Грунтовые воды на участке – находим и решаем, что с ними делать. Оценка состояния подземных вод

Среди вод суши наибольшие запасы приходятся на подземные воды, общие запасы которых составляют 60 млн км 3 . Подземные воды могут находиться в жидком, твердом, парообразном состоянии. Они располагаются в почве и в горных породах верхней части земной коры.

Способность горных пород пропускать воду зависит от размеров и количества пор, пустот, трещин.

По отношению к воде все горные породы подразделяют на три группы: водопроницаемые (хорошо пропускают воду), водонепроницаемые (задерживают воду) и растворимые.

Растворимые породы - это калийная и поваренная соли, гипс, известняк. Когда подземные воды растворяют их, на глубине образуются большие пустоты, пещеры, воронки, колодцы (это явление называется карстом).

Водопроницаемые породы можно подразделить на две категории: проницаемые во всей их массе (однородно проницаемые) и относительно проницаемые (полупроницаемые). Примерами хорошо проницаемых горных пород служат галечники, гравий, песок. К полупроницаемым относятся мелкозернистый песок, торф и др.

Кроме этого, водопроницаемые породы могут быть влагоемкими и не влагоемкими.

Невлагоемкие породы - это горные породы, которые свободно пропускают воду, не насыщаясь ею. Это, например, пески, галечник и др.

Влагоемкие - это горные породы, которые удерживают в себе какое-то количество воды (например, один кубический метр торфа удерживает свыше 500 л воды).

К водонепроницаемым горным породам относятся глины, массивные кристаллические и осадочные породы. Однако эти породы могут быть разбиты трещинами и в естественных условиях стать проницаемыми.

Слои водонепроницаемых пород, над которыми залегают водоносные породы, называют водоупорными.

На водоупорных породах просачивающаяся вниз вода задерживается и заполняет промежутки между частицами вышележащей водопроницаемой породы, образуя водоносный горизонт.

Слои водопроницаемых пород, которые содержат воду, называются водоносными.

На равнинах, сложенных осадочными горными породами, обычно чередуются водопроницаемые слои и водоупорные.

Подземные воды залегают слоями (рис. 1). Их можно разделить на три горизонта:

  • Верхний горизонт — это пресные воды, залегающие на глубине от 25 до 350 м.
  • Средний горизонт - воды, залегающие на глубине от 50 до 600 м. Они обычно минеральные, или соленые.
  • Нижний горизонт — вода, нередко погребенная, в высокой степени минерализованная, представлена рассолами. Залегает на глубине от 400 до 3000 м.

Глубокие горизонты вод могут быть ювенильным и (магматического происхождения) или реликтовыми. Вода нижних горизонтов в большинстве случаев образовалась в период формирования заключающих их осадочных пород.

По условиям залегания подземные воды подразделяют на почвенные, верховодку и воды насыщения — грунтовые и межпластовые (рис. 2).

Почвенные воды и верховодка

Почвенные воды заполняют часть промежутков между частицами почвы. Они необходимы для нормальной жизни растений.

Верховодка залегает неглубоко, существует временно, малообильна. В наших климатических условиях она появляется весной после таяния снега, иногда осенью.

Рис. 1. Слои подземных вод

Рис. 2. Виды вод по условиям

Грунтовые воды

Грунтовые воды образуют водоносный горизонт на первом от поверхности водоупорном слое. Поверхность грунтовых вод называется зеркалом грунтовых вод. Расстояние от зеркала грунтовых вод до водоупорного слоя называют мощностью водоупорного слоя.

Грунтовые воды питаются просочившимися атмосферными осадками, водами рек, озер, водохранилищ.

В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повышается после выпадения осадков или таяния снега, то понижается в засушливое время. В суровые зимы грунтовые воды могут промерзать.

Так как глубина залегания грунтовых вод определяется прежде всего климатическими условиями, в разных природных зонах она различна. Так, в тундре уровень грунтовых вод практически совпадает с поверхностью, а в полупустынях находится на глубине 60-100 м, причем не повсеместно, и эти воды не обладают достаточным напором.

Большое влияние на глубину залегания грунтовых вод оказывает степень расчлененности рельефа территории. Чем она сильнее, тем глубже находятся грунтовые воды.

Грунтовые воды значительно подвержены загрязнению.

Межпластовые воды

Межпластовые воды — нижележащие водоносные горизонты, заключенные между двумя водоупорными слоями. В отличие от грунтовых уровень межпластовых вод более постоянен и меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые.

Особую группу подземных вод составляют напорные межпластовые воды. Они полностью заполняют водоносный горизонт и находятся под давлением. Напором обладают все воды, заключенные в слоях, залегающих в вогнутых тектонических структурах.

Вскрытые скважинами и поднимающиеся вверх, они изливаются на поверхность или фонтанируют. Так устроены артезианские колодцы (рис. 3).

Рис. 3. Артезианский колодец

Химический состав подземных вод неодинаков и зависит от растворяемости прилегающих пород. По химическому составу различают пресные (до 1 г солей на 1 л воды), слабоминерализованные (до 35 г солей на 1 л воды) и минерализованные (до 50 г солей на 1 л воды) подземные воды. При этом верхние горизонты подземных вод обычно пресные или слабоминерализованые, а нижние горизонты могут быть сильноминерализованными. Минеральные воды по своему составу могут быть углекислыми, щелочными, железистыми и т. д. Многие из них имеют лечебное значение.

Температура подземных вод

По температуре подземные воды подразделяются на холодные (до +20 °С) и термальные (от +20 до +1000 °С). Термальные воды обычно отличаются высоким содержанием различных солей, кислот, металлов, радиоактивных и редкоземельных элементов.

Естественные выходы подземных вод (обычно грунтовых) на поверхность земли называется источниками (родниками, ключами). Они образуются обычно в пониженных местах, где земную поверхность пересекают водоносные горизонты.

Источники бывают холодными (с температурой воды не выше 20 °С), теплыми (от 20 до 37 °С) и горячими, или термальными (свыше 37 °С). Периодически фонтанирующие горячие источники называются гейзерами. Они находятся в областях недавнего или современного вулканизма (Исландия, Камчатка, Новая Зеландия, Япония).

