Скачать презентацию биосинтез белка. Презентация на тему "биосинтез белка ". Вещества и структуры клетки, участвующие в биосинтезе белка

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Биосинтез белков в живой клетке Продолжить формирование знаний об основных процессах метаболизма; охарактеризовать два этапа биосинтеза белка – трансляцию и транскрипцию.

Задачи: Вспомнить значение белков для живого организма. Изучить этапы биосинтеза белков. Решить задачи «Кодирование молекул белков»

Перечислите роль белков в клетке Что такое метаболизм? Что такое ассимиляция?

1), 1, (строительная – липопротеины, каталитическая – пероксидаза, двигательная – миозин, транспортная – гемоглобин, защитная – гамма-глобулин, энергетическая -17,6 кДж/моль, регуляторная – инсулин и другие).

Проблемный вопрос: Каким образом информация о строении молекул белков записана в молекуле ДНК? Как передаётся эта информация из ядра клетки на рибосомы, где происходит синтез белка? Синтез белка происходит в клетке в период роста и развития. Основная роль в определении структуры белка принадлежит ДНК, разные участки которой определяют синтез различных белков. Участок ДНК, определяющий синтез одной молекулы белка, называются геном Ген – участок двойной спирали ДНК. И-РНК – однонитевая молекула. Длина и-РНК в сотни раз короче нити ДНК. Синтез белка идет в два этапа:

БИОСИНТЕЗ- образование органических веществ,происходящее в клетках с помощью ферментов и внутриклеточных структур ДНК---иРНК---белок Транскрипция - в ядре клетки. ДНК → иРНК с участием фермента полимеразы Универсальный способ: рибосомный синтез Раскручивание ДНК

Трансляция - в цитоплазме. Участвуют: иРНК, рибосомы, рРНК, тРНК, свободные аминокислоты, ферменты, АТФ, Мg 2+ .

Для реализации информации используется генетический код. Сущность кода состоит в том, что каждой аминокислоте соответствует участок цепи ДНК из рядом стоящих трёх нуклеотидов – триплетов. (

Избыточность – 64 сочетания кодируют 20 аминокислот. Специфичность – Один триплет соответствует только одной аминокислоте. Универсальность – Код одинаков для всех организмов.

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)

1 этап-ТРАНСКРИПЦИЯ 2этап-ТРАНСЛЯЦИЯ

Биосинтез белков в живой клетке Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)


По теме: методические разработки, презентации и конспекты

Белки - природные высокомолекулярные вещества Химические свойства белков

Материал урока формирует знания о составе и строении белков как высшей ступени развития вещества....

Методическая разработка урока по теме: «Химические свойства белка. Биологическая роль белков» Методическая цель: реализация профильного изучения темы.Цель урока:1) показат...

Модульный урок по биологии" Состав и строение белков. Функции белков"

Модульная технология позволяет обучающимся самостоятельно работать, общаться и помогать друг другу, оценивать свою работу и своего товарища....

1-бгд 2-агбвд 3-вабдг 4- 2,4,7

1. Выберите три правильно названных свойства генетического кода. A) Код характерен только для эукариотических клеток и бактерий Б) Код универсален для эукариотических клеток, бактерий и вирусов B) Один триплет кодирует последовательность аминокислот в молеку­ле белка Г) Код вырожден, так аминокислоты могут кодироваться несколькими кодонами Д) Код избыточен. Может кодировать более 20 аминокислот Е) Код характерен только для эукариотических клеток 2. Постройте последовательность реакций биосинтеза белка. A) Снятие информации с ДНК Б) Узнавание антикодоном тРНК своего кодона на иРНК B) Отщепление аминокислоты от тРНК Г) Поступление иРНК на рибосомы Д) Присоединение аминокислоты к белковой цепи с помощью фермента 3. Постройте последовательность реакций трансляции. A) Присоединение аминокислоты к тРНК Б) Начало синтеза полипептидной цепи на рибосоме B) Присоединение иРНК к рибосоме Г) Окончание синтеза белка Д) Удлинение полипептидной цепи 4. Найдите ошибки в приведенном тексте. 1. Генетическая информация заключена в последовательности нуклео-тидов в молекулах нуклеиновых кислот. 2. Она передается от иРНК к ДНК. 3. Генетический код записан на «языке «РНК». 4. Код состоит из четырех нуклеотидов. 5. Почти каждая аминокислота шифруется более чем одним кодоном. 6. Каждый кодон шифрует только одну аминокис­лоту. 7. У каждого живого организма свой генетический код.

