Минерально-строительное сырье. Комплексное использование минерального сырья и отходов его переработки Техногенное минеральное сырье

Рассматриваемые вопросы

1. Основные виды минерального сырья для производства строительных материалов

2. Магматические, осадочные м метаморфические горные породы

3. Техногенные вторичные ресурсы

Основным природным сырьем для производства строительных материалов являются горные породы . Их используют для изготовления керамики, стекла, металла, неорганических вяжущих веществ. Сотни кубометров песка, гравия и щебня применяют ежегодно в качестве заполнителей для бетонов и растворов.

Другим важным сырьевым источником являются техногенные вторичные ресурсы (отходы промышленности). Пока они используются недостаточно. Но по мере истощения природных ресурсов, повышения требований к охране окружающей среды и разработки новых эффективных технологий техногенное сырье будет применяться значительно шире.

Горные породы как сырьевая база
производства строительных материалов

Горные породы – это значительные по объему скопления минералов в земной коре, образовавшиеся в результате физико-химических процессов. Минералы – это вещества, обладающие определенным химическим составом, однородным строением и характерными физико-механическими свойствами. По условиям образования горные породы разделяют на три основные группы:

Магматические (первичные) горные породы образовались при охлаждении и отвердевании магмы.

Осадочные (вторичные) горные породы образовались в результате естественного процесса разрушения первичных и других пород под влиянием воздействия внешней среды.

Метаморфические (видоизмененные) горные породы образовались в результате последующего изменения первичных и вторичных пород.

Магматические горные породы

Глубинные – это породы, образовавшиеся при застывании магмы на разной глубине в земной коре. Излившиеся породы образовались при вулканической деятельности, излиянии магмы и ее затвердении на поверхности.

Главные породообразующие минералы – кварц (и его разновидности), полевые шпаты, железисто-магнезиальные силикаты, алюмосиликаты. Все эти минералы отличаются друг от друга по свойствам, поэтому преобладание в породе тех или иных минералов меняет ее строительные свойства: прочность, стойкость, вязкость и способность к обработке (к полировке, шлифовке и т.п.).

Кварц , состоящий из кремнезема (диоксида кремния SiО 2) в кристаллической форме, является одним из самых прочных и стойких минералов. Он обладает: исключительно высокой прочностью (при сжатии до 2000 МПа); высокой твердостью, уступающей только твердости топаза, корунда и алмаза; высокой химической стойкостью при обычной температуре; высокой огнеупорностью (плавится при температуре 1700°С). Цвет кварца чаще всего молочно-белый, серый. Благодаря высокой прочности и химической стойкости кварц остается почти неизменным при выветривании магматических пород, в состав которых он входит. Полевые шпаты – это самые распространенные минералы в магматических породах (до 2/3 от общей массы породы). Они представляют собой, так же как и кварц, светлые составные части пород (белые, розоватые, красные и т.п.). Главными разновидностями полевых шпатов являются ортоклаз и плагиоклазы. По сравнению с кварцем полевые шпаты обладают значительно меньшими прочностью (120-170 МПа на сжатие) и стойкостью, поэтому они реже встречаются в осадочных породах (главным образом, в виде полевошпатовых песков). Результатом выветривания является глинистый минерал – каолинит.

В группе железисто-магнезиальных силикатов наиболее распространены оливин, пироксены (например, авгит), амфиболы (роговая обманка). Среди магнезиальных силикатов встречаются вторичные минералы, чаще всего замещающие оливин, – серпентин, хризотил-асбест.

Все вышеперечисленные минералы характеризуются высокой прочностью и ударной вязкостью, а также повышенной плотностью.

Глубинные (интрузивные) горные породы. При медленном остывании магмы в глубинных условиях возникают полнокристаллические структуры. Следствием этого является ряд общих свойств глубинных горных пород: весьма малая пористость, большая плотность и высокая прочность.. Средние показатели важнейших строительных свойств таких пород: прочность при сжатии 100–300 МПа; плотность 2600–3000 кг/м 3 ; водопоглощение меньше 1 % по объему; теплопроводность около 3 Вт/(м×°С).

Граниты обладают благоприятным для строительного камня минеральным составом, отличающимся высоким содержанием кварца (25–30 %), натриево-калиевых шпатов (35–40 %) и плагиоклаза (20–25 %), обычно небольшим количеством слюды (5-10 %) и отсутствием сульфидов. Граниты имеют высокую механическую прочность при сжатии – 120–250 МПа (иногда до 300 МПа). Сопротивление растяжению, как у всех каменных материалов, относительно невысокое и составляет лишь около 1/30–1/40 от сопротивления сжатию.

Одним из важнейших свойств гранитов является малая пористость, не превышающая 1,5 %, что обусловливает водопоглощение около 0,5 % (по объему). Поэтому морозостойкость их высокая. Огнестойкость гранита недостаточна, так как он растрескивается при температурах выше 600 °С вследствие полиморфных превращений кварца. Гранит, так же, как и большинство других плотных магматических пород, обладает высоким сопротивлением истиранию.

Из всех изверженных пород граниты наиболее широко используют в строительстве, так как они являются самой распространенной из глубинных магматических пород. Остальные глубинные породы (сиениты, диориты, габбро и др.) встречаются и применяются значительно реже.