Значение и охрана подземных вод

Подземные воды имеют большое значение в природе: являются важнейшим источником питания , болот; растворяют различные вещества в породах и переносят их; при их участии формируются карстовые и оползневые формы рельефа; при близком залегании к поверхности могут вызывать процессы заболачивания; снабжают растения влагой и растворенными в них элементами питания и т. д. Они широко используются человеком: являются источниками чистой питьевой воды; применяются для лечения целого ряда заболеваний человека; обеспечивают производственный процесс водными ресурсами; используются для орошения полей; из термальных вод получают большое количество различных химических веществ (йод, гауберову соль, борную кислоту, различные металлы); тепловая энергия подземных вод может служить для обогрева зданий, теплиц, получения электроэнергии и др.

На сегодняшний день во многих регионах состояние подземных вод оценивается как критическое и имеющее опасную тенденцию дальнейшего ухудшения. Несмотря на то что запасы подземных вод велики, возобновляются они крайне медленно, и это необходимо учитывать при их расходовании. Не менее важна и охрана подземных вод от загрязнений.

Подземные воды (причем не только поверхностные, но и глубинные) вслед за другими элементами окружающей среды испытывают загрязняющее влияние хозяйственной деятельности человека: от предприятий гор но-добываю щей промышленности, хранилищ химических отходов и удобрений, свалок, животноводческих комплексов, населенных пунктов и др. Среди загрязняющих подземные воды веществ преобладают: нефтепродукты, фенолы, тяжелые металлы (медь, цинк, свинец, кадмий, никель, ртуть), сульфаты, хлориды, соединения азота. Площади очагов загрязнения подземных вод достигают сотен квадратных километров. Происходит ухудшение качества питьевой воды.

На печать

Отправить статью

Владимир Марченко 14.07.2015 | 21772

Наличие на участке грунтовых вод может заставить вас отказаться от строительства капитальных сооружений. Чтобы этого не произошло, узнайте больше о подземных источниках.

Без информации о грунтовых водах, их составе, уровне залегания и иных свойствах нельзя планировать возведение долговременных зданий и сооружений , обустройство водоемов , организацию водоснабжения и канализации . Наличие подземных вод может испортить любые работы и привести со временем к разрушению конструкции. Чтобы этого не произошло, следует знать, как определять уровень и характеристики грунтовых вод.

Что такое грунтовые воды?

По сути, грунтовые воды – это жидкость, которая скапливается в верхних слоях почвы. Источниками формирования грунтовых вод являются:

  • осадки в виде дождя и снега;
  • конденсат водяных паров , образующийся в почве.

Глубина залегания грунтовых вод зависит от рельефа местности и наличия водоемов вблизи вашего участка. В болотистых или низинных районах грунтовые воды находятся практически на поверхности – в 1-2 м, а то и в нескольких сантиметрах от нее.

Виды грунтовых вод

Уровень грунтовых вод может изменяться на протяжении года. Минимальных значений он достигает зимой. В это время почва замерзает и становится непроницаемой для осадков. К тому же снег тает только ближе к весне, лишая грунтовые воды основного источника наполнения.

В пределах частных домовладений обычно присутствуют два вида подземных вод.

1. Верховодка (автохтонные, "местные" подземные воды). Залегают на глубине от 0,5 до 3 м "пятнами" во впадинах или между пластами грунта. В засушливую погоду или холодной зимой верховодка практически исчезает. Но с возобновлением дождей и повышением влажности земли появляется вновь.

Иногда эти подземные воды образуются в местах протечек водопровода, канализации либо постоянного слива жидкости. Вода в верховодке – пресная, слабоминерализованная, обычно не пригодная для питья. Она часто бывает загрязнена токсичными металлами, вызывающими быстрое разрушение бетона.

2. Безнапорные грунтовые воды (аллохтонные, "внешние" воды). Залегают на глубине от 1 до 5 м и являются относительно постоянными. Именно безнапорные грунтовые воды доставляют строителям основную массу неудобств, поскольку все время пополняются за счет атмосферных осадков, близкорасположенных рек и озер, конденсата, а иногда и артезианских скважин.

Как определить уровень грунтовых вод?

Перед началом любых работ на участке, связанных с проникновением под землю, нужно определить уровень грунтовых вод (УГВ). Особенно важно учитывать данные геологической разведки при . Но знать, какие процессы происходят на глубине от 1 до 5 м, необходимо еще и при бурении скважин и колодцев, устройстве погребов и даже перед посадкой растений. Близкорасположенные к поверхности грунтовые воды влияют на химический состав почвы, уровень ее кислотности и влажности.

Определять уровень грунтовых вод нужно ранней весной, когда он достигает максимальных значений.

Самостоятельно определить глубину залегания можно несколькими способами.

  • Просто заглянуть в близлежащие колодцы . Вода в них поступает только из подземных источников, поэтому определить глубину их залегания можно без труда. Расстояние определяется от уровня земли до зеркала воды.
  • Раньше определяли уровень залегания подземной воды по растениям . Участок земли внешне выглядит сухим, но если он покрыт влаголюбивой растительностью , то и грунтовые воды расположены близко к поверхности. Если на земле обильно произрастает крапива , осока , болиголов , камыш или наперстянка , то водоносный горизонт расположен очень близко – в пределах 2-3 м от поверхности. А вот полынь и солодка указывают на то, что до воды более 3 м. Растения, выращенные на грунтовых водах, всегда сочные, яркие и зеленые.
  • Еще наши предки следили за поведением насекомых и животных . Мошкара и комары вьются над участками с повышенной влажностью. Кошки выбирают места, под которыми находится пересечение водных жил. Собаки , напротив, обычно отдыхают в стороне от подобных зон. Избегают близкого соседства с грунтовыми водами муравьи , кроты и мыши .
  • Можно наблюдать за естественными "подсказками". Природа постоянно "сообщает" о наличии в ландшафте грунтовых вод. Если вечером над землей стелется туман – грунтовые воды находятся пределах 1,5-2 м от поверхности. То же касается и случаев, когда в одних местах росы больше, чем в других.

Бурение скважины как самый надежный способ определения УГВ

Чем выше расположены грунтовые воды, тем тяжелее будет соорудить долговременные здания и сооружения. А учитывая, что фундамент часто занимает большую площадь, уровень грунтовых вод нужно замерить в нескольких местах. На участке в этом случае (а равно и в любом другом) лучше использовать методику бурения пробных скважин .

Для этого возьмите обыкновенный садовый бур и проделайте 3-4 скважины глубиной 2-2,5 м по периметру предполагаемого места строительства. Если в течение 2-3 дней на дне скважин не появляется вода, значит, она находится на достаточной глубине и можно смело проектировать прочное сооружение.

Как отличить верховодку от грунтовых вод?

Хорошо, если вам при бурении пробных скважин не попались ни грунтовые воды, ни верховодка. В этом случае можно смело начинать строительство. Хуже, если скважины наполнились водой.

