Электромагнитные волны разных диапазонов отличаются. Понятие «электромагнитная волна». Возникновение оптических потоков

Электромагнитные волны, если верить физике, являются одними из наиболее загадочных. В них энергия фактически исчезает в никуда, появляется непонятно откуда. Больше ни одного такого подобного объекта нет во всей науке. Как же происходят все эти чудесные взаимопревращения?

Электродинамика Максвелла

А началось все с того, что ученый Максвелл в далеком 1865 году, опираясь на работы Фарадея, вывел уравнение электромагнитного поля. Сам Максвелл считал, что его уравнения описывали кручение и натяжение волн в эфире. Через двадцать три года Герц экспериментально создал такие возмущения в среде, причем удалось не только согласовать их с уравнениями электродинамики, но и получить законы, управляющие распространением этих возмущений. Возникла любопытная тенденция объявлять любые возмущения, которые имеют электромагнитный характер, волнами Герца. Однако эти излучения - не единственный способ осуществления передачи энергии.

Беспроводная связь

На сегодняшний день к возможным вариантам осуществления подобной беспроводной связи относят:

Электростатическую связь, которую также называется емкостной;

Индукционную;

Токовую;

Связь Теслы, то есть связь волн электронной плотности по проводящим поверхностям;

Широчайший спектр наиболее распространенных носителей, которые называются электромагнитные волны - от сверхнизких частот до гамма-излучения.

Стоит рассмотреть эти виды связи более подробно.

Электростатическая связь

Два диполя являются связанными электрическими силами в пространстве, что является следствием закона Кулона. От электромагнитных волн данный тип связи отличается возможностью связать диполи при расположении их на одной линии. С увеличением расстояний сила связи затухает, а также наблюдается сильное влияние различных помех.

Индукционная связь

Основана на магнитных полях рассеяния индуктивности. Наблюдается между объектами, которые имеют индуктивность. Применение ее довольно ограничено ввиду близкодействия.

Токовая связь

Благодаря токам растекания в проводящей среде может возникнуть определенное взаимодействие. Если через терминалы (пара контактов) пропустить токи, то эти самые токи можно обнаружить на значительном расстоянии от контактов. Именно это и называется эффектом растекания токов.

Связь Теслы

Знаменитый физик Никола Тесла изобрел связь с помощью волн на проводящей поверхности. Если в каком-то месте плоскости нарушить плотность носителя заряда, то эти носители начнут движение, которое будет стремится к восстановлению равновесия. Так как носители обладают инерционной природой, то восстановление носит волновой характер.

Электромагнитная связь

Излучение электромагнитных волн отличается огромным дальнодействием, так как их амплитуда обратно пропорциональна расстоянию до источника. Именно этот способ беспроводной связи получил наибольшее распространение. Но что такое электромагнитные волны? Для начала необходимо осуществить небольшой экскурс в историю их открытия.

Как «появились» электромагнитные волны?

Началось все в 1829 году, когда американский физик Генри обнаружил возмущения электрических разрядов в экспериментах с лейденскими банками. В 1832 году физиком Фарадеем было выдвинуто предположение о существовании такого процесса, как электромагнитные волны. Максвелл в 1865 году создал свои знаменитые уравнения электромагнетизма. В конце девятнадцатого века было много успешных попыток создания беспроводной связи с помощью электростатической и электромагнитной индукции. Знаменитый изобретатель Эдисон придумал систему, которая позволяла пассажирам железной дороги отправлять и получать телеграммы прямо во время движения поезда. В 1888 году Г. Герц однозначно доказал то, что электромагнитные волны появляются с помощью устройства, названного вибратором. Герц осуществил опыт по передаче электромагнитного сигнала на расстояние. В 1890 году инженер и физик Бранли из Франции изобрел устройство для регистрации электромагнитных излучений. Впоследствии этот прибор был назван "радиокондуктор" (когерер). В 1891-1893 годах Никола Тесла описал основные принципы осуществления передачи сигналов на большие расстояния и запатентовал мачтовую антенну, которая являлась источником электромагнитных волн. Дальнейшие заслуги в изучении волн и технической реализации их получения и применения принадлежат таким знаменитым физикам и изобретателям, как Попов, Маркони, де Мор, Лодж, Мирхед и многим другим.

