Захоронение отходов аэс. Методы захоронения или утилизации радиоактивных отходов. Комплекс описанных проблем в сфере обращения с РАО обуславливает необходимость модернизации действующей системы

Ядерные отходы – термин, появившийся сравнительно недавно. Гонка вооружений 20 века ускорила процесс использования энергии атома. В любом случае, будь то военное использование этой энергии или мирное, в процессе образуются отходы, опасные для всего живого на Земле. Статья раскрывает некоторые аспекты проблемы утилизации ядерных отходов.

Обширные исследования в области ядерной физики в начале ХХ века привели к масштабному использованию энергии атома и радиоактивных материалов в науке, промышленности, медицине, сельском хозяйстве и в образовательном процессе. Понятно, что эта практика сопровождается образованием разных отходов. Особенностью этого вида отходов является наличие в них радиоактивных элементов. Нельзя забывать о том, что радиоактивность присутствовала на Земле всегда и присутствует сейчас. Вопрос состоит только в том, каков уровень этой радиоактивности.

Ядерные отходы (синоним радиоактивные отходы – РАО) – вещества, содержащие опасные элементы, которые нельзя использовать в дальнейшем. Недопустимо путать данный термин с термином «отработанное ядерное топливо». Отработанное ядерное топливо (ОЯТ) – это смесь веществ, состоящая из остатков ядерного топлива и продуктов деления, таких как изотопы цезия с массой 137 и изотопы стронция с массой 90. ОЯТ – это дополнительный источник для получения ядерного топлива.

Критерии отнесения отходов к радиоактивным

По агрегатному состоянию РАО могут быть в газообразном, жидком и твердом виде. Чтобы понять, какой «мусор» можно считать радиоактивным, обратимся к нормативам.

Согласно нормам радиационной безопасности СанПин 2.6.1.2523-09 отходы относят к радиоактивным в случае, когда результат сложения отношений удельных (твердые и жидкие отходы) и объемных (газы) активностей радионуклидов в отходах к их минимальной удельной активности больше, чем один. Если вычислить это невозможно, то критерием причисления отходов к радиоактивным считается степень излучения для отходов в твердом состоянии:

  • один Бк/г – источники, испускающие α-частицы;
  • сто Бк/г – источники, испускающие β-частицы;

и для жидкостей:

  • 0,05 Бк/г – источники, испускающие α-частицы;
  • 0,5 Бк/г — источники, испускающие β-частицы.

Отходы, испускающие γ-излучение попадают в категорию ядерных, когда мощность дозы на расстоянии 10 см от их поверхности больше одного мкЗв/ч.

Бк – Беккерель равен одному распаду в секунду на один грамм (килограмм) вещества.

Зв – Зиверт равен примерно сто рентген. Рентгенами измеряется общее излучение, а зивертами – облучение, полученное человеком.

Отходы в твердом агрегатном состоянии можно рассортировать по мощности дозы γ-излучения на расстоянии 10 см от поверхности на отходы:

  • низкой активности - 1 мкЗв/ч – 0,3 мЗв/ч;
  • средней активности - 0,3 мЗв/ч – 10 мЗв/ч;
  • высокой активности - более 10 мЗв/ч.

Короткоживущие отходы содержат нуклиды с периодом распада их до безобидного уровня менее 1 года. К очень низкоактивным отходам (ОНАО) относятся отходы, которые не превышают дозу γ-излучения в 1 мкЗв/ч.

Отдельно выделяют отходы отработанных конструкций реакторов, транспорта и средств технического контроля.

Как утилизируют ядерные отходы, способы утилизации и переработки

Первоначально предприятие, на котором образуются ядерные отходы, должно осуществить их сбор, дать характеристику, произвести сортировку и обеспечить их временное хранение. Затем надлежащим образом упакованные ядерные отходы должны транспортироваться на предприятие, где производится переработка РАО. Завод выбирает технологию по переработке и захоронению с учетом инженерных и нетехнических характеристик обращения с радиоактивными отходами.

Отходы высокой радиоактивности служат источником для получения вторичного сырья (примерно 95% от объема отходов). Оставшиеся 5% веществ, период полураспада которых составляет сотни и тысячи лет, подвергают остеклению и хранятся в глубоких скважинах, находящихся в скалах.

Среднеактивные и низкоактивные РАО подвергаются следующим видам переработки:

  1. Твердые:
  • сгораемые отходы подвергаются сжиганию в печах, плазменному сжиганию, термохимической обработке, сжиганию при остекловывании или кислотному разложению;
  • прессуемые – компактированию и суперкомпактированию;
  • металлические – компактированию и плавлению;
  • несгораемые и непрессуемые – отправляются в контейнеры.
  1. Жидкие:
  • органические сгораемые отходы подвергаются сжиганию в печах или отдельно, или вместе с твердыми отходами;
  • органические несгораемые – адсорбции на порошках и цементированию, термохимической переработке;
  • водные малосолевые – концентрированию и цементированию;
  • водные высокосолевые – битумированию и остекловыванию.
  1. Газообразные отходы подвергаются улавливанию химическими реагентами или с помощью адсорбции.

Рассмотрим разные способы утилизации ядерных отходов, которые осуществляет завод по переработке, по отдельности.

Сжиганию в специально сконструированных печах подвергается одежда, бумага, дерево, бытовой мусор, которые подверглись облучению. Пепел подлежит цементированию.

Печь для сжигания ядерных отходов

Компактирование – это прессование ТРО под давлением. Данный способ переработки неприемлем для взрывоопасных и легковоспламеняющихся веществ.

Суперкомпактирование – это спрессовывание ТРО, прошедших стадию компактирования. Производится с целью уменьшения объемов отходов.

Цементирование – это один из самых доступных методов переработки ядерных отходов, особенно жидких. Его преимущества:

  • доступность;
  • негорючесть и непластичность конечного продукта;
  • дешевизна оборудования и емкостей для переработки;
  • относительная простота технологии.