Но перед тем как принять решение о строительстве, вам нужно понять, что это за жидкость – верховодка (т.е. временное скопление воды) или грунтовые воды (относительно постоянные, занимающие большую площадь, скопления воды).

Сделать это, не видя целостной картины рельефа, непросто. В жаркое время года верховодка "уходит" и создается ложное впечатление, что почва сухая и с низким уровнем влаги. Однако после пары дней с продолжительными ливнями на участке может появится вода. Если так произошло и у вас, знайте, на участке именно верховодка, а не грунтовые воды.

Также обращайте внимание на характер рельефа. Участки, расположенные в нижней части склонов (точке водосбора) либо на самом склоне, но имеющие препятствия для стока воды в виде элементов дороги, стенок и т.д., как нельзя лучше подходят для образования верховодки.

Определить наличие и "рисунок" верховодки помогут специалисты, производящие замеры несколько раз в течение года.

Высокий уровень воды – почему нельзя строить дом?

Повлиять на природные процессы, в том числе и на наличие грунтовых вод на участке, довольно сложно. В разных регионах приняты свои строительные нормы , которые регламентируют УГВ, при котором можно начинать или, напротив, следует прекратить возведение капитальных сооружений.

Для сооружения фундамента любого типа оптимальными считаются условия, при которых уровень грунтовых вод находится ниже глубины промерзания грунта. При этом последний должен содержать минимальное количество глинистых и пылеватых (непучнистых) частиц. Фундамент нужно закладывать ниже точки промерзания грунта.

  • между водоупорным слоем и верхней границей грунта лежат мелкозернистые пески с примесью илистых частиц . В этом случае он превращается в плывун и при строительстве разжижается на мелкие части. Нужно устанавливать заглубленные фундаменты, замораживать стенки или дополнительно укреплять их;
  • если средний слой занимает глинистый сланец , то фундамент будет неустойчивым, поскольку данный тип грунта быстро размягчается и распадается на мелкие частицы;
  • если уровень залегания грунтовых вод находится на глубине до 2 м . В этом случае от возведения долговременного строения, для которого нужно вырыть котлован или траншею, лучше отказаться. Котлован будет заливать даже при регулярной откачке воды, а установить фундамент в таких условиях практически невозможно. Не поможет и гидроизоляция – она даст лишь кратковременный эффект.

По СНиП между нижней точкой фундамента и грунтовыми водами должно быть не менее 0,5 м.

Как понять, что грунтовые воды разрушают фундамент

Бетонное основание "подтачивает" не столько жидкость, сколько растворенные в ней соли, сульфаты и другие соединения. Они приводят к образованию так называемой "цементной бациллы", растворяющей и разрыхляющей бетон. Понять, что бетон подвержен влиянию грунтовых вод можно по следующим признакам:

  • на поверхности бетона появился белый налет;
  • материал отслаивается кусками, как после промерзания;
  • заметна плесень и грибки;
  • присутствует запах сырости;
  • образуются бледно-желтые солевые пятна.

Если на фундаменте или в подвале наблюдается нечто подобное, можно смело утверждать, что грунтовые воды вступили во взаимодействие с основанием дома.

Строим дом без подвала

Самый простой и надежный способ ужиться с грунтовыми водами состоит в сооружении здания без подвального помещения – например, простой деревянный дом. А если подвал нужен только для хранения закаток и урожая, рядом с домом можно сделать хранилище "под холм".

Для пучинистых грунтов или почвы с большой глубиной промерзания подойдут столбчатый или свайный фундамент. Если планируется массивное здание, лучше соорудить мелкозаглубленный ленточный фундамент (МЗЛФ), или "плавающий фундамент".

На участках с высоким уровнем грунтовых вод можно подсыпать под будущее основание дома 0,5 м песка.

Что делать с грунтовыми водами на участке?

С уровнем грунтовых вод можно "повоевать". Наиболее популярными являются мерами понижения УГВ являются:

1. Поверхностный водоотлив (открытый способ водопонижения) – вода, просачивающаяся через дно или откосы котлована, поступает в канавы-водосборники и откачивается оттуда насосами. Вариант не подходит, если водой постоянно вымываются частицы грунта, из-за чего он проседает.

2. Безтрубный дренаж . Для его организации по периметру участка выкапывается траншея, в нее активно начинает стекать грунтовая вода, поскольку отсутствует сопротивление грунта. Воду можно выкачивать при помощи насоса, например, в расположенный на участке пруд . Для укрепления стенок канавы ее можно засыпать гравием или щебнем.

3. Трубный дренаж – в дополнение к предыдущему методу используются перфорированные и гофрированные трубы из синтетических материалов, которые укладываются на дно канавы и также засыпаются сыпучими материалами. Вода по трубам в идеале должна выводиться за пределы участка.

4. Использование иглофильтровых установок . Подобные системы выводят грунтовые воды на глубину до 4-5 м. Насос откачивает грунтовые воды, и они по трубе уходят на большую глубину.

5. Эжекторные иглофильтровые установки . Усложненная версия предыдущей системы. Вода проходит по комплексу труб, насосов и фильтров и также отводится на глубину до 20 м или в место водостока.

Не пытайтесь самостоятельно проектировать и строить систему водоотвода, доверьте это специалистам.

Грунтовые воды – опасное, но частое природное явление, от соседства с которым не застрахован ни один владелец участка. Проводить строительство при наличии грунтовых следует с особой осторожностью и только после тщательного изучения состава грунта и УГВ.

Министерство образования Республики Беларусь

Белорусский национальный технический университет

Кафедра «Геологии»

Реферат

На тему:”Характеристика грунтовых вод”

Выполнил: ст. гр. 112158 Сидоренко А.В.

Проверил: Колпашников Г.А.

Грунтовые воды

Грунтовые воды - это подземные воды первого от поверхности постоянно существующего водного горизонта, расположенного на первом водонепроницаемом слое (глины). Грунтовые воды имеют свободную водную поверхность, которая поднимается или опускается в зависимости от выпавших осадков.

Грунтовые подземные воды заполняют пески разной зерности и цвета, и как правило грунтовые воды залегают близко к поверхности. Выпадающие атмосферные осадки благодаря лёгкой водопроницаемости песков свободно просачиваются и накапливаются в их основании на глинистом ложе. Глубина залегания воды в первых от поверхности песках весьма различна - от 2-3м до 20-25м от поверхности.

Грунтовые воды, в следствии изменчивости пород их вмещающих (пески и супеси), а также выклинивания и замещения песков суглинистыми породами, часто находятся в сложной взаимосвязи между собой и с водами рек и озёр.

