);
  • судоремонтные и судостроительные заводы таких кораблей;
  • предприятия, занимающиеся переработкой и утилизацией радиоактивных отходов военно-промышленного комплекса (в том числе списанных подводных лодок) и АЭС;
  • затонувшие атомные корабли;
  • космические аппараты с ЯЭУ на борту;
  • места захоронения РАО.

К этому перечню следует добавить, что до сих пор радиационная обстановка в России определяется последствиями аварий, произошедших в 1957 г. на производственном объединении (ПО) «Маяк» (Челябинск-65) в Кыштыме (Южный Урал) и в 1986 г. на Чернобыльской АЭС (ЧАЭС) 1 .

До сих пор радиоактивному загрязнению в результате аварии на Чернобыльской АЭС подвержены сельскохозяйственные угодья в Республике Мордовия и 13 областях Российской Федерации на площади 3,5 млн га. (О последствиях кыштымской аварии сказано ниже.)

Общая площадь радиационно дестабилизированной территории России превышает 1 млн км 2 с числом проживающих на ней более 10 млн человек. В настоящее время на территории России суммарная активность незахороненных РАО составляет более 4 млрд Ки, что эквивалентно по последствиям восьмидесяти чернобыльским катастрофам.

Наиболее неблагоприятная радиационная экологическая обстановка сложилась на севере европейской территории России, в Уральском районе, на юге Западно- и Восточно-Сибирского районов, в местах базирования Тихоокеанского флота.

Мурманская область по количеству ядерных объектов на душу населения превосходит все другие области и страны. Здесь широко распространены объекты, применяющие различные ядерные технологии. Из гражданских объектов это прежде всего Кольская АЭС (КАЭС), имеющая четыре энергоблока (два из них приближаются к выработке ресурса). Около 60 предприятий и учреждений используют различные радиоизотопные приборы технологического контроля. К мурманскому «Атомфлоту» приписано семь ледоколов и один лихтеровоз, на которых установлено 13 реакторов.

Основное количество ядерных объектов связано с вооруженными силами. Северный флот имеет на своем вооружении 123 атомных судна с 235 ядерными реакторами; береговые батареи включают в общей сложности 3–3,5 тыс. ядерных боеголовок.

Добыча и переработка ядерного сырья проводится на Кольском полуострове двумя специализированными горно-обогатительными комбинатами. Радиоактивные отходы, образующиеся при производстве ядерного топлива, при эксплуатации КАЭС и судов с ЯЭУ, накапливаются непосредственно на территории КАЭС и на специальных предприятиях, в том числе на военных базах. Низкоактивные РАО с гражданских предприятий захораниваются под Мурманском; отходы с КАЭС после выдержки на станции направляются на переработку на Урал; часть РАО военного флота временно хранится на плавучих базах.

Принято решение о создании специальных могильников РАО для нужд региона, в которых будут захораниваться уже накопленные отходы и вновь образующиеся, в том числе те, что будут образовываться при выводе из эксплуатации первой очереди КАЭС и судовых ЯЭУ.

В Мурманской и Архангельской областях ежегодно образуется до 1 тыс. м 3 твердых и 5 тыс. м 3 жидких РАО. Указанный уровень отходов удерживается последние 30 лет.

С конца 1950-х гг. по 1992 г. Советским Союзом в Баренцевом и Карском морях были захоронены твердые и жидкие РАО суммарной активностью 2,5 млн Ки, в том числе 15 реакторов с атомных подводных лодок (АПЛ), три реактора с ледокола «Ленин» (из них 13 аварийных реакторов АПЛ, в том числе шесть с невыгруженным ядерным топливом). Затопление ядерных реакторов и жидких РАО происходило и на Дальнем Востоке: в Японском и Охотском морях и у берегов Камчатки.

Опасную радиологическую обстановку создают аварии на АПЛ. Из них наиболее известная, получившая мировой резонанс, трагедия АПЛ «Комсомолец» (7 апреля 1989 г.), в результате которой погибло 42 члена экипажа, а лодка легла на грунт на глубине 1680 м вблизи острова Медвежий в Баренцевом море в 300 морских милях от побережья Норвегии. В активной зоне реактора лодки содержится примерно 42 тыс. Ки стронция-90 и 55 тыс. Ки цезия-137. Кроме того, на лодке есть ядерные боезапасы с плутонием-239.