Излившиеся (эффузивные) горные породы. Магматические породы, образовавшиеся при кристаллизации магмы на небольших глубинах и занимающие по условиям залегания и структуре промежуточное положение между глубинными и излившимися породами, имеют полнокристаллические неравномернозернистые и неполнокристаллические структуры.

Среди неравномернозернистых структур выделяют порфировидные и порфировые структурыКварцевые порфиры по своему минеральному составу близки к гранитам. Их прочность, пористость, водопоглощение сходны с показателями этих свойств, присущими гранитам. Но порфиры более хрупки и менее стойки вследствие наличия крупных вкраплений.

Горные породы, образовавшиеся в результате излияния магмы, ее охлаждения и застывания на поверхности земли, состоят, как правило, из отдельных кристаллов, вкрапленных в основную мелкокристаллическую, скрытокристаллическую и даже стекловатую массу. Излившиеся породы в результате неравномерного распределения минеральных компонентов сравнительно легко разрушаются при выветривании. К плотным излившимся породам относят андезиты, базальты, диабазы, трахиты, липариты.

Андезиты – излившиеся аналоги диоритов – породы серого или желтовато-серого цвета. Структура может быть неполнокристаллическая или стекловатая. Плотность андезитов 2700-3100 кг/м 3 , предел прочности при сжатии 140-250 МПа. Андезиты применяют для получения кислотостойкого бетона.

Базальты применяют главным образом в качестве бутового камня и щебня для бетонов, в дорожном строительстве (для мощения улиц); особо плотные породы используют в гидротехническом строительстве. Базальты являются исходным сырьем для литых каменных изделий, используются для получения минеральных волокон в производстве теплоизоляционных материалов.

К пористым излившимся породам относят пемзу, вулканические туфы и пеплы, туфолавы. Пемза представляет собой пористое вулканическое стекло, образовавшееся в результате выделения газов при быстром застывании кислых и средних лав. Пористость ее достигает 60 %; стенки между порами сложены стеклом. Твердость пемзы около 6, истинная плотность 2–2,5 г/см 3 , плотность 0,3–0,9 г/см 3 . Большая пористость пемзы обусловливает хорошие теплоизоляционные свойства, а замкнутость большинства пор – достаточную морозостойкость. Пемза –ценный заполнитель в легких бетонах (пемзобетоне). Наличие в пемзе активного кремнезема позволяет использовать ее в виде гидравлической добавки к цементам и извести Вулканический пепел – наиболее мелкие частицы лавы, обломки отдельных минералов, выброшенные при извержении вулкана. Размеры частичек пепла колеблются от 0,1 до 2 мм. Вулканический пепел является активной минеральной добавкой.

Туф и туфолавы используют в виде пиленого камня для кладки стен жилых зданий, устройства перегородок и огнестойких перекрытий. Применяются туфы и в виде щебня для легких бетонов.

Осадочные горные породы

Большинство осадочных пород имеет более пористое строение, чем плотные магматические породы, а следовательно, и меньшую прочность. Некоторые их них сравнительно легко растворяются (например, гипс) или распадаются в воде на мельчайшие частицы (например, глины).

Главные породообразующие минералы. Наиболее распространенные минералы группы кремнезема – кварц, опал, халцедон. В осадочных породах присутствует кварц магматического происхождения и кварц осадочный . Осадочный кварц отлагается непосредственно из растворов, а также образуется в результате перекристаллизации опала и халцедона. Опал – аморфный кремнезем. Опал чаще всего бесцветен или молочно-белый, но в зависимости от примесей может быть желтым, голубым или черным. Плотность 1,9-2,5 г/см 3 , максимальная твердость 5-6, хрупок. Опал, халцедон, некоторые вулканические породы при применении в составе соответствующих горных пород в качестве заполнителей бетона могут вступать в реакцию со щелочами цемента, вызывая разрушение бетона. Минералы группы карбонатов имеют широкое распространение в осадочных породах. Наиболее важную роль в них играют кальцит, доломит и магнезит.

Кальцит (СаСО 3) – бесцветный или белый, при наличии механических примесей серый, желтый, розовый или голубоватый минерал. Блеск стеклянный. Плотность 2,7 г/см 3 , твердость 3. Характерным диагностическим признаком является бурное вскипание в 10 %-ной соляной кислоте.

Доломит 2 – бесцветный, белый, часто с желтоватым или буроватым оттенком минерал. Блеск стеклянный. Плотность 2,8 г/см 3 , твердость 3-4. В 10 %-ной соляной кислоте вскипает только в порошке и при нагревании. Доломит обычно мелкозернистый, крупные кристаллы встречаются редко. Образуется он либо как первичный химический осадок, либо в результате доломитизации известняков. Минерал доломит слагает породу того же названия.

Магнезит (MgCO 3) – бесцветный, белый, серый, желтый, коричневый минерал. Плотность 3,0 г/см 3 , твердость 3,5-4,5. Растворяется в НСl при нагревании. Минерал магнезит слагает породу того же названия.

К группе глинистых минералов относятся каолинит, монтмориллонит и гидрослюды.

Каолинит (Al 2 O 3 ×2SiO 2 ×2H 2 O) – белый, иногда с буроватым или зеленоватым оттенком минерал. Плотность 2,6 г/см 3 , твердость 1. На ощупь жирный. Каолинит слагает каолиновые глины, входит в состав полиминеральных глин, иногда присутствует в цементе обломочных пород.