Положение зеркала воды грунтовых вод полностью определяется рельефом местности, количеством выпавших осадков и сезоном года. В весеннее и осеннее время года уровень воды на 1-2м выше, чем в летние месяцы. Значительное понижение уровня наблюдается также в зимний период, когда инфильтрация атмосферных осадков почти прекращается. Установлена одиннадцатилетняя цикличность колебания уровня грунтовых вод.

В воде многих колодцев, родников и скважин Минской области отмечено значительное содержание железа. При этом обогащение железом отмечается преимущественно там, где развиты болотные почвы, торфяники (болотные руды) или где в горной породе много железистых соединений. Отдельные анализы воды указывают на их местное загрязнение. Загрязнение воды обычно связано с плохим состоянием колодезных срубов или скважин и общими антисанитарными условиями близ колодцев.

Грунтовые воды используются преимущественно колодцами глубиной от 1-2 до 6-10м.

В условиях влажного климата развиваются интенсивные процессы инфильтрации и подземного стока, сопровождаемые выщелачиванием почв и горных пород. При этом легко растворимые соли - хлориды и сульфаты - выносятся из пород и почв; в результате длительного водообмена формируются пресные Г. в., минерализованные лишь за счёт относительно мало растворимых солей (преимущественно гидрокарбонатов кальция). В условиях засушливого тёплого климата (в сухих степях, полупустынях и пустынях) вследствие кратковременности выпадения и малого количества атмосферных осадков, а также слабой дренированности местности подземный сток Г. в. не развивается; в расходной части баланса Г. в. преобладает испарение и происходит их засоление.

Вблизи рек, водоемов, водохранилищ и т.п. грунтовые воды в значительной степени опреснены и по качеству могу удовлетворять нормам питьевой воды.

Вблизи свалок, скотомогильников, различного рода химических, радиоактивных захоронений Г.в. грунтовые воды заражены, таким образом являются показателем чистоты почв, местности.

Различия условий формирования грунтовых вод обусловливают зональность их географического распределения, которая тесно связана с зональностью климата, почвенного и растительного покрова. В лесных, лесостепных и степных районах распространены пресные (или слабоминерализованные) грунтовые воды; в пределах сухих степей, полупустынь и пустынь на равнинах преобладают солёные грунтовые воды, среди которых пресные воды встречаются лишь на отдельных участках.

Грунтовые воды заключена в рыхлых и в слабосцементированных породах (вода пластового типа) или заполняет трещины в коре выветривания (вода трещинного типа). Область питания грунтовых вод обычно совпадает с областью её распространения. Для последних характерны зональности широтная на равнинных и вертикальная на высокогорных областях.

Режим грунтовых вод формируется под воздействием физико-геогрфических факторов (климата, рельефа, поверхностных вод и др.).

Так как области питания и распространения грунтовых вод обычно совпадают. Вследствие этого условия формирования и режим грунтовых вод обладают характерными особенностями, отличающими их от более глубоких артезианских вод: грунтовые воды чувствительны ко всем атмосферным изменениям. В зависимости от количества выпадающих атмосферных осадков поверхность грунтовых вод испытывает сезонные колебания: в сухое время года она понижается, во влажное - повышается, изменяются также дебит, химический состав и температура грунтовых вод. Вблизи рек и водоёмов изменения уровня, расхода и химического состава грунтовых вод определяются характером гидравлической связи их с поверхностными водами и режимом последних. Величина стока грунтовых водр за многолетний период приблизительно равна количеству воды, поступившей путём инфильтрации.

Наиболее значительные запасы грунтовых вод сосредоточены в аллювиальных отложениях речных долин, в конусах выноса предгорных областей, а также в неглубоко залегающих массивах трещиноватых и закарстованных известняков (реже в трещиноватых изверженных породах).

Грунтовые воды в силу относительно лёгкой доступности имеют большое значение для народного хозяйства как источники водоснабжения промышленных предприятий, городов, посёлков, населенных пунктов в сельской местности и т. д..

Строительство часто ведут в условиях, когда грунтовые воды встречаются на глубине 1-2 м от поверхности. В этих случаях грунт, пригодный для отсыпки основания, и подошва сооружения оказываются под уровнем грунтовых вод. Если нет возможности понизить этот уровень, то в дальнейшем могут возникнуть серьезные ошибки.

Площадка для фундамента, находящаяся под уровнем грунтовых вод, уже в процессе выемки грунта бывает затоптана и размыта; грунт становится рыхлым, теряет свои первоначальные свойства, в том числе несущую способность. Исходная расчетная площадь нарушенного грунта уже не будет достаточной, возникнут непредвиденные просадки, которые фундамент не выдержит, а также трещины, разрушения.

Перед проектированием фундамента необходимо получить информацию о составе грунта: не менее важно иметь точные данные об уровне грунтовых вод, их объеме. Допускает ошибку тот, кто пренебрегает такой информацией, отсутствие которой приводит к различным повреждениям.

Слои грунта имеют неодинаковую водопроницаемость. В таких слоях вода находится в состоянии покоя подчас на высоком уровне. Накопившиеся грунтовые воды не имеют стока и оказывают различное по величине давление на конструкции, фундаменты, погруженные в грунт. Например, на 1 м2 пола подвала, «погруженного» на 1 м в грунтовую воду, действует снизу вверх сила в 1 т. Чтобы противодействовать ей, необходимо уложить бетонную плиту толщиной около 0,46 м. Эта опасная особенность грунтовых вод далеко не всем известна, поэтому иногда не обращают на нее должного внимания.

Перед началом строительства следует определить заранее не только уровень грунтовых вод, но также другие опасные их свойства. Встречаются грунтовые воды, в которых растворены сульфаты, соли и другие химические вещества, например органические кислоты, угольная кислота; нередко в них содержатся различные щелочи.

Наиболее агрессивную среду создает вода с большим содержанием сульфатов; при воздействии на бетон она может его полностью разрушить. Имеющийся в воде серный ангидрид S03 вступает в химическую реакцию с составляющими цемента, в результате чего образуется сульфоалюминат кальция - так называемая «цементная бацилла». Эта двойная соль растворяет и разрыхляет бетон; одновременно материал кристаллизуется.