Битумирование – это включение РАО, особенно отходов, содержащих какие – либо жидкости, в состав битума. По технологической сложности битумирование превосходит цементирование, но оно имеет и некоторое преимущество. При битумировании происходит испарение влаги, поэтому отходы не увеличиваются в объеме и остаются влагостойкими.

Остекловывание – это способ переработки ядерных отходов разных уровней активности. Стекло является материалом, который может поглощать большой объем веществ, не входящих в его состав. Кроме того, полученный продукт не подвергнется разложению очень долгое время.

После переработки контейнеры с ядерными отходами подвергаются захоронению. По данным МАГАТЭ захоронение – это размещение отходов в специально подготовленных местах (могильник ядерных отходов) без цели дальнейшего их использования. Захоронению подлежат отходы, переведенные в твердое состояние и упакованные надлежащим образом.

Существуют такие виды захоронений:

  1. Глубоководное захоронение ядерных отходов: контейнеры размещаются на дне моря глубиной примерно 1000 м.
  2. Геологическое: изоляция отходов в специально подготовленных инженерных сооружениях в устойчивых слоях породы на глубине нескольких сотен метров. В основном так хоронят высокоактивные и долгоживущие РАО.
  3. Приповерхностное: контейнеры помещаются в инженерные сооружения на поверхности и близком к ней слое земли или в шахтах на глубине несколько десятков метров от поверхности. Так хоронят короткоживущие, низко и среднеактивные отходы.
  4. Захоронение в глубинные отложения океанического дна: размещение контейнеров с отходами в осадочные породы на дне моря на глубине нескольких тысяч метров.
  5. Захоронение под океаническим дном: размещение РАО в инженерных сооружениях, которые находятся в породах приберегового морского дна.

Куда девают ядерные отходы в России

Куда девают ядерные отходы в нашей стране? В России, как и во всем мире, работа с ядерными отходами ведется на специализированных предприятиях, снабженных качественным оборудованием и техникой. Ежегодно на территории нашего государства образуется 5 миллионов тонн ядерных отходов, из них перерабатывается и подвергается утилизации 3 миллиона тонн. К 2025 году предполагается 89,5% РАО хранить в безопасном для людей и среды обитания состоянии, 8% – в специальных емкостях, 0,016% – в непостоянных хранилищах.

Где хранятся ядерные отходы в России, которые были накоплены еще при гонке вооружений СССР и США? Вспомним примеры использования энергии атома и создания могильников ядерных отходов в нашей стране.

В красивейших местах Челябинской области спрятались под листвой деревьев печально известные река Теча, озеро Карачай и закрытый город Озерск. Именно здесь в 1948 году заработал первый реактор производственного объединения «Маяк» по созданию оружейного плутония. Да, Советский Союз дал достойный ответ США, став лидером ядерной гонки вооружений. Но вот куда девать отходы, ни в Соединенных штатах, ни в СССР особо не задумывались.

Первым могильником ядерных отходов предприятия стала небольшая речка Теча. В 1957 году к постоянно сбрасываемым в реку ядерным отходам добавились элементы, полученные в результате взрыва емкости с РАО. Кроме того, в воздухе сформировалось радиоактивное облако, заразившее территорию примерно на 300 – 350 км в северо-восточном направлении от комбината «Маяк». После этой страшной аварии Советское правительство определило новое место — хранилище опаснейших отходов. Им стало озеро в Челябинской области.

Однако в 1967 году в результате засухи со дна озера Карачай – свалки ядерных отходов на многие километры вокруг были рассеяны те же радиоактивные элементы. После этого было принято решение о ликвидации Карачая. В конце 60 – х годов прошлого столетия озеро начали консервировать, и процесс этот продлился более 40 лет. Сегодня в нем захоронено с использованием новейших технологий более 200 тысяч кубометров высокоактивных техногенных илов и суглинков.

Последний сварочный шов защитного экрана на объекте «Кратон — 3»

В 70 – х годах двадцатого столетия на территории Якутии были проведены мирные подземные взрывы «Кристалл» и «Кратон — 3», в результате чего прилегающая территория подверглась радиоактивной атаке. В начале двадцать первого столетия на этих объектах была проведена реабилитация, созданы могильники ядерных отходов, что значительно улучшило радиоактивную обстановку.

Современный вид объекта «Кратон-3»

В интернете можно посмотреть карты, наглядно изображающие места захоронения ядерных отходов в России.

Об уникальных способах переработки радиоактивных отходов на предприятии Дальнего Востока рассказывают в следующем видео

Научно – технический прогресс невозможен без развития атомной науки и техники. Однако в современной гонке вооружений не стоит забывать о возможных последствиях. РАО представляют угрозу для всего человечества и для всех живых организмов нашей планеты. Поэтому необходимо разрабатывать новые безопасные методы утилизации ядерных отходов.

Ю. В. Дублянский

Я расскажу в этой статье о проблеме радиоактивных отходов - скорее, о ее глобальном аспекте, чем о конкретных региональных проблемах. Я буду здесь опираться в основном на американские примеры. Пусть это вас не смущает: во многих аспектах этой проблемы США и Россия весьма схожи, иногда как две стороны одной медали, а иногда - как зеркальные отражения.

Откуда берутся радиоактивные отходы и куда их девать?