Район северной Атлантики, где произошла катастрофа, – один из наиболее биологически продуктивных в Мировом океане, имеет особое экономическое значение и входит в сферу интересов России, Норвегии и ряда других стран. Результаты анализов показали, что пока выход радионуклидов с лодки во внешнюю среду незначителен, но в районе затопления формируется зона загрязнения. Этот процесс может иметь импульсный характер, особенно опасно при этом загрязнение плутонием-239, содержащимся в боезарядах лодки. Перенос радионуклидов по трофической цепи морская вода–планктон–рыба грозит серьезными экологическими и политико-экономическими последствиями.

На Южном Урале в Кыштыме расположено ПО «Маяк» (Челябинск-65), где с конца 1940-х гг. производится регенерация отработанного ядерного топлива. До 1951 г. возникающие в ходе переработки жидкие РАО просто сливались в речку Теча. Через сеть рек: Теча–Исеть–Обь – происходил вынос радиоактивных веществ в Карское море и с морскими течениями в другие моря Арктического бассейна. Хотя впоследствии такой сброс был прекращен, спустя более 40 лет концентрация радиоактивного стронция-90 на отдельных участках реки Теча превышала фоновую в 100–1000 раз. С 1952 г. ядерные отходы стали сбрасывать в озеро Карачай (названное техническим водоемом № 3) площадью в 10 км 2 . За счет тепла, выделяемого отходами, озеро в конце концов пересохло. Началась засыпка озера грунтом и бетоном; для окончательной засыпки, по расчетам, еще потребуется ~800 тыс. м скального грунта при стоимости работ 28 млрд рублей (в ценах 1997 г.). Однако под озером образовалась линза, заполненная радионуклидами, суммарная активность которых составляет 120 млн Ки (почти в 2,5 раза выше, чем активность излучения при взрыве 4-го энергоблока ЧАЭС).

Недавно стало известно, что в 1957 г. на ПО «Маяк» произошла серьезная радиационная авария: в результате взрыва емкости с РАО образовалось облако с радиоактивностью 2 млн Ки, растянувшееся на 105 км в длину и 8 км в ширину. Серьезному радиационному заражению (примерно 1/3 чернобыльского) подверглась площадь в 15 тыс. км 2 , на которой проживало более 200 тыс. человек. На радиационно зараженной территории был создан заповедник, где в течение десятков лет проводились наблюдения за живым миром в условиях повышенной радиации. К сожалению, данные этих наблюдений считались секретными, что не позволило дать необходимые медико-биологические рекомендации при ликвидации аварии на ЧАЭС. Аварии на «Маяке» происходили много раз, последняя по времени – в 1994 г. Тогда же в результате частичного разрушения хранилища РАО вблизи Петропавловска-Камчатского произошло временное повышение радиации по сравнению с фоновой в 1000 раз.

До сих пор на ПО «Маяк» ежегодно образуется до 100 млн Ки жидких РАО, часть которых просто сбрасывают в поверхностные водоемы. Твердые РАО складывают в могильники траншейного типа, не отвечающие требованиям безопасности, в результате чего радиоактивно загрязнено более 3 млн га земель. В зоне влияния ПО «Маяк» уровни радиоактивного загрязнения воздуха, воды и почвы в 50–100 раз выше средних значений по стране; отмечено возрастание количества онкологических заболеваний и детских лейкозов. На предприятии начаты строительство комплексов по остекловыванию высокоактивных и битумированию среднеактивных РАО, а также опытная эксплуатация металлобетонного контейнера для долговременного хранения отработанного ядерного топлива реакторов серии РБМК-1000 (подобного типа реакторы были установлены на ЧАЭС).

Суммарная радиоактивность имеющихся РАО в челябинской зоне, по некоторым оценкам, достигает огромной цифры – 37 млрд ГБк. Этого количества достаточно, чтобы превратить всю территорию бывшего СССР в аналог чернобыльской зоны отселения.

Другой очаг «радиоактивной напряженности» в стране – горно-химический комбинат (ГХК) по производству оружейного плутония и переработке РАО, расположенный в 50 км от Красноярска. На поверхности это город без определенного официального названия (Соцгород, Красноярск-26, Железногорск) со 100-тысячным населением; сам комбинат расположен глубоко под землей. Кстати, подобные объекты имеются (по одному) в США, Великобритании, Франции; ведется строительство такого объекта в Китае. О Красноярском ГХК, естественно, мало что известно, кроме того, что переработка ввозимых из-за границы РАО приносит доход 500 тыс. долларов за 1 т отходов. По свидетельству специалистов, радиационная обстановка на ГХК измеряется не в мкР/ч, а в мР/с! В течение десятков лет комбинат закачивает жидкие РАО в глубинные горизонты (по данным на 1998 г., их закачено ~50 млн м 3 с активностью 800 млн Ки), что грозит негативными последствиями как окрестностям Красноярска, так и Енисею – влияние сброса ГХК на воды Енисея прослеживается на расстоянии свыше 800 км.