1 слайд

Основные этапы передачи генетической информации: Синтез на ДНК как на матрице и-РНК (транскрипция) и синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция), универсальны для всех живых существ. Однако временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

2 слайд

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

3 слайд

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так далее, до тех пор пока не будет считана вся цепочка и-РНК и пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит иэ рибосомы.

4 слайд

5 слайд

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

6 слайд

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

7 слайд

В последнее время получены электронно-микроскопические снимки, на которых видно, как на матрице бактериальной ДНК, в тех участках, где к ДНК прикреплены молекулы РНК-полимеразы (фермента, катализирующего транскрипцию ДНК в РНК), происходит синтез молекул и-РНК. Нити и-РНК, расположенные перпендикулярно к линейной молекуле ДНК, продвигаются вдоль матрицы и увеличиваются в длине. По мере удлинения нитей РНК к ним присоединяются рибосомы, которые, продвигаясь, в свою очередь, вдоль нити РНК по направлению к ДНК, ведут синтез белка. Современные схемы, иллюстрирующие работу генов, построены на основании логического анализа экспериментальных данных, полученных с помощью биохимических и генетических методов. Применение тонких электронно-микроскопических методов позволяет в буквальном смысле слова увидеть работу наследственного аппарата клетки.

8 слайд

Затем в цитоплазме РНК транспортируются к месту синтеза белка- рибосомам. Лишь после этого паступает следующий этап - трансляция. У бактерий, ядерное вещество которых не отделено от цитоплазмы мембраной, транскрипция и трансляция идут одновременно.

9 слайд

У организмов, обладающих настоящим ядром (животные, растения), транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану.

10 слайд

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

11 слайд

Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химических функций, с исключительной способностью к различным превращениям и взаимодействиям с другими простыми и сложными веществами, входящими в состав цитоплазмы.

12 слайд

13 слайд

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковые вещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белки обладают необычайно высокой реакционной способностью. Они наделены каталитическими функциями, т. е. являются ферментами, поэтому белки определяют направление, скорость и теснейшую согласованность, сопряженность всех реакций обмена веществ.

14 слайд

Молекула информационной РНК поступает в рибосому и как бы прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

15 слайд

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника, той формы РНК, которая получила название матричной или информационной РНК (м-РНК или и-РНК). Информационная РНК синтезируется в ядре иод влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок

16 слайд

Возникает вопрос: От чего зависит порядок связывания между собой отдельных аминокислот? Ведь именно этот порядок и определяет, какой белок будет синтезирован в рибосоме, так как от порядка расположения аминокислот в белке зависит его специфика. В клетке содержится более 2000 различных по строению и свойствам специфических белков. Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок, тот или иной фермент (так как ферменты являются белками).

17 слайд

Сборка белков Итак, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Синтез белков в клетке Урок для 9 класса

Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Введение Генетический код Транскрипция Транспортные РНК Трансляция Практическая часть Контрольный тест EXIT

Введение: Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс, берущий энергию от АТФ) , (т. к. в процессе жизни все белки рано или поздно разрушаются, клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т. п. , а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.) Многообразие функций белков определяется их первичной структурой. А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК.

АССИМИЛЯЦИЯ – НАБОР РЕАКЦИЙ БИОЛОГИЧЕССКОГО СИНТЕЗА КЛЕТКИ (ПЛАСТИЧЕССКИЙ ОБМЕН И Т. П.).