Основные источники радиоактивных отходов (РАО) высокого уровня активности - атомная энергетика (отработанное ядерное топливо ) и военные программы (плутоний ядерных боеголовок, отработанное топливо транспортных реакторов атомных подводных лодок, жидкие отходы радиохимических комбинатов и др .). Количество РАО, накопленных при производстве ядерного оружия, на порядок (то есть не менее чем в 10 раз) выше отходов ядерной энергетики. Если даже военные программы сократятся, то отходы «мирной» энергетики намного вырастут, поскольку ядерная энергия - один из двух важнейших в обозримом будущем источников энергии, наряду с сожжением углеводородных топлив, производящих опасный для теплового равновесия Земли «парниковый эффект». Предполагается, что к 2000 году в мире будет накоплено около 200 тысяч тонн РАО, из них около 2 тысяч тонн плутония

Возникает вопрос: следует ли рассматривать РАО просто как отходы или как потенциальный источник энергии? От ответа на этот вопрос зависит, хотим ли мы их хранить (в доступном виде) или захоранивать (т. е. делать недоступными). Общепринятый ответ в настоящее время состоит в том, что РАО - это действительно отходы, за исключением, может быть, плутония. Плутоний теоретически может служить источником энергии, хотя технология получения энергии из него сложна и довольно опасна. Многие страны, в том числе Россия и США, находятся теперь на распутье: «запускать» плутониевую технологию, используя плутоний, высвобождаемый при разоружении , или захоранивать этот плутоний? Недавно правительство России и Минатом объявили, что они хотят перерабатывать оружейный плутоний совместно с США; это означает возможность развития плутониевой энергетики. Мы не будем заниматься здесь энергетическим использованием РАО, а только проблемой их захоронения.

Избавление от РАО . В течение 40 лет ученье сравнивали варианты избавления от РАО. Главная идея - их надо поместить в такое место, чтобы они не могли попасть в окружающую среду и нанести вред человеку. Эту способность вредить РАО сохраняют в течение десятков и сотен тысяч лет. Облученное ядерное топливо , которое мы извлекаем из реактора, содержит радиоизотопы с периодами полураспада от нескольких часов до миллиона лет (период полураспада - это время, в течение которого количество радиоактивного вещества уменьшается вдвое, причем в ряде случаев возникают новые радиоактивные вещества). Но общая радиоактивность отходов значительно снижается со временем. Для радия период полураспада составляет 1620 лет, и нетрудно подсчитать, что через 10 тысяч лет останется около 1/50 первоначального количества радия. Нормативы большинства стран предусматривают обеспечение безопасности отходов на срок 10 тысяч лет. Конечно, это не значит, что по истечении этого времени РАО более не будут опасны: мы попросту перелагаем дальнейшую ответственность за РАО на отдаленное потомство. Для этого надо, чтобы места и форма захоронения этих отходов были известны потомству. Заметим, что вся письменная история человечества меньше 10 тысяч лет. Задачи, возникающие при захоронении РАО, беспрецедентны в истории техники: люди никогда не ставили себе таких долговременных целей.

Интересный аспект проблемы состоит в том, что надо не только защищать человека от отходов, но одновременно защищать отходы от человека. За срок, отводимый на их захоронение, сменятся многие социально-экономические формации. Нельзя исключить, что в определенной ситуации РАО могут стать желанным объектом для террористов, мишенями для удара при военном конфликте и т.п. Понятно, что, рассуждая о тысячелетиях, мы не можем полагаться, скажем, на правительственный контроль и охрану - невозможно предвидеть, какие изменения могут произойти. Может быть, лучше всего сделать отходы физически недоступными для человека, хотя, с другой стороны, это затруднило бы нашим потомкам дальнейшие меры безопасности.

Понятно, что ни одно техническое решение, ни один искусственный материал не может «работать» в течение тысячелетий. Очевидный вывод: изолировать отходы должна сама природная среда. Рассматривались варианты: захоронить РАО в глубоких океанических впадинах, в донных осадках океанов, в полярных шапках ; отправлять их в космос ; закладывать их в глубокие слои земной коры . В настоящее время общепринято, что оптимальный путь - захоронение отходов в глубоких геологических формациях.

Форма отходов. Понятно, что РАО в твердой форме менее склонны к проникновению в окружающую среду (миграции), чем жидкие РАО. Поэтому предполагается, что жидкие РАО будут вначале переводиться в твердую форму (остекловываться, превращаться в керамику и т.п.). Тем не менее, в России все еще практикуется закачка жидких высокоактивных РАО в глубокие подземные горизонты (Красноярск, Томск, Димитровград).

В настоящее время принята так называемая «многобарьерная » или «глубоко эшелонированная » концепция захоронения. Отходы сперва сдерживаются матрицей (стекло, керамика, топливные таблетки), затем многоцелевым контейнером (используемым для транспортировки и для захоронения), затем сорбирующей (поглощающей) отсыпкой вокруг контейнеров и, наконец, геологической средой.

Сколько это стоит? Ответа на этот вопрос нет, как видно из следующего примера. В 1980 году общая стоимость проекта захоронения РАО Соединенных Штатов оценивалась в 6 миллиардов долларов, а срок ввода в эксплуатацию этого проекта устанавливался в 1997 году. К 1995 году США истратили на него уже более 5 миллиардов долларов, необходимые дальнейшие затраты оценивались в 20 миллиардов долларов, а срок ввода в эксплуатацию отодвинулся до 2010 года. При этом руководство Департамента энергии США признало, что шансы получить лицензию на строительство захоронения не превышают 50%. Последние оценки стоимости проекта возросли до 53 миллиардов долларов.

Сколько стоит вывод из эксплуатации атомной станции? По разным оценкам и для разных станций, эти оценки колеблются от 40 до 100% капитальных затрат на строительство станции. Эти цифры теоретические, поскольку до сих пор станции полностью из эксплуатации не выводились: волна выводов должна начаться после 2010 года, так как срок жизни станций составляет 30-40 лет, а основное строительство их происходило в 70-80-х годах. То, что мы не знаем стоимости вывода реакторов из эксплуатации, означает, что эта «скрытая стоимость» не учитывается в стоимости электроэнергии, производимой атомными станциями. Это одна из причин кажущейся «дешевизны» атомной энергии.

Проблемы захоронения

Итак, мы попытаемся захоранивать РАО в глубокие геологические фракции. При этом нам поставлено условие: показать, что наше захоронение будет работать, как мы это планируем, на протяжении 10 тысяч лет. Посмотрим теперь, какие проблемы мы встретим на этом пути.