Впрочем, захоронение высокоактивных РАО в подземные горизонты применяется и в других странах: в США, например, захоронение РАО производят в глубоких соляных копях, а в Швеции – в скальных породах.

Радиоактивное загрязнение окружающей среды атомными электростанциями возникает не только в результате чрезвычайных обстоятельств, а достаточно регулярно. Например, в мае 1997 г. во время технологического ремонта на Курской АЭС произошла опасная утечка в атмосферу цезия-137.

Предприятия атомной отрасли промышленности имеют дело с производством, применением, хранением, транспортировкой и захоронением радиоактивных веществ. Другими словами, образование РАО сопровождает все этапы топливного цикла атомной энергетики (рис. 2), что предъявляет особые требования к обеспечению радиационной безопасности.

Урановую руду добывают на рудниках подземным или открытым способом. Природный уран представляет собой смесь изотопов: урана-238 (99,3%) и урана-235 (0,7%). Поскольку основным ядерным горючим является уран-235, после первичной переработки руда поступает на обогатительный завод, где содержание урана-235 в руде доводится до 3–5%. Химическая переработка топлива заключается в получении обогащенного гексафторида урана 235 UF 6 для последующего производства твэлов (тепловыделяющих элементов).

Разработка урановых месторождений, как и любая другая отрасль горнодобывающей промышленности, ухудшает окружающую среду: выводятся из хозяйственного пользования значительные территории, изменяются ландшафт и гидрологический режим, происходит загрязнение воздуха, почвы, поверхностных и подземных вод радионуклидами. Количество РАО на стадии первичной переработки природного урана очень велико и составляет 99,8%. В России добыча и первичная переработка урана осуществляется только на одном предприятии – Приаргунском горно-химическом объединении. На всех работавших до последнего времени предприятиях по добыче и переработке урановых руд в отвалах и хвостохранилищах находится 108 м 3 РАО с активностью 1,8 10 5 Ки.

Твэлы, представляющие собой металлические стержни, в которых находится ядерное топливо (3% урана-235), размещаются в активной зоне реактора АЭС. Возможны различные виды цепных реакций деления урана-235 (различие в образующихся осколках и числе испускаемых нейтронов), например, такие:

235 U + 1 n ® 142 Ba + 91 Kr + 31 n ,
235 U + 1 n
® 137 Te + 97 Zr + 21 n ,
235 U + 1 n
® 140 Xe + 94 Sr + 21 n .

Тепло, выделяющееся при делении урана, нагревает воду, протекающую через активную зону и омывающую стержни. Примерно через три года содержание урана-235 в твэлах снижается до 1%, они становятся неэффективными источниками тепла и требуют замены. Каждый год треть твэлов удаляется из активной зоны и заменяется новыми: для типичной АЭС с мощностью 1000 МВт это означает ежегодное удаление 36 т твэлов.

В ходе ядерных реакций твэлы обогащаются радионуклидами – продуктами деления урана-235, а также (через серию b-распадов) плутонием-239:

238 U + 1 n ® 239 U(b ) ® 239 Np(b ) ® 239 Pu.

Отработанные твэлы транспортируются из активной зоны по подводному каналу в хранилища, заполненные водой, где хранятся в стальных пеналах несколько месяцев, пока большинство высокотоксичных радионуклидов (в частности, наиболее опасный йод-131) не распадется. После этого твэлы направляются на заводы по регенерации топлива, например для получения плутониевых сердечников для ядерных реакторов на быстрых нейтронах или оружейного плутония.

Жидкие отходы ядерных реакторов (в частности, вода первого контура, которая должна обновляться) после переработки (выпаривания) помещают в бетонные хранилища, расположенные на территории АЭС.

Определенное количество радионуклидов при работе АЭС выделяется в воздух. Радиоактивный йод-135 (один из главных продуктов распада в работающем реакторе) не накапливается в отработанном ядерном топливе, поскольку его период полураспада составляет всего 6,7 ч, но в результате последующих радиоактивных распадов превращается в радиоактивный газ ксенон-135, активно поглощающий нейтроны и потому препятствующий цепной реакции. Для предотвращения «ксенонового отравления» реактора ксенон удаляют из реактора через высокие трубы.