Наиболее распространенными минералами группы сульфатов являются гипс и ангидрит.

Гипс (CaSO 4 ×2H 2 O) представляет собой скопление белых или бесцветных кристаллов, иногда окрашенных механическими примесями в голубые, желтые или красные тона. Плотность 2,3 г/см 3 , твердость 2.

Ангидрит (CaSO 4) – белый, серый, светло-розовый, светло-голубой минерал. Плотность 3,0 г/см 3 , твердость 3–3,5. Как правило, встречается в виде сплошных мелкозернистых агрегатов..

Обломочные породы. Породы рассматриваемой группы сложены преимущественно зернами устойчивых к выветриванию минералов и горных пород.

Рыхлые обломочные породы – песок (с зернами преимущественно до 5 мм) и гравий (с зернами свыше 5 мм) – применяют в качестве заполнителей для бетона, в дорожном строительстве, для железнодорожного балласта. Пески служат компонентом сырьевой смеси в производстве стекла, керамических и многих других изделий.

Глинистые породы сложены более чем на 50 % частицами мельче 0,01 мм, причем не менее 25 % из них имеют размеры меньше 0,001 мм. Они характеризуются сложным минеральным составом. За основу минералогической классификации глинистых пород принимается состав глинистых минералов. Каолиновые глины сложены минералом каолинитом. Обычно эти глины окрашены в светлые тона, жирные на ощупь, они малопластичны, огнеупорны.

Полимиктовые глины представлены двумя или несколькими минералоами, причем ни один из них не является преобладающим Каолиновые глины являются огнеупорными и их широко используют в керамической промышленности Гидрослюдистые глины и глины полимиктового состава применяют для изготовления кирпича, грубой керамики и других изделий. Глины являются также компонентом сырьевой смеси в производстве цемента. Глины используют как строительный материал при возведении земляных плотин (экраны и пр.).

Сцементированные обломочные породы – песчаники, конгломераты, брекчии. Песчаник состоит из зерен песка, сцементированных различными природными «цементами». Если в состав пород входят крупные куски (гравий или щебень), то им даются название конгломерата (при округлых кусках) и брекчии (при остроугольных кусках). Из них чаще всего применяются в строительстве песчаники (так же, как и плотные известняки

Наиболее распространенными карбонатными породами являются известняки и доломиты. Известняк – порода, сложенная более чем на 50 % кальцитом; доломит – более чем на 50 % доломитом Порода, характеризующаяся приблизительно равным содержанием карбонатного и глинистого материала, называется мергелем .

Пористость плотных известняков не превышает десятых долей процента, а рыхлых достигает 15–20 %. Доломиты по внешнему виду похожи на известняки. Цвет доломитов белый, желтовато-белый, светло-бурый. Для них характерны микрозернистые и кристаллически-зернистые структуры. Благодаря широкому распространению, легкой добыче и обработке известняки, доломитизированные известняки и доломиты применяют в строительстве чаще, чем другие породы. Их используют в виде бутового камня для фундаментов, стен неотапливаемых зданий или жилых домов в районах с теплым климатом, а наиболее плотные породы применяют в виде плит и фасонных деталей для наружных облицовок зданий. Известняковый щебень часто используют в качестве заполнителя для бетона. Известняки широко применяют как сырье для получения вяжущих веществ – извести и цемента. Доломиты используют для получения вяжущих и огнеупорных материалов в цементной, стекольной, керамической и металлургической промышленности.

Сульфатные породы – гипс и ангидрит служат сырьем для получения вяжущих веществ, иногда их применяют в виде облицовочных изделий.

Аллитовые породы характеризуются высоким содержанием глинозема. В этой группе выделяют две главные породы: бокситы и латериты. Породообразующими минералами бокситов являются гидроксиды алюминия (гиббсит и диаспор). Бокситы разнообразны по внешнему виду. Они могут быть мягкими, рыхлыми, похожими на глину Пластичностью бокситы не обладают.Их используют для производства алюминия, искусственных абразивов, огнеупоров, глиноземистого цемента.

Метаморфические горные породы

Метаморфизмом называют преобразование горных пород, происходящее в недрах земной коры под влиянием высоких температур и давлений. В этих условиях может происходить кристаллизация минералов без их плавления.

Основные разновидности метаморфических горных пород. Некоторые разновидности глинистых, кремнистых, слюдистых и иных сланцев являются естественными кровельными материалами – кровельными сланцами . Эти сланцы легко раскалываются по плоскостям сланцеватости на ровные и тонкие (2–8 мм) плоские плитки. Они должны отвечать определенным требованиям: иметь достаточную плотность и вязкость, твердость, малое водопоглощение, высокую водостойкость, стойкость к выветривания. Плотность кровельных сланцев около 2,7–2,8 г/см 3 , пористость 0,3–3 %, предел прочности при сжатии 50–240 МПа. Большое значение имеет также прочность на излом перпендикулярно сланцеватости. Кровельные сланцы используют в производстве кровельных плиток и некоторых строительных деталей (плит для внутренней облицовки помещений, лестничных ступеней, плит для пола, подоконных досок и т.п.).

Гнейсы – породы метаморфического генезиса, образовавшиеся при температуре 600–800 °С и высоком давлении. Исходными являются глинистые и кварцево-полевошпатовые (граниты) породы. Гнейсы по механическим и физическим свойствам не уступают гранитам, однако сопротивление на излом у них в 1,5–2 раза меньше.