Первые проблемы встречаются на этапе выбора участков для изучения. В США, например, ни один штат не хочет, чтобы общегосударственное захоронение размещалось на его территории. Это привело к тому, что усилиями политиков многие потенциально подходящие площади были вычеркнуты из списка, причем не на основании ночного подхода, а вследствие политических игр.

Как это выглядит в России? В настоящее время в России все еще можно изучать площади, не ощущая значительного давления местных властей (если не предлагать при этом размещать захоронение вблизи городов!). Полагаю, что по мере усиления реальной независимости регионов и субъектов Федерации ситуация будет смещаться в сторону ситуации США. Я легко могу себе представить, что, скажем, губернатор Красноярского края Лебедь в какой-то момент скажет: «В моем крае захоронения не будет!» Уже сейчас ощущается склонность Минатома переместить свою активность на военные объекты, над которыми практически нет контроля: например, для создания захоронения предполагается архипелаг Новая Земля (российский полигон № 1), хотя по геологическим параметрам это далеко не лучшее место, о чем еще будет речь дальше.

Но предположим, что первый этап позади и площадка выбрана. Надо ее изучить и дать прогноз функционирования захоронения на 10 тысяч лет. Тут появляется новая проблема.

Неразработанность метода. Геология - описательная наука. Отдельные разделы геологии занимаются предсказаниями (например, инженерная геология предсказывает поведение грунтов при строительстве и т.п.), но никогда еще перед геологией не ставилась задача предсказать поведение геологических систем на десятки тысяч лет. Из многолетних исследований в разных странах возникли даже сомнения, возможен ли вообще более или менее надежный прогноз на такие сроки.

Представим все же, что нам удалось выработать разумный план изучения площадки. Понятно, что для осуществления этого плана понадобится много лет: например, гора Яка в штате Невада изучается уже более 15 лет, но заключение о пригодности или непригодности этой горы будет сделано не ранее чем через 5 лет. При этом программа захоронения будет испытывать все возрастающее давление.

Давление внешних обстоятельств. В годы холодной войны на отходы не обращали внимания; они накапливались, хранились во временных контейнерах, терялись и т.п. Пример - военный объект Хэнфорд (аналог нашего «Маяка»), где находится несколько сот гигантских баков с жидкими отходами, причем для многих из них не известно, что находится внутри. Одна проба стоит 1 миллион долларов! Там же, в Хэнфорде, примерно раз в месяц обнаруживаются закопанные и «забытые» бочки или ящики с отходами.

В целом за годы развития ядерных технологий отходов скопилось очень много. Временные хранилища на многих атомных станциях близки к заполнению, а на военных комплексах они часто находятся на грани выхода из строя «по старости» или даже за этой гранью. В 1987 году правительство США заключило договор с компаниями, владеющими атомными электростанциями, обязавшись с 31 января 1998 года принимать на захоронение их отходы. Сейчас компании начинают судиться с министерством энергетики США.

Итак, проблема захоронения требует срочного решения. Осознание этой срочности становится все более острым, тем более что 430 энергетических реакторов, сотни исследовательских реакторов, сотни транспортных реакторов атомных подводных лодок, крейсеров и ледоколов продолжают непрерывно накапливать РАО. Но у людей, прижатых к стенке, не обязательно возникают лучшие технические решения, и возрастает вероятность ошибок. Между тем в решениях, связанных с ядерной технологией, ошибки могут очень дорого стоить.

Предположим, наконец, что мы истратили 10-20 миллиардов долларов и 15-20 лет на изучение потенциальной площадки. Пришло время принимать решение. Очевидно, идеальных мест на Земле не существует, и любое место будет иметь с точки зрения захоронения положительные и отрицательные свойства. Очевидно, придется решить, перевешивают ли положительные свойства отрицательные и обеспечивают ли эти положительные свойства достаточную безопасность.

Принятие решений и технологическая сложность проблемы. Проблема захоронения технически чрезвычайно сложна. Поэтому очень важно иметь, во-первых, науку высокого качества, а во-вторых, эффективное взаимодействие (как говорят в Америке, «интерфейс») между наукой и политиками, принимающими решения. Я знаю по собственному опыту, как трудно этого достигнуть. Вот простой пример: за время изучения потенциальной площадки США - горы Яка - было опубликовано более тысячи отчетов, то есть сотни тысяч страниц текстов, графиков и числовых данных. Каковы шансы, что сенаторы из комиссии, принимающей решения, прочтут сколько-нибудь значительную часть этих текстов? Информацию для них будут готовить референты (хорошо, если ученые), и важно, чтобы при этом «сжатии» информации не пострадала ее значимая часть.

Радиоактивные отходы в США

Посмотрим, как подходят к проблеме захоронения своих отходов в США. К этой стране во всем мире относятся как к образцу, и я по своему опыту знаю, что за американским проектом захоронения внимательно следят другие ядерные страны, чтобы корректировать свою политику в этой области.

Предыстория. В США политика в области обращения с атомными отходами была сформулирована в 1982 году, в правление президента Рейгана, когда был принят Акт о политике в области обращения с атомными отходами (Nuclear Waste Policy Act). Вот наиболее важные положения этого акта:

(1) предусматривается геологическое захоронение высокоактивных отходов без переработки;

(2) ответственность за выбор места, строительство и эксплуатацию захоронения возложена на министерство энергетики (аналог нашего Минатома);

(3) создается Фонд ядерных отходов, через который финансируются все работы в области захоронения;

(4) все предприятия ядерно-энергетического комплекса отчисляют в фонд специальный налог;

(5) захоронение военных отходов оплачивается Федеральным правительством.

После принятия Акта 1982 года было предложено для изучения девять площадок в шести штатах. К маю 1986 года для дальнейшего изучения было рекомендовано три из них: Deaf Smith County, Texas; Hanford, Washington; Yucca Mountain, Nevada. В 1987 году Конгресс принял поправку к акту, где было указано, что только гора Яка (Yucca) будет рассматриваться как место-кандидат. Зная то, что мы знаем сегодня, можно сказать, что отказ от запасных вариантов был огромной стратегической ошибкой.