Об образовании отходов на этапах переработки и хранения отработанного ядерного топлива уже говорилось. К сожалению, все существующие и применяемые в мире методы обезвреживания РАО (цементирование, остекловывание, битумирование и др.), а также сжигание твердых РАО в керамических камерах (как на НПО «Радон» в Московской области) неэффективны и представляют значительную опасность для окружающей среды.

Особенно острой проблема утилизации и захоронения РАО атомных электростанций становится в настоящее время, когда наступает время демонтажа большинства АЭС в мире (по данным МАГАТЭ 2 , это более 65 реакторов АЭС и 260 реакторов, использующихся в научных целях). Отметим, что за время работы АЭС все элементы станции становятся радиоактивно опасными, особенно металлические конструкции зоны реакторов. Демонтаж АЭС по стоимости и срокам сравним с их строительством, при этом до сих пор нет приемлемой научно-технической и экологической технологии проведения демонтажа. Альтернатива демонтажу – герметизация станции и ее охрана в течение 100 и более лет.

Еще до прекращения пожара на ЧАЭС началась прокладка туннеля под реактор, создание под ним выемки, которую затем заполнили многометровым слоем бетона. Бетоном был залит и блок, и прилегающие к нему территории – это «чудо строительства» (и пример героизма без кавычек) ХХ в. получило название «саркофаг». Взорвавшийся 4-й энергоблок ЧАЭС до сих пор представляет собой крупнейшее в мире и опаснейшее плохо обустроенное хранилище РАО!

При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе – это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.

Проблема РАО – составная часть «Повестки дня на XXI век»», принятой на Всемирной встрече на высшем уровне по проблемам Земли в Рио-де-Жанейро (1992) и «Программы действий по дальнейшему осуществлению “Повестки дня на ХХI век”», принятой Специальной сессией Генеральной Ассамблеи Организации Объединенных Наций (июнь 1997 г.). В последнем документе, в частности, намечена система мер по совершенствованию методов обращения с радиоактивными отходами, по расширению международного сотрудничества в этой области (обмен информацией и опытом, помощь и передача соответствующих технологий и др.), по ужесточению ответственности государств за обеспечение безопасного хранения и удаления РАО.

В «Программе действий...» констатируется ухудшение общих тенденций в области устойчивого развития мира, но выражается надежда, что к следующему международному экологическому форуму, намеченному на 2002 год, будет отмечен осязаемый прогресс в обеспечении устойчивого развития, направленного на создание благоприятных условий жизни будущих поколений.

Е.Э.Боровский

________________________________
1 Все приведенные ниже данные взяты из материалов открытых публикаций в государственных докладах «О состоянии окружающей природной среды Российской Федерации» Государственного комитета РФ по охране окружающей среды и в российской экологической газете «Зеленый мир» (1995–1999 гг.).
2 Международное агентство по атомной энергии.

Закон об использование атомной энергетики гласит о том, что радиоактивные отходы - это вещества, материалы, приборы и прочее оборудование, содержащие радионуклиды повышенного уровня и утратившие свои потребительские свойства, а также непригодные для повторного использования.

При каких обстоятельствах, образуются отходы, содержащие радиоактивные элементы

Радиоактивные отходы содержатся в ядерном топливе, они образуются во время эксплуатации атомных электростанций, это один из основных источников. Также их можно получить в результате:

  • добычи радиоактивной руды;
  • переработки руды;
  • производства элементов тепловыделения;
  • утилизации отработанного ядерного топлива.

Во время разработки вооружёнными силами России ядерного оружия, также были образованы радиоактивные отходы, такие действия, как, производство, консервация и ликвидация использовавших этот материал объектов не реабилитировали предыдущие работы с этим материалом. В результате чего на территории страны находится немало отходов, образовавшихся в процессе производства ядерных материалов.

Военный флот, подводные лодки, а также гражданские корабли, использующие ядерные реакторы, тоже оставляют радиоактивные отходы во время своей эксплуатации и даже после их выхода из строя.

Работа с радиоактивными отходами в России связана с такими отраслями:

  • В народном хозяйстве, используя изотопную продукцию.
  • В лечебных или фармацевтических учреждениях и лабораториях.
  • Химическая, металлургическая и прочие промышленные отрасли, работающие в сфере обработки.
  • Проведение научных опытов и исследований, используя ядерное топливо или подобные элементы.
  • Даже службы безопасности, в частности, таможенный контроль.
  • Добыча нефти или газа, также требует использовать ядерные вещества, оставляющие после себя, радиоактивные отходы.

Важно знать. Отработанное ядерное топливо, не подпадёт, под категорию радиоактивные отходы, согласно российскому законодательству.