Понятие «электромагнитная волна»

Электромагнитная волна - это явление, которое распространяется в пространстве с определенной конечной скоростью и являет собой переменное электрическое и магнитное поле. Так как магнитные и электрические поля неразрывно связанны друг с другом, то они образуют электромагнитное поле. Также можно сказать, что электромагнитная волна - это возмущение поля, причем во время своего распространения энергия, которая есть у магнитного поля, переходит в энергию поля электрического и обратно, согласно электродинамике Максвелла. Внешне это похоже на распространение любой другой волны в любой другой среде, однако есть и существенные отличия.

Отличие электромагнитных волн от других?

Энергия электромагнитных волн распространяется в довольно непонятной среде. Чтобы сравнивать эти волны и любые другие, необходимо понять, о какой среде распространения идет речь. Предполагается, что внутриатомное пространство заполняет электрический эфир - специфическая среда, которая является абсолютным диэлектриком. Все волны во время распространения проявляют переход кинетической энергии в потенциальную и обратно. При этом у этих энергий сдвинуты максимум во времени и пространстве относительно друг друга на одну четвертую полного периода волны. Средняя энергия волны при этом, являясь суммой потенциальной и кинетической энергии, является постоянной величиной. Но с электромагнитными волнами дело обстоит иначе. Энергии и магнитного и электрического поля достигают максимальных значений одновременно.

Как возникает электромагнитная волна?

Материя электромагнитной волны - это электрическое поле (эфир). Движущееся поле является структурированным и складывается из энергии его движения и электрической энергии самого поля. Поэтому потенциальная энергия волны связанна с кинетической и синфазна. Природа электромагнитной волны представляет собой периодическое электрическое поле, которое находится в состоянии поступательного движения в пространстве и движется со скоростью света.

Токи смещения

Есть и другой способ объяснить, что собой представляют электромагнитные волны. Предполагается, что в эфире возникают токи смещения при движении неоднородных электрических полей. Возникают они, естественно, только для неподвижного стороннего наблюдателя. В момент, когда такой параметр как напряженность электрического поля достигает своего максимума, ток смещения в данной точке пространства прекратится. Соответственно, при минимуме напряженности получается обратная картина. Этот подход проясняет волновую природу электромагнитного излучения, так как энергия поля электрического оказывается сдвинутой на одну четвертую периода по отношению к токам смещения. Тогда можно сказать, что электрическое возмущение, а точнее энергия возмущения, трансформируется в энергию тока смещения и обратно и распространяется волновым образом в диэлектрической среде.

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

Излучение электромагнитных волн, подвергаясь смене частоты колебания зарядов, меняет длину волны и приобретает различные свойства. Человек буквально окружен устройствами, которым присуще излучение и прием электромагнитных волн. Это сотовые телефоны, радио, телевещание, рентген-аппараты в медучреждениях и т.д. Даже тело человека обладает электромагнитным полем и, что очень интересно, каждый орган имеет свою частоту излучения. Распространяющиеся излучаемые заряженные частицы воздействуют друг на друга, провоцируя смену частоты колебания и выработку энергии, что может быть использовано как в созидательных, так и в разрушительных целях.

Электромагнитное излучение. Общая информация

Электромагнитное излучение представляет собой изменение состояния и интенсивности распространения электромагнитных колебаний, вызванных взаимодействием электрического и магнитного полей.

Глубоким изучением свойств характерных для электромагнитных излучений занимаются:

  • электродинамика;
  • оптика;
  • радиофизика.

Излучение электромагнитных волн создается и распространяется благодаря колебанию зарядов, в процессе чего выделяется энергия. Они обладают характером распространения, подобным механическим волнам. Движению зарядов присуще ускорение – с течением времени их скорость меняется, что является основополагающим условием для излучения электромагнитных волн. Мощность волны напрямую связана с силой ускорения и прямо пропорциональна ей.

Показатели, определяющие характерные особенности электромагнитного излучения:

  • частота колебания заряженных частиц;
  • длина волны излучаемого потока;
  • поляризация.

Электрическое поле, которое находится наиболее близко к заряду, подверженному колебаниям, претерпевает изменения. Промежуток времени, затраченный на эти изменения, будет равен промежутку времени колебаний заряда. Движение заряда можно сравнить с колебаниями тела, подвешенного на пружине, разница лишь в частоте перемещения.