Для оценки возможного максимального загрязнения грунтовых вод нейтральными загрязнителями, которые не сорбируются почвами и породами зоны аэрации, следует воспользоваться самой простой моделью переноса загрязнения воды – моделью поршневого вытеснения, когда интенсивность движения фронта инфильтрующейся влаги через защитную зону совпадает с интенсивностью миграции загрязнения воды. Степень защищенности грунтовых вод будет определяться временем достижения фронтом инфильтрующейся влаги (tз) уровня грунтовых вод, для этого используем следующее выражение, заменив в нем недостаток насыщения пород на их естественную влажность:

где W - инфильтрационное питание грунтовых вод, м/год; θ - естественная влажность пород; М - мощность зоны аэрации – глубина залегания грунтовых вод (м).

Категории защищенности грунтовых вод от загрязнения выбирались в соответствии с требованиями к срокам действия водозаборов подземных вод. Были установлены следующие категории защищенности грунтовых вод от загрязнения нейтральными ЗВ:

Чрезвычайно слабо защищенные грунтовые воды (tз= 0-5 лет);

Слабо защищенные грунтовые воды (tз= 5-10 лет);

Средне защищенные грунтовые воды (tз= 10-25 лет);

Условно защищенные грунтовые воды (tз= 25-50 лет);

Защищенные грунтовые воды (tз >50 лет).

Грунтовые воды формируются в основном из вод атмосферных осадков, выпадающих на земную поверхность и просачивающихся (инфильтрующих) в землю на некоторую глубину, и из вод из болот, рек, озер и водохранилищ, также просачивающихся в землю. Количество влаги, прогоняемой таким образом в почву, составляет по данным А.Ф.Лебедева, 15-20 % общего количества атмосферных осадков.

Проникновение вод в грунты (водопроницаемость), слагающих земную кору, зависит от физических свойств этих грунтов. В отношении водопроницаемости грунты делятся на три основные группы: водопроницаемые, полупроницаемые и водонепроницаемые или водоупорные.

Свойства грунтов. Особенные условия существования грунтовых вод в толщах рыхлых пород заставляют нас прежде всего остановиться на некоторых физических свойствах этих грунтов. Среди этих свойств особенное значение имеют: пористость пород, их влагоемкость, капиллярные свойства и водопроницаемость.

Пористость грунтов. Отношение пустот в грунте к объему всего сухого грунта называют пористостью грунта. Пористость обычно выражается в процентах. Определить ее можно так: сосуд объемом в 1 л нужно наполнить сухим песком. Затем осторожно из мензурки приливать воду в сосуд с песком до полного насыщения всего песка влагой. Допустим, что для этого требовалось 250 см 3 воды. Отношение 250/1000=0,25, или 25%, как раз и будет определять пористость взятого нами песка.

Пористость различных рыхлых пород далеко не одинакова. Так, у крупного речного песка пористость выражается приблизительно 15-25%, у гравия - 35%, у глины - 50-55%, у торфяного грунта - 80% и т. д.

Влагоемкость грунтов. От пористости пород в значительной степени зависит и их влагоемкость, т. е. способность породы удерживать в себе то или другое количество воды. Наименьшей влагоемкостью отличаются плотные каменные породы, а наибольшей - обломочные рыхлые породы, что хорошо видно из приведенной таблицы.

Капиллярные свойства грунтов. Огромную роль в жизни грунтовых вод играют размеры и форма тех зерен (или частичек), из которых состоит обломочная порода. Чем крупнее зерна, тем крупнее просветы между ними, и наоборот (рис. 98). А размеры просветов определяют капиллярные свойства породы.

Из физики известно, что высота поднятия воды в капиллярной трубке обратно пропорциональна диаметру трубки. Так, для трубки диаметром в 1 мм высота поднятия воды (при 15° С) равна 0,29 см, при диаметре 0,1 мм - 29 см, при диаметре 0,01 мм - 2 м.

Опыты, производившиеся над различными грунтами (рис. 99), показали, что высота поднятия воды в грунтах зависит от размеров зерна (или, точнее, от размеров тех просветов, которые между этими зернами образуются). Так, высота поднятия воды в обломочных породах, диаметр зерна которых колеблется от 1 до 0,5 мм, равна 1,31 см, для зерен диаметром 0,2-0,1 мм - 4,82 см, для зерен диаметром 0,1-0,05 мм - 10,5 см и т. д.

Различное состояние воды в грунтах. Вода в грунтах может находиться в трех основных состояниях: твердом, жидком и газообразном. Твердая вода может находиться только при температурах ниже 0°. Она

неподвижна и в данном случае нас мало интересует. Гораздо важнее жидкая и газообразная вода, которая находится в движении.

Жидкая вода в грунтах может быть в виде пленочной и гравитационной.

Пленочная вода, как мы уже имели случай упоминать, обволакивает каждую частичку грунта. Толщина водяной пленки зависит от влажности породы, но имеет предел, который определяется величиной молекулярных сил. (Минимальная толщина пленки равна диаметру молекулы воды). Пленочная вода движется, как и жидкость, но передвижение ее не зависит от сил тяжести. Пленочная вода удерживается каждой частицей грунта с большой силой и может быть удалена только с трудом (например, путем испарения).

Гравитационная вода в отличие от пленочной не попадает в радиус эффективного действия молекулярных сил, а движется вниз под влиянием сил тяжести через поры, находящиеся между зернами (или частичками) породы. Скорость передвижения гравитационной воды во много раз превосходит скорость движения пленочной воды. Гравитационная вода движется в сторону накло-на поверхности водоупорного пласта и только под влиянием гидростатического давления может иметь и восходящее движение.

Само собой разумеется, что гравитационная вода представляет для нас наибольший интерес, ибо она как раз и составляет главную массу подземных потоков, озер, источников и колодцев.

Газообразная вода может находиться только в порах грунта (в просветах между зернами породы). В тех случаях, когда водяные пары насыщают «подземную атмосферу», упругость водяных паров в просветах и порах влажной породы будет зависеть только от температуры. Последнее обстоятельство имеет большое значение в процессе увлажнения грунта путем конденсации водяных паров, поступающих из воздуха.

Согласно наблюдениям, производившимся в окрестностях Одессы проф. А. Ф. Лебедевым, почва указанным путем получает в год от 15 до 25% общего количества выпадающих здесь атмосферных осадков. Эта величина настолько значительна, что заслуживает большого внимания. В пустынях и полупустынях ночью условия конденсации паров в почве особенно благоприятны. Таким образом, было доказано, что значительная часть грунтовых вод образуется не только из атмосферных осадков, но также и путем непосредственной конденсации в грунте водяных паров из воздуха.

Как бы переходом между жидкой и газообразной водой в грунтах является вода гигроскопическая. Гигроскопическая вода окружает каждую частицу породы не сплошным слоем изолированных молекул.