Разделение на виды

Постановление от Правительства РФ, внесло коррективы, по которым радиоактивные отходы могут быть:

  • твёрдого;
  • жидкого;
  • газ подобного;

видов. Классификация радиоактивных отходов, относит к твёрдым, жидким и газ подобным все элементы и вещества, содержащие радионуклиды. Исключение, возможно, лишь в том случае, если образование не связано с атомной энергетикой, и содержание радионуклидов обусловлено добычей или переработкой природных минералов и органического сырья с повышенным уровнем радионуклидов или вблизи его природного источника. Концентрация, которого в пределах допустимых норм, установленных постановлением российского Правительства, не превышает 1.

РАО, принадлежащие к виду «твёрдых», содержат техногенные радионуклиды, из которых исключают такие источники, как закрытые предприятия, работающие с подобными веществами. Их делят на четыре категории:

  • высокоактивные;
  • средне неактивные;
  • низко активные;
  • очень низко активные.

РАО, прибывающие, в «жидком» состояние делят всего на три категории:

  • высокоактивные;
  • средне активные;
  • низко активные.

Закрытые, отработавшие предприятия и заводы, работавшие с радионуклидами, относятся к другим категориям РАО.

Классификация РАО

Существует Федеральный закон, в целях которого, классификация радиоактивных отходов разделяет их на такие виды:

  • Удаляемые – это вещества, для которых риск, связанный с их воздействием на окружающую среду не возрастает. И в случае их извлечения с места хранения для последующего захоронения, не превышает риск их пребывания на территории их нахождения. Данный вид требует довольно больших финансовых затрат, для выполнения всех манипуляций с ним и подготовки специального оборудования и обучения персонала утилизирующих организаций.
  • Особые – РАО, этот вид подвергает очень большой опасности окружающую среду, в случае их извлечения, транспортировки и дальнейших действий, для очищения территории или захоронении в другом месте. Манипуляции с таким видом также очень затратные с финансовой стороны. В случаях с подобным видом более безопасно и выгодно с экономической стороны проводить процесс захоронения в месте их первичного расположения.

Классификация радиоактивных отходов проходит в зависимости от таких признаков:

  • Период полураспада радионуклидов – короткоживущие или долгоживущие.
  • Удельная активность – высокоактивная, средне активная и низко активная РАО.
  • Агрегатное состояние – может быть жидким, твёрдым и газо подобным.
  • Содержание ядерных элементов, присутствует или отсутствует в отработанном материале.
  • Отработавшие, закрытые предприятия по добычи или переработке урановых пород, которые излучают ионизирующие лучи.
  • РАО, не связанные с использованием или работой над атомной энергетикой. Источниками, которых являются перерабатывающие предприятия по добычи органических и минеральных сырьевых руд, с повышенным уровнем содержания радионуклидов природного происхождения.

Классификация РАО разработана Правительством Российской Федерации, для разделения их на виды. А также дальнейшего удаления или захоронения на месте их нахождения.

Система классификации

В данное время, система классификации разработана не досконально и требует постоянных доработок, это определяется отсутствием согласованности национальных систем.

Основа классификации содержит учёт вариантов, последующего захоронения РАО. Основным признаком чего, служит длительность периода распада нуклида, потому, что технология захоронения напрямую зависит от этого показателя. Они захороняются специальными укрепляющими растворами как минимум на тот период, который они могут быть опасны для окружающей среды. Согласно этим данным, система классификации делит все отработанные и опасные вещества на следующие категории.

Освобождённые от контроля

Низко активные и средне активные РАО

Они содержат в себе достаточный уровень радионуклидов, чтобы нести угрозу персоналу, работающему с ними и населению, проживающему в ближайшей округе. Порой они имеют настолько высокий уровень активности, что требуют охлаждения и применения мер по защите от них. Это категория содержит в себе две группы: долгоживущие и коротко живущие виды. Способы их захоронения очень разнообразны и индивидуальны.

Этот тип имеет такое количество радионуклидов, что требует постоянного охлаждения в процессе работы с ним. По окончании, каких-либо действий, он требует надёжной изоляции от биосферы, иначе процесс заражения захватит всю округу, территории на которой он находится.

Типичные характеристики

Класс отходов, освобождённый от контроля (CW), имеет уровень активности, равный 0,01 мЗв или ниже с учётом годовой дозы для населения. Не имеет ограничений, по радиологическому захоронению.

Средне и низко активные (LILW) характеризуются уровнем активности выше величины для CW, но при этом тепловыделение у этого класса ниже 2Вт/м3.