Первичная структура- последовательность аминокислот в составе полипептидной цепи.

Ген – участок ДНК в котором содержится информация о первичной структуре одного белка.

Генетический код: Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов. В состав ДНК входят 4 азотистых основания:аденин (А) , гуанин(Г) , тимин(Т) , цитозин(Ц) . Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту

ТРИПЛЕТ – последовательность из 3-х расположенных друг за другом нуклеотидов.

ТРАНСКРИПЦИЯ: Первый этап биосинтеза белка-транскрипция. Транскрипция-это переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. В определенном участке ДНК под действием ферментов белки-гистоны отделяются, водородные связи рвутся, и двойная спираль ДНК раскручивается. Одна из цепочек становится матрицей для построения мРНК. Участок ДНК в определенном месте начинает раскручиваться под действием ферментов. ДНК матрица Г Ц А Т Г Г А Ц Г А Т Г Г А Ц Г А Ц Т

А Т Г Г А Ц Г А Ц Т У А Ц Ц У Г Ц У Г А мРНК Водородная связь Сложно-эфирная связь Между азотистыми основаниями ДНК и РНК возникают водородные связи, а между нуклеотидами самой матричной РНК образуются сложно-эфирные связи. Затем на основе матрицы под действием фермента РНК-ПОЛИМЕРАЗЫ из свободных нуклеотидов по принципу комплементарности начинается сборка мРНК.

ТРАНСПОРТНЫЕ РНК: Т. К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Строение всех тРНК сходно. Служат для осуществления переноса аминокислотных остатков к матричной РНК

ТРАНСЛЯЦИЯ Второй этап биосинтеза– трансляция. Трансляция – перевод последовательности нуклеотидов в последовательность аминокислот белка. В цитоплазме аминокислоты под строгим контролем ферментов аминоацил-тРНК-синтетаз соединяются с тРНК, образуя аминоацил-тРНК. Это очень видоспецифичные реакции: определенный фермент способен узнавать и связывать с соответствующей тРНК только свою аминокислоту. мРНК А Г У У Ц А У Ц А А Г У а/к а/к а/к У У Г А Ц У У Г Ц

Далее тРНК движется к мРНК и связывается комплементарно своим антикодоном с кодоном мРНК. Затем второй кодон соединяется с комплексом второй аминоацил-тРНК, содержащей свой специфический антикодон. Антикодон – триплет нуклеотидов на верхушке тРНК. Кодон – триплет нуклеотидов на мРНК. мРНК А Г У У Ц А У Ц А А Г У а/к а/к а/к У У Г А Ц У У Г Ц Водородные связи между комплементарными нуклеотидами

После присоединения к мРНК двух тРНК под действием фермента происходит образование пептидной связи между аминокислотами; первая аминокислота перемещается на вторую тРНК, а освободившаяся первая тРНК уходит. После этого рибосома передвигается по нити для того, чтобы поставить на рабочее место следующий кодон. мРНК А Г У У Ц А У Ц А А Г У а/к а/к У У Г А Ц У У Г Ц Пептидная связь а/к

Такое последовательное считывание рибосомой заключенного в мРНК «текста» продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминальных кодонов). Такими триплетами являются триплеты УАА, УАГ,УГА. Одна молекула мРНК может заключать в себе инструкции для синтеза нескольких полипептидных нитей. Кроме того, большинство молекул мРНК транслируется в белок много раз, так как к одной молекуле мРНК прикрепляется обычно много рибосом. мРНК на рибосомах белок Наконец, ферменты разрушают эту молекулу мРНК, расщепляя ее до отдельных нуклеотидов.