В тех случаях, когда водяных молекул бывает много, они сливаются в сплошную пленку, толщина которой равна диаметру одной молекулы.. Это так называемая максимальная гигроскопичность, которая наблюдается при относительной влажности «подземной атмосферы» в 100%. Переход водяного пара в гигроскопическую воду сопровождается выделением тепла. Гигроскопическая вода перемещается из одних слоев грунта а другие, только переходя в парообразное состояние.

Парообразная и гигроскопическая вода особенный интерес представляет для почвоведения.

Происхождение грунтовых вод. Человек с давних пор широко использовал грунтовые воды в хозяйственных целях, а потому, естественно, очень давно стал задумываться над их происхождением. Первые «теории» происхождения грунтовых вод носили чисто фантастический характер. Говорилось, например, что земля «родит» воду, что в земле существуют особые неиссякаемые озера, откуда вода выходит на поверхность. Существовало даже и такое мнение, что вода океанов проникает в грунт материков и дает грунтовую воду. Последний взгляд пользовался особенно широким распространением и держался в науке почти до начала XVIII в.

Наряду с фантастическими гипотезами существовали объяснения, приближающиеся к истине. Так, по мнению Аристотеля, дождевые и снеговые воды частью испаряются, частью впитываются горными породами и образуют источники. Еще ближе к истине подходил римлянин Марк Витрувий Поллин, который говорил, что грунтовые воды образуются повсюду из вод атмосферных осадков. Однако только в начале XVIII в. эти объяснения стали проникать в европейскую науку.

В конце XVII в. (1686 г.)французский физик Мариотт впервые, на основании тщательных наблюдений, сумел доказать, что грунтовые воды происходят из атмосферных осадков, просачивающихся в землю. Выводы Мариотта, дополненные и уточненные последующими исследователями, все прочнее и прочнее входили в науку и в настоящее время упрощенно могут быть выражены в следующем виде. Вода, падающая на сушу в виде атмосферных осадков, частью стекает в ручьи и реки, частью испаряется и частью просачивается в грунт. Вода, проникшая в грунт, доходит до водоупорного слоя, и здесь ее движение вглубь прекращается. Накопляясь на поверхности водоупорного слоя, она обильно пропитывает вышележащие породы и образует так называемый водоносный слой. Эта теория, объясняющая происхождение грунтовых вод путем просачивания в глубь земли вод атмосферных осадков, носит название инфильтрационной.

Однако указанный способ происхождения грунтовых вод нельзя считать единственным. Трудами наших русских ученых (А. Ф. Лебедев и другие) было доказано, что подземные воды могут получаться еще путем конденсации водяных паров непосредственно в толще грунтов. Грунтовая вода, образованная путем конденсации водяных паров атмосферы непосредственно в грунтах, носит название конденсационной.

Мы уже говорили о том, что подземные воды, достигнув водоупорного слоя, прекращают свое движение вглубь и, собираясь на поверхности водоупорного слоя, образуют так называемый водоносный слой или водоносный горизонт. Водоносный слой снизу ограничен поверхностью водоупорного слоя, форма которой может быть весьма различна (рис, 101). Верхняя поверхность водоносного слоя обычно бывает плоская и носит название «зеркала» грунтовых вод. Это «зеркало» мы имеем возможность видеть в любом колодце.

Строго говоря, зеркало грунтовых вод имеет горизонтальную поверхность только на небольших сравнительно однородных пространствах. На больших же участках, при различии пород, различии геологического строения и рельефа горизонтальность зеркала в большей или меньшей степени нарушается. Возьмем простейший пример: ряд песчаных дюн, приблизительно однородных по своему строению. Зеркало грунтовых вод здесь будет (несколько ослаблено) повторять форму рельефа (рис. 102).

Причины этого довольно сложны: большее уплотнение песков под гребнями дюн создает иные условия капиллярности, что способствует более высокому стоянию грунтовых вод; оказывает влияние также различная степень испаряемости и т. д. Приблизительно то же, только в более сложных формах, мы можем видеть и на других примерах (рис. 103). Последнее необходимо учитывать как при поисках мест для рытья колодцев, так особенно при сооружении подземных хранилищ, погребов, блиндажей и т. д.

Движение грунтовых вод.В тех случаях, когда водоупорный слой имеет форму обширного вогнутого бассейна, грунтовая вода, заполняя бассейн, приобретает характер подземного озера. Понятно, что ряд колодцев, вырытых в районе подобного озера, будет иметь зеркало на одном уровне (рис. 104). Но значительно чаще водоупорный слой бывает наклонен в ту или другую сторону. При отмеченных нами условиях грунтовые воды, подчиняясь силе тяжести, медленно движутся в сторону наклона, образуя подземный поток (рис. 105). Ряд колодцев, вырытых вдоль потока, имеют зеркала на разных глубинах. Понятно, что чем больше колодцев, тем точнее мы можем определить направление и характер подземного потока. В местностях, где нет колодцев или количество их недостаточно, забивают буровые скважины, опускают в скважины трубы и по высоте воды в трубах определяют характер подземного потока.

При изучении подземных потоков важно бывает определить не только направление, но и скорость потока. Для определения скорости течения потока применяется обыкновенная поваренная соль. Ее бросают в колодец в верхней части подземного потока, а потом определяют, через сколько времени соленая вода появляется в других, ниже расположенных колодцах. Раствор азотнокислого серебра (А gNO 3 ) позволяет заметить даже ничтожную примесь хлористого натрия в воде исследуемых колодцев (получается ясный белый осадок хлористого серебра). Иногда для определения

скорости подземного потока вместо соли применяют бактерии, которые по своей малой величине легко проходят через поры грунтов. Скорость течения подземных потоков зависит от угла наклона водоупорного пласта и еще более от характера грунта. Так, в мелких песках скорость течения подземного потока достигает приблизительно 1 м в сутки, в крупных песках 2-3 и даже 5 м. В толще галечника, щебня и по трещинам твердых каменных пород подземные потоки движутся значительно быстрее, по нескольку километров в сутки. В глинах, наоборот, скорость проникновения воды даже вглубь не превышает 20 см в год, что и позволяет считать глину практически водонепроницаемой.