Применяют гнейсы при бутовой кладке, для кладки фундаментов, в качестве материала для щебня и отчасти в виде плит для мощения дорог. Щебень из сильно сланцеватого гнейса не используют для бетона и дорожного строительства из-за нежелательной формы зерен.

Образование кварцитов связано с перекристаллизацией песчаников. Важными свойствами кварцитов являются высокая огнеупорность (до 1710–1770 °С) и прочность на сжатие (100–450) МПа. В строительстве кварциты используют в качестве стенового камня, подферменных камней в мостах, бута, щебня и брусчатки, а кварциты с красивой и неизменяющейся окраской – для облицовки зданий. Кварциты применяют в производстве динаса – огнеупора, обладающего высокой кислотостойкостью.

Мрамор – мелко-, средне- и крупнозернистая плотная карбонатная порода, состоящая главным образом из кальцита и представляющая собой перекристаллизованный известняк. Прочность на сжатие составляет 100-300 МПа. Мрамор легко поддается обработке, вследствие малой пористости хорошо полируется. Мрамор широко применяется для внутренней отделки стен зданий, ступеней лестниц и т.п. В виде песка и мелкого щебня (крошки) его используют для цветных штукатурок, облицовочного декоративного бетона и т.п. В условиях сульфатной коррозии для наружных облицовок мрамор не применяют.

Техногенные и вторичные ресурсы

По данным ЮНЕСКО, в мире ежегодно извлекают из недр более 120 млрд. т руд, горючих ископаемых, другого сырья (20 т сырья на каждого жителя планеты). По масштабам извлекаемого и перерабатываемого сырья хозяйственная деятельность человека превзошла вулканическую (10 млрд. т в год) и размыв суши всеми реками мира (25 млрд. т в год). Эта деятельность, кроме того, сопровождается образованием колоссального количества отходов. Основными источниками многотоннажных отходов являются: горнообогатительная, металлургическая, химическая, лесная и деревообрабатывающая, текстильная отрасли промышленности; энергетический комплекс; промышленность строительных материалов; агропромышленный комплекс; бытовая деятельность человека.

Отходы производства или побочные продукты промышленности являются вторичными материальными ресурсами. Многие отходы по своему составу и свойствам близки к природному сырью. Установлено, что использование промышленных отходов позволяет покрыть до 40 % потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10-30 % снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, создавать новые строительные материалы с высокими технико-экономическими показателями и, кроме того, уменьшить загрязнение окружающей среды.

Шлаки черной металлургии – побочный продукт при выплавке чугуна из железных руд (доменные, мартеновские, ферромарганцевые). Выход шлаков очень велик и составляет от 0,4 до 0,65 т на 1 т чугуна. В их состав входит до 30 различных химических элементов, главным образом в виде оксидов. Основные оксиды: SiO 2 , Аl 2 О 3 , CaO, MgO. В меньших количествах присутствуют FeO, MnO, P 2 O 5 , ТiO 2 , V 2 O 5 и др. Состав шлака зависит от состава кокса, пустой породы и определяет особенности применения шлака.

В производстве строительных материалов используется 75 % общего количества доменных шлаков. Основным потребителем является цементная промышленность. Ежегодно она потребляет миллионы тонн гранулированного доменного шлака. Грануляция заключается в быстром охлаждении шлакового расплава, в результате чего шлак приобретает стекловидную структуру и, соответственно, высокую активность.

Сталеплавильные (мартеновские) шлаки применяются в меньшей степени. Трудности их использования связаны с неоднородностью, непостоянством химического состава.

Шлаки цветной металлургии чрезвычайно разнообразны по составу. Наиболее перспективное направление их использования – комплексная переработка: предварительное извлечение цветных и редких металлов из шлака; выделение железа; использование силикатного остатка шлака для производства строительных материалов.

При получении цветных образуются шламы. Например, побочным продуктом при производстве алюминия является бокситовый шлам - рыхлый сыпучий материал красного цвета. При получении глинозема из нефелинового сырья образуется нефелиновый шламла. Если глинозем получают из высокоалюминатных глин, в качестве побочного продукта образуется каолиновый шлам и т.д. Основное применение все эти шламы находят в цементном производстве.

(ТЭС) – минеральный остаток от сжигания твердого топлива. Одна ТЭС средней мощности ежегодно выбрасывает в отвалы до 1 млн. т золы и шлака, а ТЭС, сжигающая многозольное топливо, – до 5 млн. т. По химическому составу топливные золы и шлаки состоят из SiO 2 , AI 2 O 3 , СаО, MgO и др., а также содержат несгоревшее топливо. Используются топливные золы и шлаки всего на 3–4 % от их ежегодного выхода.

Золы и шлаки ТЭС можно использовать при производстве практически всех строительных материалов и изделий. Например, введение 100–200 кг активной золы (уноса) на 1 м 3 бетона дает возможность экономить до 100 кг цемента. Шлаковый песок пригоден для замены природного песка, а шлаковый щебень – в качестве крупного заполнителя.