Контрольный тест 1. Матрицей для синтеза молекулы мРНК при транскрипции служит: а) вся молекула ДНК б) полностью одна из цепей молекулы ДНК в) участок одной из цепей ДНК г) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК. 2. Транскрипция происходит: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 3. Последовательность нуклеотидов в антикодоне тРНК строго комплементарна: а) триплету, кодирующему белок б) аминокислоте, с которой связана данная тРНК в) последовательности нуклеотидов гена г) кодону мРНК, осуществляющему трансляцию

4. Трансляция в клетке осуществляется: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 5. При трансляции матрицей для сборки полипептидной цепи белка служат: а) обе цепочки ДНК б) одна из цепей молекулы ДНК в) молекула мРНК г) в одних случаях одна из цепей ДНК, в других– молекула мРНК 6. При биосинтезе белка в клетке энергия АТФ: а) расходуется б) запасается в) не расходуется и не выделяется г) на одних этапах синтеза расходуется, на других– выделяется 7. Исключите лишнее: рибосомы, тРНК, мРНК, аминокислоты, ДНК. 8. Участок молекулы тРНК из трех нуклеотидов, комплементарно связывающийся с определенным участком мРНК по принципу комплементарности называется…

9 . Участок молекулы ДНК, с которым соединяется особый белок- репрессор, регулирующий транскрипцию отдельных генов,--… 10. Последовательность азотистых оснований в молекуле ДНК следующая: АТТААЦГЦТАТ. Какова будет последовательность азотистых оснований в мРНК? а) ТААТТГЦГАТА б) ГЦЦГТТАТЦГЦ в) УААУЦЦГУТУТ г) УААУУГЦГАУА


Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Теоретическая часть: Введение ВведениеВведение Генетический код Генетический кодГенетический кодГенетический код Транскрипция ТранскрипцияТранскрипция Транспортные РНК Транспортные РНКТранспортные РНКТранспортные РНК Трансляция ТрансляцияТрансляция Практическая часть Практическая часть Контрольный тест Контрольный тестКонтрольный тестКонтрольный тест EXIT


Введение: Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс,берущий энергию от АТФ),(т.к. в процессе жизни все белки рано или поздно разрушаются,клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т.п., а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.) Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс,берущий энергию от АТФ),(т.к. в процессе жизни все белки рано или поздно разрушаются,клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т.п., а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.)ассимиляции Многообразие функций белков определяется их первичной структурой.А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. Многообразие функций белков определяется их первичной структурой.А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. первичной структуройА наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК. первичной структуройА наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК.








Генетический код: Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов. Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов.триплетных В состав ДНК входят 4 азотистых основания:аденин (А),гуанин(Г), тимин(Т),цитозин(Ц). В состав ДНК входят 4 азотистых основания:аденин (А),гуанин(Г), тимин(Т),цитозин(Ц). Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту




ТРАНСКРИПЦИЯ: Первый этап биосинтеза белкатранскрипция. Первый этап биосинтеза белкатранскрипция. Транскрипцияэто переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. Транскрипцияэто переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. В определенном участке ДНК под действием ферментов белки-гистоны отделяются, водородные связи рвутся, и двойная спираль ДНК раскручивается. Одна из цепочек становится матрицей для построения мРНК. Участок ДНК в определенном месте начинает раскручиваться под действием ферментов. ДНК матрица Г Ц А Т Г Г А Ц Г А Т Г Г А Ц Г А Ц Т


А Т Г Г А Ц Г А Ц Т У А Ц Ц У Г Ц У Г А мРНК Водородная связь Сложно-эфирная связь Между азотистыми основаниями ДНК и РНК возникают водородные связи, а между нуклеотидами самой матричной РНК образуются сложно-эфирные связи. Затем на основе матрицы под действием фермента РНК-ПОЛИМЕРАЗЫ из свободных нуклеотидов по принципу комплементарности начинается сборка мРНК.