Источники. Источники образуются на месте выхода подземных потоков на земную поверхность. Источники (ключи, родники) по своему характеру могут быть весьма различны. В одних случаях это едва заметные ключики, иногда только увлажняющие почву. Места выходов таких источников можно узнать по характеру растительности (осока, тростник, хвощ, мхи). В других случаях это крупные источники, вода которых выбивает и сразу же образует значительный ручей. Однако нередки случаи, когда даже крупные источники не выходят на поверхность, а продолжают течь в толще грунта очень близко от земной поверхности. Подобные скрытые источники можно обнаружить по зарослям камышей, тростников и других водных растений. Действительно, если в таком месте вырыть небольшое углубление, то оно довольно быстро заполняется водой.

Источники с древнейших времен и до наших дней широко используются человеком. Это совершенно понятно, ибо они дают наиболее чистую и наиболее здоровую воду. Чтобы предохранить источник от загрязнения его закрепляют деревянным срубом, каменной кладкой или бетонными сооружениями. В местах, где поставщиками воды являются главным образом источники, их принимают в особые крытые бассейны, откуда по трубам они направляются на места их использования. Примеры подобных сложных сооружений мы можем видеть на южном побережье Крыма. Приблизительно так же используются крупные источники, дающие воду для снабжения городов, только сооружения здесь носят еще более сложный характер. Площадь питания подобных источников огораживается изгородью, куда не может заходить скот. Такая мера гарантирует здоровую воду источников.

Подземные потоки, прежде чем выйти на земную поверхность,

нередко проделывают большие и сложные пути под землей. Здесь прежде всего различают источники нисходящие и восходящие (рис. 106).

По температуре воды источники делятся на:

1) обычные, температура которых приблизительно равна средней годовой температуре данного

места,

2) холодные, температура которых ниже средней годовой, и

3) теплые, температура которых выше средней годовой.

Чем ближе подземный поток к земной поверхности, тем сильнее отзываются на нем колебания температуры воздуха. Так, годовые колебания достигают 5-10°, а в отдельных случаях и больше.

Холодные источники встречаются редко, и то главным образом в горах, где они питаются талыми водами снегов и ледников.

Теплые источники связаны чаще всего с местами недавнего вулканизма.

Особое место занимают так называемые артезианские колодцы. Пробитые на большую глубину буровые скважины дают выход глубоко лежащим подземным водам (рис. 107). Эти воды, находясь под сильным гидростатическим давлением, нередко бьют фонтанами и дают много воды (самые сильные - до 10-15 м 3 в минуту).

Минеральные источники. Во время своих подземных перемещений грунтовые воды встречают на своем пути различные вещества, которые могут растворяться в воде. K числу таких веществ относятся известняки, гипсы, поваренная соль, углекислый газ, сероводород и многие другие. Чаще всего в грунтах встречаются известняки (СаСОз) и гипс (CaSO 4 ). Вода, содержащая в растворе гипс или известь, почти не изменяет вкуса, но отличается тем, что плохо растворяет мыло (плохо мылится). Такую воду люди в общежитии называют «жесткой». При кипячении известь из воды выделяется и образует на стенках сосуда так называемую «накипь», которая всем хорошо известна.

Грунтовые воды, соприкасаясь с засоленными грунтами (в сухих степях и пустынях) или с залежами поваренной соли, растворяют эту соль и приобретают соленый вкус. Соленые источники и колодцы встречаются очень часто и являются хорошими показателями содержания соли в толщах грунтов той или другой местности. Примерами могут служить соленые источники и колодцы Соликамска, Березников, Илецкой Защиты и многие другие.

Нередко в подземных водах бывают растворены соли железа, углекислый натр, углекислый газ, сероводород и др.

Количество растворенных в воде солей и газов может быть различно. В тех случаях, когда растворенных солей и газов мало, вкус и запах воды не меняется и воду в этих случаях называют пресной. В тех же случаях, когда растворы на 1 л воды содержат не менее 1 г солей или газов, придающих воде различные вкусы и запахи,- воду называют минеральной, источники же, выделяющие минеральную воду,- минеральными источниками. В зависимости от химического состава минеральных источников их делят на группы:

Грунтовые воды в условиях вечной мерзлоты. За полярным кругом на глубине 50-100 см обычно залегает мерзлый горизонт, не проницаемый для воды. При этих условиях водоносный слой располагается над мерзлым горизонтом, т. е. у самой поверхности почвы. Столь высокое положение грунтовых вод создает исключительно благоприятные условия для заболачивания, что и наблюдается в тундрах в широких размерах.

Однако вечномерзлые горизонты встречаются не только за полярным кругом. Так, в Сибири (за Енисеем) они известны южнее 60-й и даже 50-й параллели. Вечная мерзлота в Сибири залегает на разных глубинах, но чаще всего на глубине 2-4 м. Таким образом, грунтовые воды здесь также залегают очень неглубоко, что, естественно, приводит к заболоченности даже при очень малом количестве осадков (рис. 108). На заболоченных местах обычно растут торфяные мхи, осоки, карликовые березы и ивы, лиственницы и корявые березы. По распространению этой растительности во многих случаях можно судить о налички вечной мерзлоты в данном месте.

В зимнее время, когда почвы промерзают сверху, грунтовые воды оказываются зажатыми между двумя водоупорными горизонтами. Подобное положение грунтовых вод приводит к ряду весьма своеобразных явлений. Так, на склонах, особенно в нижней их части, воды испытывают огромное гидростатическое давление, в результате которого вода прорывает мерзлую почву трещинами и выливается наружу. Ввиду того что явления эти протекают при сильных морозах, выливающаяся из трещин вода

замерзает. Излияние вод и последующее их замерзание повторяется неоднократно, что приводит к увеличению толщины льда до 4-5 и более метров. В результате нарастают огромные ледяные бугры, известные под названием наледей (рис. 109).

Наледи особенно сильно вредят дорогам. По одной только шоссейной Амуро-Якутской магистрали (728 км) за зиму 1927-1928 гг. зарегистрировано свыше сотни наледей. Из них 24 наледи имели площади свыше 1 км 2 . Толщина льда наледей доходит до 3-5 и более метров. Ввиду того что промерзание грунтов (сверху) к концу зимы постепенно увеличивается, растет и количество наледей. По наблюдениям, производившимся в районе той же Амуро-Якутской магистрали, в декабре образовалось 110 наледей, в январе 150, в феврале 350, в марте 575, в апреле 500. (В мае не образовалось ни одной.)

Случается, что грунтовые воды не могут сразу прорвать верхнего мерзлого горизонта. Тогда под давлением грунтовых вод поверхность земли выпучивается наподобие гриба (рис. 110). Эти «выпучивания» разрушают постройки, портят дороги и мосты.