Еще один возможный пункт этого документа гласит, что с 1997 года вся ответственность за радиоактивные отходы коммерческих (гражданских) атомных станций переходит к Федеральному правительству США. Так родился проект Яка Маунтин.

Расписание. Изучение площадки будет продолжаться до 2001 года. При этом до окончания срока, отпущенного на изучение, готовятся и публикуются следующие документы: в 1998 году - «Оценка пригодности» (предварительная информация о пригодности или непригодности); в 1999-м - черновик «Влияния на окружающую среду», и в 2000-м - окончательный вариант «Влияния на окружающую среду».

С 2002 по 2004 годы будет проходить лицензирование. Оно будет проводиться как «суд», где будут присяжные (три эксперта, ответственных за лицензирование), «подсудимый» - гора Яка, «адвокат» - министерство энергетики, и «обвинитель», которым может быть кто угодно, даже

частное лицо. Важный момент состоит в том, что в процессе лицензирования эксперты будут давать показания под присягой. Закон гласит, что если при этом кто-нибудь солжет, и это будет обнаружено, то за каждый день с момента лжи до момента обнаружения виновный выплатит штраф в 10 тысяч долларов. Деньги должны быть выплачены из личных средств, и закон не имеет также срока давности.

Если площадка получит лицензию, то строительство начнется в 2005 году и окончится в 2009 году. Первый груз отходов может быть принят в 2010 году.

Структура проекта. Проект осуществляется министерство энергетики. В работах по проекту постоянно участвуют 1500-2000 человек, представляющих 6-7 крупных организаций-субподрядчиков (Геологическая служба США, Национальные атомные лаборатории Лос-Аламос, Сандия, Ливермор и др.).

Понятно, что в таком важном многомиллиардном проекте необходим надзор. Общий надзор за проектом осуществляют несколько независимых организаций, такие, как

(1) Конгресс США;

(2) Комиссия по ядерному регулированию;

(3) Правительство штата Невада;

(4) правительства округов штата Невада, на территории которых проводятся работы;

(5) Комиссия технического надзора по ядерным отходам, назначенная Национальной академией наук, и др.

Надзор за качеством научной продукции осуществляет Международная организация прикладных наук (Science Application International) - ни один отчет не выпускается в свет до получения от этого учреждения QA (quality assurance, подтверждение качества). Кроме того, ввиду возможного конфликта между интересами Федерации и штата, министерство энергетики обязано выделять средства штату Невада на проведение собственных независимых научных изысканий и надзора за работой федеральных организаций.

Как это происходит в действительности. Только что описанная впечатляющая схема - можно сказать, образец деятельности американской бюрократии - при ближайшем рассмотрении оказывается чем-то вроде «потемкинской деревни». Возможно, эта схема и сработала бы неплохо, если бы гора Яка была геологически пригодна для размещения захоронения. Но как только в этом возникли сомнения, оказалось, что механизм не работает.

Прежде всего, обнаружилось, что стандарты, которым должны следовать разработчики захоронения, еще не разработаны: над ними работает Комиссия по ядерному регулированию; то есть игра идет, а правила еще не написаны.

Оказалось, что ученые, работающие на министерство энергетики, вполне способны скрывать факты, подтасовывать данные и яростно набрасываться на любого, кто пытается опубликовать данные, представляющие опасность для их представлений о геологии горы.

Система контроля качества (на которую тратятся большие деньги) практически не работает - я не встречал худших геологических отчетов, чем те, что я получал от министерства энергетики.

В финансовом отношении министерство энергетики ведет себя вполне определенным образом. В 1995 году, как только ученые штата Невада начали получать данные, опасные для проекта, деньги, полагающиеся штату Невада, перестали перечислять, и наши работы были приостановлены на два года.

Радиоактивные отходы в России

Новая концепция Минатома: отходы - в мерзлоту. Российская концепция подземной изоляции РАО и отработанного ядерного топлива в многолетнемерзлых породах разработана в Институте промышленной технологии Минатома России (ВНИПИП). Она была одобрена Государственной экологической экспертизой Министерства экологии и природных ресурсов РФ, Минздравом РФ и Госатомнадзором РФ. Научная поддержка концепции проводится кафедрой мерзлотоведения Московского государственного университета. Следует заметить, что эта концепция уникальна. Ни в одной стране мира, насколько мне известно, вопрос о захоронении РАО в мерзлоте не рассматривается.

Основная идея такова. Помещаем тепловыделяющие отходы в мерзлоту и отделяем их от пород непроницаемым инженерным барьером. За счет тепловыделения мерзлота вокруг захоронения начинает подтаивать, но через какое-то время, когда тепловыделение снизится (вследствие распада короткоживущих изотопов), породы снова промерзнут. Поэтому достаточно обеспечить непроницаемость инженерных барьеров на то время, когда мерзлота будет протаивать; после промерзания миграция радионуклидов становится невозможной.

Неопределенность концепции . С этой концепцией связано, по меньшей мере, две серьезных проблемы.

Во-первых, концепция предполагает, что промерзшие породы непроницаемы для радионуклидов. На первый взгляд это кажется разумным: вся вода замерзшая, лед обычно неподвижен и не растворяет радионуклиды. Но если внимательно поработать с литературой, то оказывается, что многие химические элементы довольно активно мигрируют в промерзших породах. Даже при температурах - 10-12°С в породах присутствует незамерзающая, так называемая пленочная, вода. Что особенно важно, свойства радиоактивных элементов, составляющих РАО, с точки

зрения их возможной миграции в мерзлоте совершенно не изучены. Поэтому предположение о непроницаемости мерзлых пород для радионуклидов лишено всяких оснований.