Класс коротко живущий (LILW-SL) – имеет такие типичные характеристики. Долго живучесть радионуклидов имеет ограниченную концентрацию (менее 400 Бк/г на все упаковки). Местами захоронения таких классов являются глубинные или приповерхностные хранилища.

Долгоживущие отходы (LILW-LL) – концентрация у которых выше, чем у короткоживущих. Захоронятся такие классы, должны лишь в глубинных хранилищах. Это одно из главных требований, по отношению к ним.

Класс высокоактивных (HLW) – характеризуются очень высокой концентрацией долгоживущих радионуклидов, тепловая отдача у них более 2Вт/м3. Местами их захоронения также должны быть глубинные хранилища.

Правила обращения с РАО

Радиоактивные отходы требуют классификации не только ради их разделения по уровню опасности и возможности выбирать методы утилизации, но ещё и для определения указаний, по методам обращения с ними, в зависимости от их класса. Они должны отвечать следующим показателям:

  • Принципы обеспечения защиты здоровья человека, или хотя бы приемлемого уровня защиты, в зависимости от радиационного излучения элементами РАО.
  • Охраной окружающей среды – приемлемым уровнем защищенности экологии от воздействия РАО.
  • Взаимозависимость между всеми стадиями образования РАО, а также обращения с их элементами.
  • Защита будущего поколения, методом прогнозирования уровня облучения, и нормированием количества захороненного материала на каждом могильнике, основываясь на информации нормативных документов.
  • Не возлагать слишком больших надежд на будущее поколение, связанных с необходимостью утилизировать радиоактивные отходы.
  • Контролировать образование и накопление РАО, ограничивать их скопление и минимизировать достигнутый уровень.
  • Предотвращать аварии, или ослаблять возможные последствия, в случае возникновения таких ситуаций.

Радиоактивные отходы – самый опасный вид мусора на земле, требующей очень внимательного и осторожного обращения. Приносящий самый большой урон экологии, населению и всем живим существам, на территории его основания.

Узнайте все про радиоактивные отходы

    Понятие радиоактивных отходов

    Источники появления отходов

    Классификация

    Обращение с радиоактивными отходами

    Основные стадии обращения с радиоактивными отходами

    Геологическое захоронение

    Трансмутация

Радиоактивные отходы (РАО ) - отходы, содержащиерадиоактивныеизотопыхимических элементови не имеющие практической ценности.

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные отходы - это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. По российскому законодательству, ввоз радиоактивных отходов в страну запрещен.

Часто путают и считают синонимами радиоактивные отходы и отработавшее ядерное топливо. Следует различать эти понятия. Радиоактивные отходы, это материалы, использование которых не предусматривается. Отработавшее ядерное топливо представляет собой тепловыделяющие элементы, содержащие остатки ядерного топлива и множество продуктов деления, в основном 137 Csи 90 Sr, широко применяемые в промышленности, сельском хозяйстве, медицине и научной деятельности. Поэтому оно является ценным ресурсом, в результате переработки которого получают свежее ядерное топливо и изотопные источники.

Источники появления отходов

Радиоактивные отходы образуются в различных формах с весьма разными физическими и химическими характеристиками, такими, как концентрации и периоды полураспада составляющих их радионуклидов. Эти отходы могут образовываться:

В газообразной форме, как, например, вентиляционные выбросы установок, где обрабатываются радиоактивные материалы;

В жидкой форме, начиная от растворов сцинтилляционных счётчиков из исследовательских установок до жидких высокоактивных отходов, образующихся при переработке отработавшего топлива;

В твёрдой форме (загрязнённые расходные материалы, стеклянная посуда из больниц, медицинских исследовательских установок и радиофармацевтических лабораторий, остеклованные отходы от переработки топлива или отработавшего топлива от АЭС, когда оно считается отходами).

Примеры источников появления радиоактивных отходов в человеческой деятельности:

ПИР (природные источники радиации). Существуют вещества, обладающие природной радиоактивностью, известные как природные источники радиации (ПИР). Бо́льшая часть этих веществ содержит долгоживущие нуклиды, такие как калий-40, рубидий-87 (являются бета-излучателями), а также уран-238, торий-232 (испускают альфа-частицы) и их продукты распада. .

Работа с такими веществами регламентируются санитарными правилами, выпущенными Санэпиднадзором.

Уголь. Уголь содержит небольшое число радионуклидов, таких как уран или торий, однако содержание этих элементов в угле меньше их средней концентрации в земной коре.

Их концентрация возрастает в зольной пыли, поскольку они практически не горят.