К понятию «излучение» относятся электромагнитные поля, которые устремляются как можно дальше от источника возникновения и теряют свою интенсивность с увеличением расстояния, образуя волну.

Распространение электромагнитных волн

Труды Максвелла и открытые им законы электромагнетизма позволяют извлечь значительно больше информации, нежели могут представить факты, на основе которых проводится исследование. Например, одним из выводов на основе законов электромагнетизма выступает заключение, что электромагнитное взаимодействие имеет конечную скорость распространения.

Если следовать теории дальнодействия, то получаем, что сила, которая оказывает воздействие на электрический заряд, находящийся в неподвижном состоянии, изменяет свои показатели при смене местоположения соседнего заряда. Согласно этой теории заряд буквально «ощущает» сквозь вакуум присутствие себе подобного и мгновенно перенимает действие.

Сформировавшиеся понятия о близкодействии имеют совершенно другой взгляд на происходящее. Заряд, перемещаясь, обладает переменным электрическим полем, которое, в свою очередь, способствует возникновению переменного магнитного поля в близлежащем пространстве. После чего переменное магнитное поле провоцирует возникновение электрического и так цепочкой далее.

Таким образом происходит «возмущение» электромагнитного поля, вызванное сменой места заряда в пространстве. Оно распространяется и, как результат, воздействует на существующее поле, изменяя его. Добравшись до соседнего заряда, «возмущение» вносит изменения в показатели силы, действующей на него. Происходит это спустя некоторое время после смещения первого заряда.

Вопросом принципа распространения электромагнитных волн увлеченно занимался Максвелл. Затраченное время и силы в итоге увенчались успехом. Он доказал наличие конечной скорости этого процесса и привел тому математическое обоснование.

Реальность существования электромагнитного поля подтверждается наличием конечной скорости «возмущения» и соответствует показателям скорости света в пространстве, лишенном атомов (вакууме).

Шкала электромагнитных излучений

Вселенная наполнена электромагнитными полями с разным диапазоном излучения и кардинально различающейся длиной волны, которая может варьироваться от нескольких десятков километров до ничтожной доли сантиметра. Они позволяют получать информацию об объектах, находящихся на огромных расстояниях от Земли.

На основе утверждения Джеймса Максвелла о разности длины электромагнитных волн была разработана специальная шкала, которая содержит классификацию диапазонов существующих частот и длин излучений, образующих переменное магнитное поле в пространстве.

В своих наработках Г. Герц и П. Н. Лебедев экспериментально доказали верность утверждений Максвелла и обосновали тот факт, что излучение света – это волны электромагнитного поля, характеризующиеся небольшой длиной, которые образуются путем естественной вибрации атомов и молекул.

Между диапазонами не наблюдается резких переходов, но они также не имеют четких границ. Какой бы ни была частота излучения, все пункты шкалы описывают электромагнитные волны, которые появляются благодаря изменению положения заряженных частиц. На свойства зарядов оказывает влияние длина волны. При изменении ее показателей изменяется отражающая, проникающая способности, уровень видимости и т.д.

Характерные особенности электромагнитных волн дают им возможность свободно распространяться как в вакууме, так и в пространстве, заполненном веществом. Нужно отметить, что, перемещаясь в пространстве, излучение меняет свое поведение. В пустоте скорость распространения излучения не меняется, потому частота колебаний жестко взаимосвязана с длиной волны.

Электромагнитные волны разных диапазонов и их свойства

К электромагнитным волнам относятся:

  • Низкочастотные волны. Характеризуются частотой колебаний не более 100 КГц. Данный диапазон применяется для работы электрических устройств и двигателей, например, микрофона или громкоговорителя, телефонных сетей, а также в области радиовещания, киноиндустрии и др. Волны низкочастотного диапазона отличаются от тех, что обладают более высокой частотой колебаний, фактическим падением скорости распространения пропорционально квадратному корню их частоты. Весомый вклад в открытие и изучение низкочастотных волн сделали Лодж и Тесла.
  • Радиоволны. Открытие Герцем радиоволн в 1886 г. подарило миру возможность передавать информацию, не используя провода. Длина радиоволны влияет на характер ее распространения. Они, подобно частотам звуковых волн, возникают благодаря переменному току (в процессе осуществления радиосвязи переменный ток протекает в приемник – антенну). Высокочастотная радиоволна способствует значительному испусканию радиоволн в окружающее пространство, что дает уникальную возможность передавать информацию на большие расстояния (радио, телевидение). Подобного рода сверхвысокочастотные излучения используются для осуществления связи в условиях космоса, а также в быту. Например, микроволновая СВЧ-печь, излучающая радиоволны, стала хорошей помощницей для хозяек.
  • Инфракрасное излучение (еще называют «тепловое»). Согласно классификации шкалы электромагнитных излучений, область распространения инфракрасных излучений находится после радиоволн и перед видимым светом. Инфракрасные волны излучают все тела, испускающие тепло. Примерами источников таких излучений выступают печи, батареи, используемые для отопления, основанные на теплоотдаче воды, лампы накаливания. На сегодняшний день разработаны специальные устройства, которые позволяют увидеть в полной темноте предметы, от которых исходит тепло. Такими природными датчиками распознавания тепла в области глаз обладают змеи. Это позволяет им отслеживать добычу и охотиться ночью. Человек применяет инфракрасные излучения, например, для обогрева зданий, для сушки овощей, а также древесины, в области военного дела (например, приборы ночного видения или же тепловизоры), для беспроводного управления аудиоцентром или телевизором и другими устройствами с помощью пульта.
  • Видимый свет. Обладает световым спектром от красного до фиолетового и воспринимается глазом человека, что является главной отличительной чертой. Цвет, излучаемый разной длиной волны, оказывает электрохимическое воздействие на систему визуального восприятия человека, но не входит в раздел свойств электромагнитных волн данного диапазона.
  • Ультрафиолетовое излучение. Не фиксируется глазом человека и обладает длиной волны по значению меньше, нежели у фиолетового света. В небольших дозировках лучи ультрафиолета вызывают лечебный эффект, способствуют выработке витамина Д, осуществляют бактерицидное воздействие и положительно влияют на центральную нервную систему. Преизбыточная насыщенность окружающей среды ультрафиолетовыми лучами приводит к повреждению кожных покровов и разрушению сетчатки глаза, потому офтальмологи рекомендуют использование солнечных очков в летние месяцы. Ультрафиолетовое излучение применяют в медицине (лучи ультрафиолета используются для кварцевых ламп), для проверки подлинности денежных купюр, в развлекательных целях на дискотеках (подобное освещение заставляет светиться светлые материалы), а также для определения годности продуктов питания.
  • Рентгеновское излучение. Такие волны не заметны для человеческого глаза. Они обладают удивительным свойством проникать сквозь слои вещества, избегая сильного поглощения, что недоступно лучам видимого света. Излучение способствует возникновению свечения некоторых разновидностей кристаллов и оказывает воздействие на фотографическую пленку. Используется в области медицины для диагностирования заболеваний внутренних органов и для лечения определенного списка болезней, для проверки внутреннего устройства изделий на предмет наличия дефектов, а также сварных швов в технике.
  • Гамма-излучение. Наиболее коротковолновое электромагнитное излучение, испускающее ядра атома. Уменьшения длины волны приводит к изменениям качественных показателей. Гамма-излучение имеет проникающую способность, во много раз превышающую рентгеновские лучи. Может проходить сквозь бетонную стену толщиной один метр и даже сквозь свинцовые преграды толщиной в несколько сантиметров. В ходе распада веществ или единения происходит выброс составных элементов атома, что получило название радиация. Такие волны относят к списку радиоактивных излучений. При взрыве ядерной боеголовки на короткое время образуется электромагнитное поле, которое является продуктом реакции между лучами гамма-спектра и нейтронами. Оно же выступает основным элементом ядерного оружия, оказывающим поражающее воздействие, полностью блокирует или нарушает работу радиоэлектроники, проводной связи и систем, обеспечивающих электроснабжение. Также при взрыве ядерного оружия высвобождается много энергии.

Выводы

Волны электромагнитного поля, обладая определенной длиной и находясь в определенном диапазоне колебания, могут оказывать как положительные влияние на организм человека и его уровень адаптации к окружающей среде, благодаря разработке вспомогательных электрических приборов, так и отрицательное, и даже разрушающее воздействие на здоровье и среду обитания человека.

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.