Отходы горнодобывающей промышленности . Вскрышные породы – горнорудные отходы, отходы добычи разнообразных полезных ископаемых. Особенно большое количество этих отходов образуется при добыче открытым способом. По ориентировочным подсчетам в стране ежегодно образуется свыше 3 млрд. т отходов, которые являются неисчерпаемым источником сырья для промышленности строительных материалов. Однако в настоящее время они используются лишь на 6–7 %. Вскрышные и пустые породы находят применение в зависимости от своего состава (карбонатные, глинистые, мергелистые, песчаные и т.д.).

Вскрышные породы – не единственные отходы горнодобывающей промышленности. Большое количество пустой породы поднимается на поверхность земли, и направляется в отвалы. Горнообогатительные комбинаты сбрасывают в отвалы большое количество флотационных хвостов, образующихся в частности при переработке руд цветных металлов. Отходы угледобычи и углеобогащения образуются на углеобогатительных фабриках. Для отходов угледобычи характерно постоянство состава, что их выгодно отличает от других видов минеральных отходов.

Попутнодобываемые породы и отходы промышленной переработки рудных полезных ископаемых отличаются по генезису, минеральному составу, структуре и текстуре от традиционно применяемых при производстве строительных материалов. Это объясняется существенным отличием глубин карьеров по добыче сырья для стройиндустрии (20–50 м) от современной разработки рудных месторождений (350–500 м).

Гипсовые отходы химической промышленности – продукты, содержащие сульфат кальция в той или иной форме. Научные исследования показали полноценную заменимость традиционного гипсового сырья отходами химической промышленности.

Фосфогипс – отход при производстве фосфорных удобрений из апатитов и фосфоритов. Он представляет собой CaSO 4 ×2H 2 O с примесями неразложившегося апатита (или фосфорита) и неотмытой фосфорной кислоты.

Фторгипс (фторангидрит) – побочный продукт при производстве фтористоводородной кислоты, безводного фтористого водорода, фтористых солей. По составу это CaSO 4 с примесями исходного неразложившегося флюорита.

Титаногипс – отход при сернокислотном разложении титансодержащих руд. Борогипс – отход производства борной кислоты. Сульфогипс получается при улавливании серного ангидрида из дымовых газов ТЭС.

Электротермофосфорные шлаки – отходы производства фосфорной кислоты, получаемой по электротермическому способу. В гранулированном виде содержат 95-98 % стекла. Основные оксиды, входящие в их состав, SiO 2 и СаО. Являются ценным сырьем в производстве вяжущих веществ.

Отходы деревообработки и лесохимии. В настоящее время в нашей стране лишь 1/6 часть древесных отходов используется в целлюлозно-бумажной промышленности и промышленности строительных материалов. Практически не используются кора, пни, вершины, ветви, сучья, а также отходы деревообработки – стружка, щепа, опилки.

Отходы целлюлозно-бумажной промышленности – осадки сточных вод и другие промышленные шламы. Скоп – продукт, получившийся в результате механической очистки сточных вод. Это грубодисперсные примеси, состоящие в основном из волокон целлюлозы и частиц каолина. Активный ил – продукт биологической очистки сточных вод, находящийся в виде коллоидов и молекул.

Отходы промышленности строительных материалов. При получении цементного клинкера до 30 % объема обжигаемого продукта уносится с дымовыми газами из печей в виде пыли. Эта пыль может

Таблица 2.1. Отходы промышленности, используемые в производстве строительных материалов

Отходы Области применения и материалы
Шлаки черной металлургии: доменные, мартеновские, ферромарганцевые Портландцемент (производство клинкера), портландцемент с минеральной добавкой, шлакопортландцемент, смешанные бесцементные вяжущие, заполнители для бетонов, шлаковая вата, шлакоситаллы и т.д.
Отходы цветной металлургии: шлаки (медеплавильных печей, никелевого производства, свинцовой шахтной плавки и т.д.), шламы (бокситовый, нефелиновый, каолиновый) Вяжущие автоклавного твердения, песок и щебень, портландцемент (производство клинкера), нефелиновый цемент, материалы для укрепления грунтов, огнеупоры, теплоизоляционные материалы и т.д.
Золы и шлаки тепловых электростанций Вяжущие, пористый гравий, газобетон, силикатные изделия, добавки к керамике и т.п.
Вскрышные породы: вскрышные и пустые породы, хвосты обогащения и т.д. Портландцемент (производство клинкера), воздушная известь, минеральная вата, стекло, пигменты, керамический кирпич, силикатный кирпич, заполнители для бетонов и т.д.
Отходы угледобычи и углеобогащения: коксохимических предприятий, углеобогатительных фабрик, шахтные негорелые породы Пористый заполнитель для бетона, керамический кирпич, материалы для строительства дорог
Гипсовые отходы химической промышленности: фосфогипс, фторгипс, титаногипс, борогипс, сульфогипс Замена традиционного гипсового сырья
Отходы древесины и лесохимии: кора, пни, вершины, ветви, сучья, горбыль, стружки, щепа, опилки, лигнин, скоп и т.д. Арболит, фибролит, ДВП, ДСП, столярные плиты, опилкобетон, ксилолит, клееные изделия, щитовой паркет, дрань, лигноуглеводные древесные пластики, королит, блоки из сучков, плиты из цельной коры, выгорающие добавки, пластифицирующие добавки, отделочные материалы, кровельный картон и т.д.
Отходы промышленности строительных материалов: цементная пыль, каменная пыль, крошка, кирпичный бой, бракованный и старый бетон Портландцемент, заполнители для бетона, минеральный наполнитель, добавки, смешанные вяжущие вещества и т.д.
Пиритные огарки Портландцемент (корректирующая добавка)
Электротермофосфорные шлаки Портландцемент (компонент сырьевой смеси), ШПЦ, сульфатостойкий ШПЦ, литой щебень, шлаковая пемза, стеновая керамика (компонент шихты)
Прочие отходы и вторичные ресурсы: стекольный бой и отходы стекла, макулатура, тряпье, изношенные шины и т.д. Стекло, наполнитель для асфальта, добавка при производстве стеновой керамики, пористый заполнитель для бетона, кровельный картон, изол, фольгоизол и т.д.