Однако радиоактивность золы также очень мала, она примерно равна радиоактивности чёрного глинистого сланца и меньше, чем у фосфатных пород, но представляет известную опасность, так как некоторое количество зольной пыли остаётся в атмосфере и вдыхается человеком.При этом совокупный объём выбросов достаточно велик и составляет эквивалент 1000 тонн урана в России и 40000 тонн во всём мире.

Нефть и газ. Побочные продукты нефтяной и газовой промышленности часто содержат радий и продукты его распада. Сульфатные отложения в нефтяных скважинах могут быть очень богаты радием; вода, нефть и газ в скважинах часто содержат радон. При распаде радон образует твёрдые радиоизотопы, образующие осадок внутри трубопроводов. На нефтеперерабатывающих заводах участок производства пропана обычно является одной из самых радиоактивных зон, так как радон и пропан обладают одинаковой температурой кипения.

Обогащение полезных ископаемых. Отходы, полученные при обогащении полезных ископаемых, могут обладать природной радиоактивностью.

Медицинские РАО. В радиоактивных медицинских отходах преобладают источники бета- и гамма-лучей. Эти отходы разделены на два основных класса. В диагностической ядерной медицине используются короткоживущие гамма-излучатели, такие как технеций-99m (99 Tc m). Большая часть этих веществ распадается в течение короткого времени, после чего может быть утилизирована как обычный мусор. Примеры других изотопов, используемых в медицине (в круглых скобках указан период полураспада): Иттрий-90, используется при лечении лимфом(2,7 дня); Иод-131, диагностика щитовидной железы, лечение рака щитовидной железы (8 дней); Стронций-89, лечение рака костей, внутривенные инъекции (52 дня); Иридий-192, брахитерапия (74 дня); Кобальт-60, брахитерапия, внешняя лучевая терапия (5,3 года); Цезий-137, брахитерапия, внешняя лучевая терапия (30 лет).

Промышленные РАО. Промышленные РАО могут содержать источники альфа-, бета-, нейтронного или гамма-излучения. Альфа-источинки могут применять в типографии (для снятия статического заряда); гамма-излучатели используются в радиографии; источники нейтронного излучения применяются в различных отраслях, например, при радиометрии нефтяных скважин. Пример применения бета-источников: радиоизотопные термоэлектрические генераторы для автономных маяков и иных установок в труднодоступной для человека местности (например, в горах).

Захоронение радиоактивных отходов, необходимо для предотвращения влияния вредных химических элементов и радиоактивных изотопов на окружающую среду, экологию, а, главное, на здоровье человека.

Ежегодно уровень образования увеличивается, а утилизация и переработка по-прежнему не захватывает всё количество поступающих отходов. Рециркуляция и переработка для вторичного использования происходят слишком медленно, в то время как утилизация радиоактивных отходов требует более активных действий.

Источники загрязнения радиоактивными отходами окружающей среды

Источником радиоактивных или может быть любое предприятие, использующее или обрабатывающее радиоактивные изотопы. Также это могут быть организации производящие материалы ЕВРМ, производство которых дает радиоактивные отходы. Это промышленность ядерного или медицинского сектора, использующие или генерирующие радиационные материалы для изготовления своей продукции.

Такие отходы могут образовываться в разных формах, а, главное, принимать разные физические и химические характеристики. Такие как концентрация и период полураспада основного элемента, составляющего радионуклиды. Они могут образовываться:

  • При переработке сцинтилляционных счетчиков, раствор, которого переходит в жидкую форму.
  • При переработке использованного топлива.
  • Во время работы вентиляционных систем также могут происходить выбросы радиоактивных материалов в газ подобных формах, на различных предприятиях,имеющих, дело с подобными веществами.
  • Медицинские принадлежности, расходные материалы, лабораторная посуда, радиофармацевтических организаций, стеклотара, использованная при работе с топливом для АЭС все это также можно считать источником заражения.
  • Природные источники радиации, известные как ПИР также могут излучать радиоактивное заражение. Основная часть подобных веществ это нуклиды (бета-излучатели), калий – 40, рубидий – 87, торий – 232, а также уран – 238 и их продукты распада, испускающие альфа-частицы.

Санэпиднадзор выпустил список регламент санитарных правил, для работы с подобными веществами.

Небольшая часть радионуклидов содержится даже в обычном угле, но она настолько мало что даже средняя концентрация в земной поверхности таких элементов превышает их долю. А вот угольная зола по радиоактивности уже равна черному глинистому сланцу, так как радионуклиды не горят. Во время использования угля в топках лишь освобождаются радиоактивные элементы и с зольной пылью попадают в атмосферу. Далее, с воздухом человек ежегодно вдыхает ядовитые химические элементы, попавшие туда во время работы каких-либо электростанций, использующих уголь. Совокупность таких выбросов, в России, равна примерно 1000 тонн урана.