Во-вторых, если даже окажется, что мерзлота действительно хороший изолятор РАО, то невозможно доказать, что сама мерзлота просуществует достаточно долго: напомним, что нормативы предусматривают захоронение на срок в 10 тысяч лет. Известно, что состояние мерзлоты определяется климатом, причем двумя наиболее важными параметрами - температурой воздуха и количеством атмосферных осадков. Как вы знаете, температура воздуха повышается в связи с глобальным изменением климата. Наивысший темп потепления приходится как раз на средние и высокие широты северного полушария. Ясно, что такое потепление должно привести к протаиванию льда и сокращению мерзлоты. Как показывают расчеты, активное протаивание может начаться уже через 80-100 лет, и темп протаивания может достичь 50 метров в столетие. Таким образом, мерзлые породы Новой Земли могут полностью исчезнуть за 600-700 лет, а это всего 6-7% от времени, требуемого для изоляции отходов. Без мерзлоты карбонатные породы Новой Земли обладают весьма низкими изолирующими свойствами по отношению к радионуклидам.

Атомная энергетика

В последние годы, в связи с проблемой изменения климата и необходимостью сократить выбросы парниковых газов, предлагается решить эту проблему путем развития атомной энергетики. Как можно предвидеть, такое развитие событий вызовет большие трудности с захоронением РАО.

Межправительственная комиссия по изменению климата (Intergovernmental Penal on Climate Change, IPCC) еще в 1995 году просчитывала сценарий снижения последствий глобального потепления путем массированного развития атомной энергетики (табл. 1).

Согласно этому гипотетическому сценарию, изображенному в следующей таблице (1), доля атомной энергетики в производстве мировой электроэнергии должна была бы возрасти от 17% в настоящее время до 46% в 2100 году. Но это приведет к резкому увеличению объемов радиоактивных отходов, и проблема их захоронения встанет еще более остро.

Таблица 1.

Сценарий борьбы с глобальным потеплением путем развития атомной энергетики (IPCC, 1995)

* Оценка, исходя из срока эксплуатации реактора 40 лет;

** Прогноз на 2000 год.

Радиоактивные отходы - это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. Отходы являются главным долгоживущим источником облучения населения, связанным с атомной энергетикой. Международное агентство по атомной энергии (МАГАТЭ) подсчитало, что в мире ныне накоплено более 200 тыс. тонн отработанного ядерного топлива. Ежегодно к ним добавляется еще 10-2 тыс. тонн.

Радиоактивные отходы бывают жидкими, твердыми и газообразными, которые в свою очередь подразделяются по удельной активности на тритегории - низкоактивные, среднеактивные и высокоактивные. Большую часть отходов составляет низкорадиоактивный мусор. Однако и он может быть крайне опасен.

К источникам радиоактивных отходов, кроме АЭС, относятся медицинские учреждения, промышленные предприятия, исследовательские центры. В настоящее время одной из самых острых проблем является утилизация и захоронение радиоактивных отходов и прежде всего высокоактивных отходов АЭС и других предприятий.

Сбор, переработка и захоронение радиоактивных отходов осуществляется отдельно от других видов отходов. Перед утилизацией изотопы разделяют по степени активности, периоду полураспада и т.п. Для сокращения объема отходов их упаривают, сжигают, прессуют и т.п. Для предотвращения миграции радиоактивных изотопов с грунтовыми водами малоактивные отходы фиксируют с помощью битума или цемента в блоки, подлежащие дальнейшему захоронению. Высокоактивные отходы остекловывают.

Захоронение твердых, или отвержденных радиоактивных отходов осуществляется в специальных сооружениях, называемых могильниками радиоактивных отходов.

Радиационный контроль при захоронении отходов радиоактивных веществ, а также номенклатура контролируемых параметров должны проводиться в строгом соответствии с требованиями норм ГОСТ. Захоронение должно проводиться в специально отведенных местах (полигонах), на незатопляемых участках с низким уровнем грунтовых вод, обязательно по согласованию с органами Государственного санитарного надзора, с учетом требований по охране окружающей среды и правил радиационной безопасности. Жидкие токсичные отходы перед вывозом на полигон должны быть обезвожены на предприятиях.

Пункт захоронения должен располагаться не ближе 20 км от городов в районе, не подлежащем застройке, с санитарно-защитной зоной не менее 1 км от населенных пунктов и мест постоянного пребывания скота.

Сброс радиоактивных веществ в составе сточных вод запрещен.

Полигоны должны иметь санитарно-защитные зоны: завод по обезвреживанию токсичных отходов мощностью 100 тыс. тонн и более отходов в год - 1000 м; менее 100 тыс. тонн - 500 м; участок захоронения токсичных отходов - не менее 300 м.

Несмотря на то, что человечество более шести десятилетий действует в ядерной сфере, до сих пор не найдено решения, позволяющего полностью утилизировать ядерные отходы. Проблема заключается в том, что радиоактивный мусор остается опасным на протяжении сотен и тысяч лет. К примеру, период полураспада радиоактивного стронция-90 составляет 26 лет, америциума-241 - 430 лет, плутония-239 - 24 тыс. лет. Поэтому любые повреждения хранилищ способны привести к тяжелейшим последствиям.

В России большое количество участков с экстремально высоким уровнем радиации было обнаружено в крупных городах, таких как Москва, Санкт-Петербург, Нижний Новгород, Калининград, Владивосток и др. По данным справочника "За ядерным занавесом: Управление радиоактивными отходами в бывшем СССР", только в Москве за период 1974 по 1994 годы было обнаружено около 1,5 тыс. таких участков. В детском саду неподалеку от Курчатовского института (Москва) была обнаружена песочница, в которой уровень радиации составлял 612 тыс. миллирентген в час. Человек, который провел бы в этой песочнице сутки получил бы такую дозу радиации, которая убила бы его в течение месяца.

В Москве за последние 60 лет, по заявлению руководителя энергетического отдела Гринпис России Владимира Чупрова, скопился большой объем радиоактивных отходов .