возвращаться в производство, а также использоваться в производстве вяжущих веществ.

Кирпичный бой, старый и бракованный бетон используются в качестве искусственного щебня. Бетонный лом – отход предприятий сборного железобетона и сноса строительных объектов. Огромные объемы реконструкции жилого фонда, промышленных предприятий, транспортных сооружений, автодорог и т.д. ставят важную научно-техническую задачу по переработке отходов бетона и железобетона. Разработаны различные технологии разрушения строительных конструкций, а также специальное оборудование для переработки некондиционного бетона и железобетона.

Прочие отходы и вторичные ресурсы – отходы и бой стекла, макулатура, резиновая крошка, отходы и попутные продукты производства полимерных материалов, попутные продукты нефтехимической промышленности и т.д.

Важнейшие виды строительных материалов, получаемые из вышеперечисленных отходов промышленности, приведены в табл. 1.

Контрольные вопросы

1. Глубинные породообразующие минералы магматических горных породи их физические свойства

2. Породообразующие минералы осадочных горных пород (группа кремнезема) и их свойства

3. Породообразующие минералы осадочных горных пород (группа глинистых) и их свойства

4. Разновидности метаморфических горных пород и их свойства

5. Отрасли промышленности – источники много тоннажных отходов.

6. Шлаки черной металлургии и области их применения.

7. Отвальные продукты цветной металлургии и области их применения.

8. Отходы горнодобывающей промышленности и области их применения.

9. Гипсовые отходы химической промышленности.

10. Отходы промышленности строительной индустрии и области их применения.

Это направление является самым важным в решении проблемы безотходного горного производства, так как почти все месторождения полезных ископаемых являются комплексными, т. е. содержат не один, а несколько полезных компонентов. Например, для горно-химической отрасли, комплексное использование минеральных ресурсов сопровождается с одной стороны максимальным извлечением полезных компонентов, содержащихся в рудах, утилизацией вмещающих пород и отходов производства для удовлетворения потребностей других отраслей народного хозяйства и улучшением технико-экономических показателей отрасли, а с другой - пополнением минерально-сырьевой базы отрасли за счет попутного извлечения фосфатов, серы и др. полезных компонентов при комплексной переработке руд черных и цветных металлов, природного газа и т. д.

В отечественной горнодобывающей промышленности накоплен большой опыт комплексного использования минеральных ресурсов. Предприятия цветной металлургии обладают значительным опытом комплексного использования сырья. Из 70 химических элементов, получаемых на предприятиях цветной металлургии, почти половину извлекают попутно: серебро, висмут, платину, золото, серу, цинк, свинец, медь и т. п., что составляет почти треть общей стоимости получаемой продукции. Общий экономический эффект комплексной переработки минерального сырья оценивается в несколько десятков миллиардов рублей. По расчетам специалистов, мобилизация имеющихся резервов при сравнительно небольших трудовых и капитальных затратах позволит более чем на 25 % увеличить потенциал добывающих отраслей.

Проблема комплексного использования сырья имеет большое значение как с экологической, так и с экономической точек зрения. Во многих отраслях промышленности до 60-70 % себестоимости продукции приходится на долю сырья. Рациональное использование сырья и вовлечение в производство вторичных ресурсов является важнейшей народнохозяйственной задачей и возведено в ранг государственной политики.

При разработке месторождений полезных ископаемых большие объемы вскрышных пород направляют в отвалы, которые занимают значительные площади. Вместе с тем, отвалы горных производств представляют собой дешевое и ценное сырье, которое может найти применение в строительстве, землепользовании и других отраслях промышленности.

Актуальной проблемой является комплексное использование сырья с переводом всех компонентов в промышленные продукты.

В схеме рационального комплексного использования минерального сырья выделяют следующие самостоятельные направления: геолого-минералогическое, горнодобывающее, обогатительное, химико-металлургическое, экономическое и экологическое.

Геолого-минералогическое направление включает следующие разделы: комплексное изучение горнорудных районов и месторождений; закономерности размещения оруденения, минералов и углей; вещественный состав руд и углей; выделение технологических типов руд, технологическое картирование месторождений; бедные и забалансовые руды; геолого-минералогическое изучение техногенного сырья; изучение вскрышных и вмещающих пород; технологическая геохимия и минералогия.

Горнодобывающее направление включает следующие разделы: разработка и внедрение оптимальных систем добычи полезных ископаемых; вторичная отработка месторождений; рациональное использование минерального сырья с организацией селективной добычи; подземное выщелачивание металлов; создание службы управления качеством добываемого сырья.

Правильный выбор системы разработки обеспечивает производительную, экономически выгодную и безопасную эксплуатацию месторождения при рациональном использовании запасов полезных ископаемых.