Отработанные элементы газовой и нефтяной продукции также могут содержать такой элемент, как радий, распад такого продукта может зависеть от сульфатных отложений в нефтяных скважинах. А также радон, который может быть составляющим воды, газа или нефти. Распад радона образовывает твердые радиоизотопы, как правило, на стенках трубопровода он образовывается осадком.

Участки производства пропана, на нефтеперерабатывающих предприятиях считают самыми опасными радиоактивными зонами, поскольку радон и пропан имеют одинаковый уровень температуры кипения. Испарения, попадая в воздух осадком, опускаются на землю и заражают все территорию.

Утилизация радиоактивных отходов такого вида практически невозможна, так как микроскопические частицы присутствуют в воздухе всех городах страны.

Медицинские РАО также обладают источниками бета и гамма лучей, их разделяют на два класса. Ядерная диагностическая медицина использует короткоживущий гамма излучатель (технеций – 99-м). Его большая часть распадается за довольно короткий промежуток времени, после чего он не имеет никакого влияния на окружающую среду и утилизируется с обычным мусором.

Классификация радиоактивных отходов и их элементов

Существует три группы, на которые делят радиоактивные отходы, это:

  • низко активные;
  • средне активные;
  • высоко активные.

Первые также делят еще и на четыре класса:

  • GТСС.

Последний, из которых самый опасный.

Также существует класс трансурановых РАО, к нему относят альфа-отходы, излучающие трансурановые радионуклиды, у которых период полураспада превышает 20 лет. А концентрация более 100 нКи/г. В связи с тем, что период распада у них намного больше, чем у обычных урановых отходов, захоронение производится более тщательно.

Методы захоронения или утилизации радиоактивных отходов

Даже для безопасной перевозки и хранения такие отходы необходимо обработать и кондиционировать, для их дальнейшей трансформации в более подходящие формы. Защита человека и природной среды, самые актуальные вопросы. Захоронение радиоактивных отходов, не должно приносить какой-либо урон экологии и фауне в целом.

Существует несколько видов борьбы с ядерными веществами, выбор которого завит от уровня опасности последнего.

Остекловывание.

Высокий уровень активности (HLW) вынуждает применять остекловывание как метод захоронения, для того, чтобы придать веществу твердую форму, которая останется в таком устойчивом виде на тысячи лет. При захоронении радиоактивных отходов в России, используют боросиликатное стекло, его стабильная форма, позволит сохранить любой элемент внутри такой матрицы на многие тысячелетия.

Сжигание.

Утилизация радиоактивных отходов с использованием данной технологии полной быть не может. Ее используют, как правило, для частичного уменьшения объема материалов несущих в себе угрозу экологии. При таком методе появляется беспокойство за атмосферу, ведь несгоревшие частицы нуклидов попадают в воздух. Но, тем не менее ее используют для уничтожения таких видов зараженных материалов, как:

  • дерево;
  • макулатура;
  • одежда;
  • резина;

Выбросы в атмосферу не превышают установленных норм, так как подобные печи спроектированы и разработаны по самым высоким меркам, современного технологического процесса.

Уплотнение.

Это довольно известная и надежная технология, позволяющая уменьшить объем (применяется для переработки ТБО и других крупногабаритных изделий) отходов низкого уровня опасности. Диапазон установок для прессов подобных действий достаточно велик и может колебаться от 5 т. до 1000 т. (суперуплотнитель). Коэффициент уплотнения в таком случае может быть равен 10 и выше, в зависимости от обрабатываемого материала. В подобной технологии используют гидравлические или пневматические пресса с низкой силой давления.

Цементирование.

Цементирование могильников радиоактивных отходов в России один из самых распространённых видов иммобилизации радиоактивных веществ. Используется специальный жидкий раствор, в состав которого входит множество химических элементов, на их прочность практически не влияют природные условия, а значит, срок их эксплуатации почти неограничен.

Технология здесь заключается в том, чтобы поместить зараженный предмет или радиационные элементы в контейнер, затем залить его заранее приготовленным раствором, дать время застыть и переместить храниться на закрытую территорию.

Эта технология подходит для отходов среднего уровня опасности.

Давно бытует мнение, что в скором времени захоронение радиоактивных отходов можно будет производить на Солнце, как сообщают СМИ, в России уже разрабатывают такой проект. Но пока это лишь в планах, нужно заботиться об окружающей среде и экологии родного края.