Радиоактивные и токсические отходы в советское время, особенно в 40-х и 50‑х годах 20‑го века сваливались в ближайшие московские овраги и затем, с ростом города, на этих местах появлялись жилые и промышленные кварталы. Когда найденные захоронения вскрывали, уже никто не знал, откуда свалка", ‑ сообщил эксперт. В качестве примера он привел ситуацию, связанную рекультивацией одного из земельных участков, расположенного на бульваре Маршала Рокоссовского в Восточном административном округе столицы, где был выявлен радиоактивный могильник. В результате замеров мощности экспозиционного излучения поверхности земли экспертами обнаружены участки вблизи выезда со строительной площадки, с мощностью излучения на поверхности до 43 микрорентген в час (норма мощности внешнего гамма-излучения должна составлять 10‑15 микрорентген в час).

По российскому законодательству ввоз ядерных отходов из-за рубежа запрещен. Однако этот запрет концерном «Росатом» не соблюдается. Ядерные материалы ввозятся на переработку под видом «ценного сырья». В результате на территории России остается практически все «ценное сырье», ввозимое «на переработку».

Активисты Гринпис Франции задержали отправку ОГФУ в Россию - они разобрали около 30 метров железнодорожного полотна на пути между ядерными объектами Трикатсин и Пьерлатте.
6 апреля 2010 год

В случае с обедненным ураном, например, стоимость ввозимого «ценного сырья» равняется стоимости туалетной бумаги. Если это «ценное сырье», почему никто, кроме Росатома его не скупает?

Не решив проблемы со своими отходами Росатом, активно ищет пути для ввоза зарубежных. Зарубежные компании охотно идут навстречу Росатому, так как решить проблему радиоактивных отходов легче отправив их в другую страну.

Насколько это отвечает национальным интересам и мнению россиян четко показывают соцопросы - свыше 90% граждан России против ввоза чужих ядерных материалов под каким бы то ни было предлогом.

Ввоз отработавшего ядерного топлива

Отработавшее ядерное топливо (ОЯТ) — это чрезвычайно опасный, высокорадиоактивный «коктейль» из огромного числа осколочных элементов, различных изотопов урана, плутония, а также других трансурановых элементов и продуктов их распада.

В России уже накоплено около 20 тысяч тонн собственного ОЯТ. Не решив проблемы с собственными отходами, Росатом берется «убирать» за всей планетой.

До июля 2001 года российское законодательство разрешало ввоз ОЯТ с зарубежных АЭС только с целью переработки с последующим возвратом продуктов переработки включая высокоактивные отходы. Но сама транспортировка ОЯТ несет значительные экологические риски, а технологии переработки ОЯТ завершаются образованием большого количества новых радиоактивных отходов. При этом их большая часть отходов выбрасывается в окружающую среду, а оставшаяся часть должна возвращаться в страну происхождения ОЯТ.

6 июня 2001 года Государственная Дума в третьем чтении приняла закон о внесении изменений в статью 50 Закона РСФСР «Об охране окружающей природной среды», которым было разрешено оставлять все продукты переработки ОЯТ на территории России.

Но самое главное, новый закон разрешил «ввоз в Российскую Федерацию из иностранных государств облученных тепловыделяющих сборок ядерных реакторов для осуществления временного технологического хранения и (или) их переработки». То есть, этот закон грозит России превращением в международную ядерную свалку. Россия — единственное государство, чьи законы позволяют импортировать ядерные отходы для хранения. В качестве основного поставщика отработавшего ядерного топлива рассматриваются атомные станции, построенные с помощью США в других странах: в Швейцарии, Южной Корее, Тайване (Китай).

Согласно социологическим опросам, 92% россиян против ввоза иностранного ОЯТ.

Гринпис требует немедленно отказаться от переработки и транспортировки ОЯТ.

Ввоз урановых отходов

Российская Федерация — единственная страна в мире, принимающая обедненный уран из-за рубежа в промышленных масштабах.

В мире накоплены огромные запасы обедненного урана. Только в России его количество исчисляется сотнями тысяч тонн (порядка 700 тысяч тонн). Обедненный уран хранится в виде токсически опасного вещества — гексафторида урана (ОГФУ). До сих пор не разработана промышленная схема полной утилизации ОГФУ, а стоимость окончательного захоронения урана является довольно высокой.

С начала 70-х годов ХХ века по 2010 год западноевропейские компании ввозили в Россию отходы урановой обогатительной промышленности и продукты переработки ОЯТ. Это делалось, чтобы избежать высоких расходов на их хранение и утилизацию у себя на родине. Государственная корпорация «Росатом», а точнее уполномоченное предприятие — ВОАО «Техснабэкспорт», покупало это «ценное» энергетическое сырье по цене туалетной бумаги (0,6 долларов за кг, что более чем в 100 раз ниже стоимости обычного урана).

Символическая цена контрактов — доказательство того, что на территории России фактически создается система международных могильников ядерных отходов. После дообогащения 90% отходов оставалось в России навечно. Россию была превращена в свалку иностранных отходов.

С 2010 года главные поставщики обедненного урана компании URENCO и AREVA прекратили поставку ядерных отходов в Россию. Новые контракты заключаться не будут.

Во многом этого удалось добиться благодаря действиям Гринпис, наших сторонников и коллег из других организаций.

Мало кто из жителей Москвы хорошо знаком с её историей, и речь идёт не только о знаменитых соборах, памятниках архитектуры и искусства, но и о более поздних научных объектах Советского периода. Это не удивительно, ведь большинство проектов в то время были засекречены, знали о них лишь верхушки военного руководства да немногие учёные. Между тем наследие того времени, не всегда безопасное, становится объектом скандалов и несчастных случаев и в наши дни.