K концу зимы земля сверху промерзает настолько, что верхний мерзлый слой нередко соединяется с нижним, и грунтовые воды полностью замерзают. В северных районах это явление наступает раньше, в южных позже. Вследствие сплошного промерзания вода ключей и колодцев иссякает, что создает большие затруднения для жителей. Понятно также, что и питание рек в зимний период в районах распространения вечной мерзлоты очень резко снижается. Летом же, наоборот, после каждого сильного дождя реки разливаются.

Подземные воды вулканических областей. Застывшие лавы благодаря своей трещиноватости и пористости хорошо пропускают воду. Еще лучше пропускают воду вулканические туфы, состоящие из рыхлых продуктов извержения. В силу этого обстоятельства атмосферные осадки, даже при большом их количестве, нередко нацело поглощаются вулканическими образованиями и не дают поверхностных водостоков. В результате поверхность лавовых покровов обычно имеет вид безжизненной пустыни, лишенной воды и растительности. Темная или даже черная окраска лав усиливает безотрадность открывающейся перед зрителем картины.

Воды, проникающие в толщу вулканических пород, достигают, наконец, водоупорных подстилающих пород и образуют здесь значительные скопления подземных вод. При большой мощности вулканических образований грунтовые воды оказываются очень глубоко, и, чтобы добраться до них, приходится рыть колодцы в

десятки метров глубиной. Эти грунтовые воды обычно выступают по краям лавовых плато в виде чистых, иногда очень многоводных источников...

Ювенильные воды. Магма, проникающая в толщу земной коры, выделяет большое количество водяных паров, которые, конденсируясь под землей, дают так называемую ювенильную воду. Ювенильные воды образуют источники, которые особенно широко распространены в областях недавнего вулканизма. Ювенильные источники чаще всего бывают горячими или теплыми и нередко минеральными.

Особое место среди горячих источников занимают гейзеры. Гейзеры периодически бурно вскипают и выбрасывают струи горячей воды и пара. Гейзеры встречаются сравнительно редко и связаны всегда с вулканическими областями. Наибольшей известностью пользуются гейзеры о. Исландии, Иеллоустонского национального парка США, Калифорнии и Новой Зеландии. Большое количество крупных гейзеров находится на Камчатке, несколько южнее группы Кроноцких вулканов. Высота выбрасываемых струй воды и пара некоторых камчатских гейзеров достигает 15-20 и более метров.

Водную оболочку Земли — гидросферу — формируют подземные воды, атмосферная влага, ледники и поверхностные водоемы, в том числе океаны, моря, озера, реки, болота. Все воды гидросферы взаимосвязаны между собой и находятся в беспрерывном круговороте.

Основной состав гидросферы — соленые воды. На пресную воду приходится менее 3% всего объема. Цифры условны, так как в расчетах учтены только разведанные запасы. Между тем, по предположениям гидрогеологов, в глубинных слоях Земли находятся колоссальные хранилища подземных вод, месторождения которых еще предстоит открыть.

Подземные воды как часть водных ресурсов планеты

Подземные воды — воды, содержащиеся в водовмещающих осадочных породах, слагающих верхний слой земной коры. В зависимости от окружающих условий, таких как температура, давление, виды горных пород, воды находятся в твердом, жидком или парообразном состоянии. Классификация подземных вод прямым образом зависит от грунтов, слагающих земную кору, их влагоемкости и глубины залегания. Слои водонасыщенных пород носят название «водоносные горизонты».

Водоносные горизонты с пресной водой считаются одним из важнейших стратегических ресурсов.

Характеристики и свойства подземных вод

Различают безнапорные водоносные горизонты, ограниченные пластом водонепроницаемых пород снизу и называемые грунтовыми водами, и напорные, расположенные между двумя водоупорными пластами. Классификация подземных вод по типу водонасыщенных грунтов:

  • поровые, залегающие в песках;
  • трещинные, наполняющие пустоты твердых скальных пород;
  • карстовые, находящиеся в известняках, гипсах и подобных им водорастворимых породах.

Вода, универсальный растворитель, активно поглощает вещества, входящие в состав пород, и насыщается солями и минералами. В зависимости от концентрации растворенных в воде веществ различают пресную, солоноватую, соленую воду и рассолы.

Виды воды в подземной гидросфере

Вода под землей находится в свободном или связанном состоянии. К свободным подземным водам относятся напорные и безнапорные воды, способные перемещаться под действием гравитационных сил. В числе связанных вод:

  • кристаллизационная вода, химически входящая в кристаллическую структуру минералов;
  • гигроскопическая и пленочная вода, физически связанная с поверхностью частичек минералов;
  • вода, находящаяся в твердом состоянии.

Запасы подземных вод

На подземные воды приходится около 2 % от объема всей гидросферы планеты. Под термином «запасы подземных вод» подразумевается:

  • Количество воды, содержащееся в водонасыщенном слое грунта — естественные запасы. Пополнение водоносных горизонтов происходит за счет рек, атмосферных осадков, перетока воды из других водонасыщенных пластов. При оценке запасов подземных вод учитывается среднегодовой объем подземного стока.
  • Объем воды, который может быть использован при вскрытии водоносного горизонта — упругие запасы.

Еще один термин — «ресурсы» — обозначает эксплуатационные запасы подземных вод или объем воды заданного качества, который возможно добыть из водоносного горизонта в единицу времени.

Загрязнение подземных вод

Эксперты классифицируют состав и вид загрязнения подземных вод следующим образом:

Химические загрязнения

Неочищенные жидкие стоки и твердые отходы предприятий индустрии и сельского хозяйства содержат различные органические и неорганические вещества, в том числе тяжелые металлы, нефтепродукты, токсичные ядохимикаты, почвенные удобрения, дорожные реагенты. Химические вещества проникают в водоносные горизонты через грунтовые воды и неправильно изолированные от смежных водонасыщенных пластов скважины. Химические загрязнения подземных вод отличаются широким распространением.

Биологические загрязнения

Неочищенные хозяйственно-бытовые стоки, неисправные канализационные магистрали и поля фильтрации, расположенные вблизи водозаборных скважин, могут стать источниками заражения водоносных горизонтов болезнетворными микроорганизмами. Чем выше фильтрационная способность грунтов, тем медленнее распространяется биологического загрязнение подземных вод.

Решение проблемы загрязнения подземных вод

Учитывая, что причины загрязнения подземных вод носят антропогенный характер, мероприятия по охране подземных водных ресурсов от загрязнения должны включать мониторинг бытовых и промышленных стоков, модернизацию систем очистки и утилизации сточных вод, ограничение сбросов стоков в поверхностные водоемы, создание водоохранных зон, усовершенствование технологий производства.