ТРАНСПОРТНЫЕ РНК: Т.К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Т.К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Строение всех тРНК сходно. Строение всех тРНК сходно. Служат для осуществления переноса аминокислотных остатков к матричной РНК


ТРАНСЛЯЦИЯ Второй этап биосинтеза– трансляция. Трансляция– перевод последовательности нуклеотидов в последовательность аминокислот белка. В цитоплазме аминокислоты под строгим контролем ферментов аминоацил-тРНК-синтетаз соединяются с тРНК, образуя аминоацил-тРНК. Это очень видоспецифичные реакции: определенный фермент способен узнавать и связывать с соответствующей тРНК только свою аминокислоту. мРНК АГУ У Ц А У ЦА А Г У а/к а/к а/ к У У Г А Ц У У Г Ц


Далее тРНК движется к мРНК и связывается комплементарно своим антикодоном с кодоном мРНК. Затем второй кодон соединяется с комплексом второй аминоацил-тРНК, содержащей свой специфический антикодон. Антикодон– триплет нуклеотидов на верхушке тРНК. Кодон– триплет нуклеотидов на мРНК. мРНК АГУ У Ц А У Ц А А Г У а/ к а/к У У Г А Ц У У Г Ц Водородные связи между комплементарными нуклеотидами


После присоединения к мРНК двух тРНК под действием фермента происходит образование пептидной связи между аминокислотами; первая аминокислота перемещается на вторую тРНК, а освободившаяся первая тРНК уходит. После этого рибосома передвигается по нити для того, чтобы поставить на рабочее место следующий кодон. мРНК АГУ У Ц А У Ц А А Г У а/к а/ к У У Г А Ц У У Г Ц Пептидная связь а/ к


Такое последовательное считывание рибосомой заключенного в мРНК «текста» продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминальных кодонов). Такими триплетами являются триплеты УАА, УАГ,УГА. Одна молекула мРНК может заключать в себе инструкции для синтеза нескольких полипептидных нитей. Кроме того, большинство молекул мРНК транслируется в белок много раз, так как к одной молекуле мРНК прикрепляется обычно много рибосом. мРНК на рибосомах белок Наконец, ферменты разрушают эту молекулу мРНК, расщепляя ее до отдельных нуклеотидов.


Контрольный тест 1. Матрицей для синтеза молекулы мРНК при транскрипции служит: а) вся молекула ДНК б) полностью одна из цепей молекулы ДНК в) участок одной из цепей ДНК г) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК. молекула ДНК. 2. Транскрипция происходит: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 3. Последовательность нуклеотидов в антикодоне тРНК строго комплементарна: комплементарна: а) триплету, кодирующему белок б) аминокислоте, с которой связана данная тРНК в) последовательности нуклеотидов гена г) кодону мРНК, осуществляющему трансляцию


4. Трансляция в клетке осуществляется: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 5. При трансляции матрицей для сборки полипептидной цепи белка служат: служат: а) обе цепочки ДНК б) одна из цепей молекулы ДНК в) молекула мРНК г) в одних случаях одна из цепей ДНК, в других– молекула мРНК 6. При биосинтезе белка в клетке энергия АТФ: а) расходуется б) запасается в) не расходуется и не выделяется г) на одних этапах синтеза расходуется, на других– выделяется 7. Исключите лишнее: рибосомы, тРНК, мРНК, аминокислоты, ДНК. 8. Участок молекулы тРНК из трех нуклеотидов, комплементарно связывающийся с определенным участком мРНК по принципу связывающийся с определенным участком мРНК по принципу комплементарности называется… комплементарности называется…


9. Участок молекулы ДНК, с которым соединяется особый белок- репрессор, регулирующий транскрипцию отдельных генов,--… репрессор, регулирующий транскрипцию отдельных генов,--… 10. Последовательность азотистых оснований в молекуле ДНК 10. Последовательность азотистых оснований в молекуле ДНК следующая: АТТААЦГЦТАТ. Какова будет последовательность следующая: АТТААЦГЦТАТ. Какова будет последовательность азотистых оснований в мРНК? азотистых оснований в мРНК? а) ТААТТГЦГАТА б) ГЦЦГТТАТЦГЦ в) УААУЦЦГУТУТ г) УААУУГЦГАУА