Основными составляющими обогатительного направления являются: внедрение технологических схем обогащения руд, обеспечивающих высокие технико-экономические показатели и повышение извлечения металлов; обогащение труднообогатимых и забалансовых руд; разработка схем доизвлечения металлов из техногенных продуктов.

Основными разделами химико-металлургического направления являются: внедрение оптимальных схем химико-металлургического передела; извлечение элементов-примесей; применение гидрометаллургии для необогатимых руд; использование технологических пылей и газов; кучное выщелачивание металлов.

Важнейшим вопросом, связанным с проблемой рационального использования минерального сырья, является вовлечение вторичного сырья в цикл металлургического производства. Это позволяет экономнее расходовать природные рудные ресурсы, получать металлы более простыми и дешевыми металлургическими приемами, дополнительно увеличить выпуск металлической продукции. В перспективе вторичное сырье должно стать основным источником получения некоторых металлов.

Организация производства и экономика. Это направление включает следующие разделы: разработка методики определения социально-экономической эффективности минерального сырья; организация малоотходной добычи и переработки руд; разработка хозяйственного механизма эффективного использования полезных ископаемых.

Экономика минерального сырья и его оценка являются важнейшими комплексными вопросами, охватывающими масштабы запасов и промышленно-геологические условия месторождений полезных ископаемых, анализ их освоения, добычи и переработки.

Геолого-экономическая оценка проводится на всех стадиях изучения месторождений. На стадии поисков она позволяет отбраковать непромышленные рудопроявления и месторождения, а из остальных выбрать наиболее перспективные для предварительной разведки.

Геолого-экономическая оценка включает следующие операции: обоснование кондиций, оконтуривание в соответствии с ними месторождения.

Экономическая оценка месторождений полезных ископаемых определяет народнохозяйственный эффект от использования их запасов с учетом фактора времени. Основной ее показатель определяется в виде разности между ценностью конечной продукции и затратами на ее получение.

Важнейшими показателями экономической оценки месторождений при их разработке являются потери и разубоживание руды; комплексное использование рудного сырья; обоснование кондиций на минеральное сырье; организация службы управлением качеством добываемого сырья.

Проблема рационального комплексного использования минерального сырья, наряду с его направлениями, должна рассматриваться с учетом экологических условий. Поэтому вопросы охраны окружающей среды, разработка месторождений, технологическая переработка полезных ископаемых должны рассматриваться в едином комплексе.

Научно-технический прогресс предусматривает разработку важнейших проблем по основным направлениям обогащения полезных ископаемых, ведущим к совершенству технологических процессов, улучшению качественных показателей и снижению себестоимости получаемой продукции. Рациональное использование полезных ископаемых на стадиях их добычи и обогащения представляет собой единую неделимую проблему, главной задачей которой является наиболее полное использование основных и редких рассеянных металлов. Решение этой задачи к пересмотру и снижению минимального промышленного содержания полезных компонентов в руде и, следовательно, вовлечению в добычу и переработку более бедных руд.

Для подготовки руды к обогащению предусматривается разработка и внедрение эффективных способов управления ее качеством на основе ядерно-геофизических методов. Они, в частности, включают геолого-технологическое картирование оруденения месторождения путем геофизического каротажа скважин, радиометрическую сортировку руд с целью удаления разубоживающих безрудных пород.

Процессы рудоподготовки могут быть наиболее эффективны, если они комплексируются в геологической, горной и обогатительной части на основе изучения геофизических и геохимических полей руд и вмещающих пород и их технологических свойств. Новые подходы к решению вопроса управления качеством руды позволяют повысить комплексное использование сырья и извлечение металлов на 5-10%, а производительность труда - на 15 %.

В зависимости от промышленно-генетического типа месторождения, петрографического состава рудовмещающих пород, принятого способа его разработки определяется состав перемещенных в горные отвалы вскрышных и вмещающих пород в соответствии с принятой классификацией.

Попутно извлекаемые вмещающие породы при разработке месторождений полезных ископаемых находят широкое применение в народном хозяйстве. Они используются в стройиндустрии, металлургии, легкой и пищевой промышленности, как химическое, керамическое и агрономическое сырье, а также как возможный источник для извлечения металлов, минералов и других полезных компонентов. Особенно разнообразное применение они находят в производстве различных строительных материалов.

Вскрышные и вмещающие горные породы по своим геологическим особенностям и использованию в народном хозяйстве делятся на следующие пять групп: скальные, обломочные, глинистые, карбонатные и полевошпатовые.

Песчано-гравийные породы с включением галечного и валунного широко распространены и занимают наибольшие объемы в отвалах вскрышных пород, образованных при разработке рудных, неметаллических, угольных и особенно россыпных месторождений. В основу их классификации положен гранулометрический состав, в соответствии с ко торым по мере увеличения размера фракций от 0,05 до 700 мм и более, выделяются следующие типы пород: пески, гравий, галька, валуны. Они состоят из обломков различных горных пород или минералов и заполняющего более тонкозернистого вещества (разнозернистые, равномернозернистые), минеральным составом, а также прочностью и степенью окатанности. Среди них распространены породы переходного типа: песчано-гравийные, песчано-гравийно-гравелистые, гравийно-гравелистые.