Так, например, слышали ли Вы, что в Москве, где сейчас живет более 15 миллионов человек, есть огромное количество радиоактивных отходов . Это наследие первых лет гонки ядерных вооружений советского периода. Безусловно, такую информацию активно не афишируют и сейчас, ведь это может вызывать панику у людей, поэтому заботиться о своём здоровье и безопасности, к сожалению, нужно самому. Работы на территории бывшего СССР по поиску радиоактивных отходов активнее ведутся не только вблизи плутониевых реакторов в Западной Сибири и на Урале, на полигоне в Казахстане, где была взорвана первая советская атомная бомба (1949 год), но и в жилых кварталах Москвы! Рядом с школами, детскими садами, вокзалами и заводами, дорогами и мостами. Это плата, которую приходится вносить нашему поколению, за успехи СССР в овладении тайнами атома. Перед любой страной, которая имеет ядерную программу, стоит очень трудная задача по утилизации отходов и побочных продуктов этой деятельности, но в Советском союзе ядерные разработки начались в самом сердце столицы, в густонаселенном городе. Впрочем, в сталинские времена мало кто думал о безопасности будущих поколений, да и научных данных о влиянии радиации на человека не было.

В России даже была создана специальная государственная структура, занимающаяся поиском и ликвидацией подобных неизвестных источников радиации — «Радон». За год выявляется более 50 случаев обнаружения захоронений радиоактивных веществ, что, казалось бы, немного для многомиллионного города. Но, как говорится, гибель одного человека — трагедия, гибель миллионов — статистика. Кто вернет к жизни людей, проживших рядом с источником радиации десятки лет и умерших от злокачественных опухолей, утешит матерей, родивших детей с мутациями? И кто знает, может такой радиоактивный могильник есть рядом с вашим домом , только его пока ещё не нашли?

Винить во всем советских ученых, конечно, нельзя. Работа тогда велась в обстановке тоталитарной секретности, люди не вполне понимали всю опасность радиации, создавалась целая сеть институтов и заводов, работавших на оборонную промышленность. Что делать с отходами, тогда не думали, их просто закапывали на пустырях в обстановке строжайшей секретности (вдруг враг узнает о передовых достижениях советской физики?!). В наши дни на этих пустырях возводятся элитные жилые комплексы, многоквартирные дома. Учитывая стоимость квадратного метра земли в Москве, маловероятно, что радиоактивный участок законсервируют, как непригодный для жизни. Скорее, результаты экспертиз скроют, должностные лица получат взятки, и об опасности все забудут. Это жестокие реалии нашего времени!

В наши дни в Москве уже было найдено более 1200 источников радиации , и развитие города только усугубляет ситуацию. Радиоактивные материалы складировали в лабораториях и на заводах, значительная часть вывозилась в леса, которые тогда находились за чертой города. Москва растет, захватывая новые пригороды, и незаконные радиоактивные свалки оказывают во дворах и рядом с объектами инфраструктуры новостроек.


Эксплуатация первых региональных хранилищ радиации в России началась только в 1961 году, в это время ядерная история державы насчитывала больше 20 лет. Чернобыльская авария 1986 года только добавила проблем, ведь тогда стихийно выпавшие осадки сделали радиоактивными огромные территории по всей стране. Предметы, вывезенные беженцами с зараженной площади, не были уничтожены, как того требовала инструкция. Многое из этого было просто разграблено, и радиоактивные украшения, мебель, предметы старины оказались в квартирах москвичей и других жителей Советского союза.

По оценкам специалистов www.сайт, Москва относится к самым опасным в радиационном отношении городам России. В настоящее время на её территории действует более 11 исследовательских ядерных реакторов, более 2000 организаций, использующих до 150 тысяч источников ионизирующего излучения, среди которых у 124 тысяч истек срок эксплуатации. Ежегодно в городе дополнительно выявляется до 80 источников ионизирующего излучения, которые требуют проведения серьезных дезактивационных работ профессионалами.


Не так давно заброшенный радиоактивный могильник был обнаружен на бульваре Маршала Рокоссовского («Зеленая горка»). Было найдено свыше 20 очагов сильнейшего загрязнения с гамма-излучением мощностью до 3 тысяч микрорентген в час. Это превышает ному в 150 раз! Могильник был найден ещё в 1988 году, а в 2008 году на этом месте планировалось строительство жилого дома, и только бурные протесты экологов и шумиха в прессе не дали кощунственному плану осуществиться. Инвесторы посчитали, что мало кто захочет жить в доме, построенном на свалке радиоактивных отходов, о которой всем известно, и свернули проект.

В 2004 году в районе станции Строгино было также выявлено несколько участков сильнейшего радиоактивного загрязнения. Было установлено, что ранее на этих площадках складировались и хранились загрязненные трубы, поэтому радиация перешла в почву. Были проведены дезактивационные работы, в результате которых зараженный грунт был вывезен за пределы города, а радиоактивный фон приведен в норму. Но кто даст гарантию, что дома, которые были через два года построены на этом участке, безвредны для здоровья жильцов? Специальных исследований на эту тему не проводилось, а по данным учёных небольшие дозы радиации, действующие в течение длительного периода времени, приводят к серьезным нарушениям в ДНК человека, и отразятся на наших детях и внуках.

Если посмотреть на карту Москвы, то можно увидеть, что опасные находки делаются по всему городу: от окрестностей Кремля, станций метро до окраинных жилых кварталов. Так как же защитить себя и свою семью от радиоактивного прошлого столицы? Для этого желательно . Этот небольшой прибор сможет вовремя предупредить Вас об опасном источнике заражения. Ни в коем случае нельзя покупать квартиру в новостройке или на вторичном рынке, не исследовав радиационный фон местности. Пользоваться радиометром очень просто: необходимо нажать всего одну кнопку, и он покажет превышение реальных показателей над естественным радиационным фоном. Позаботьтесь о безопасности своего жилища сами, потому что за Вас никто этого не сделает.


Карта радиоактивного загрязнения Москвы. Красным обозначены участки с очень сильным уровнем радиации, зеленым — с умеренным.