Гравий используется как в естественном виде, так и после дробления фракций и применяется в виде крупного заполнителя бетона и при строительстве железных и автомобильных дорог.

Пески применяются при строительстве железных и автомобильных дорог, в качестве мелкого заполнителя при производстве бетона, для изготовления строительных растворов, в производстве силикатных строительных материалов, отощения глин при изготовлении грубой керамики, получения кровельных рулонных материалов, закладки подземных горных выработок, рекультивации земель при открытой разработке полезных ископаемых. Также пески используются как стекольное сырье, формовочный материал в литейном производстве, абразивный материал, для производства огнеупорного кирпича (динаса), получения тонкой керамики, фильтрации воды, в металлургической промышленности.

Карбонатные породы, представленные известняками, мелом, доломитами, магнезитами, сидеритами, родохрозитами и некоторыми другими, имеют в природе довольно широкое распространение и составляют от объема всех осадочных пород земной коры около 20 %. Главнейшими их разновидностями являются известняки, мл доломиты и магнезиты

В зависимости от физико-механических свойств карбонатные породы используются в строительстве в качестве стеновых, бутовых и облицовочных камней, брусчатки, шашки, щебня. Они применяются в металлургической, цементной, химической, пищевой, целлюлозно-бумажной, стекольной, электротехнической, парфюмерной промышленности, а также в сельском хозяйстве для известкования кислых почв и добавки к корму скота и птиц.

Для производства цемента используются известняки и мел, состоящие из кальцита - главного компонента сырьевой шихты. Карбонатное сырье, применяемое для стекольного производства - известняки, мел и доломиты. Наиболее чистым видом кальциевого сырья является мел, который используется при варке лучших сортов стекла. Известняки и доломитовые известняки используются для получения извести, являющейся основной составной частью строительных растворов, а также в химической промышленности в производстве соды, карбида кальция, хлорной извести, едкого калия и натрия, кальцинированной соды.

В металлургической промышленности карбонатные породы широко применяются для получения огнеупоров и используются в качестве флюсов. Известняк используют при переработке нефелиновых пород на глинозем, причем для получения 1 т глинозема необходимо 5-7 т известняка. Известняк служит в качестве флюсов в цветной металлургии: для выплавки меди, сурьмы и олова, а также при переработке оксидно-силикатных никелевых руд.

К настоящему времени накоплены огромные объемы техногенных отходов при добыче и переработке полезных ископаемых, использование которых в народном хозяйстве может дать большой экономический эффект и имеет важное значение для решения экологических вопросов. Среди них выделяются вскрышные и вмещающие породы; отвальные хвосты и шламы обогатительных фабрик; шлаки, пыли и газы металлургических заводов; золо-шлаковые отходы от сжигания углей.

Классифицируя отходы горно-технологической промышленности по эффективности и направлениям их использования, степени изученности и другим признакам (рисунок 2).

Рисунок 2. Классификация горно-технологических отходов и техногенных месторождений

Можно сделать вывод о том, что только определенная их часть представляет собой ценное сырье, которое может быть вовлечено во вторичную переработку при существующем уровне развития техники и технологии. Поэтому вполне целесообразно среди горно-технологических отходов выделить первоочередные объекты, которые по аналогии с природными месторождениями могут быть названы техногенными месторождениями. Они представляют собой скопления отходов добычи и переработки минерального сырья с запасами от первых десятков тысяч до сотен миллионов тонн, при использовании которых можно получать дополнительные объемы товарной продукции с большим экономическим эффектом.

Некоторые авторы предлагают горно-технологические отходы разделить на две группы: балансовые - это отходы производства и потребления, использование которых экономически целесообразно при существующем уровне развития техники и технологии их переработки; забалансовые - отходы производства и потребления, использование которых экономически нецелесообразно, но в будущем они могут быть вовлечены в производственный процесс.

Утилизация минерального сырья техногенных месторождений эффективна. Однако при этом требуется глубокое изучение качества отходов, его соответствия государственным отраслевым стандартам и техническим условиям. Необходимы новые технологии дообогащения отходов и производства изделий из них. При реализации проектов использования отходов затраты обычно скупаются за 1,5-2 года.

Определение степени пригодности промышленных отходов предприятий и производств в качестве вторичных минеральных ресурсов, возможно, установить в результате их изучения геологическими методами, в том числе геохимическими, минералогическими, петрографическими, структурными, литологическими и другими. Эти методы должны комплексироваться с гидрогеологическим, инженерно-геологическим, физико-механическим изучением отходов. Промышленные отходы необходимо изучать с широким привлечением современного комплекса технологических испытаний по обогащению, пирометаллургическому и гидрометаллургическому переделам.

В целях полной характеристики отходов необходимо знать не только качественные параметры, но и иметь количественную оценку, что может быть достигнуто путем проведения на отвалах и хвостохранилищах комплекса геологоразведочных работ.

Итогом всех проведенных геолого0технологических исследований с экономической оценки полученного материала является определение эффективности использования отходов в промышленных масштабах.

Технико-экономические вопросы. Эти вопросы являются самыми главными при планировании освоения техногенных месторождениях. Они могут успешно решаться при таких минимальных промышленных содержаниях, которые обеспечивают рентабельную переработку техногенных отходов. Экономическая выгода от разработки их может быть обеспечена в двух случаях: резкий рост стоимости извлекаемых компонентов и применение принципиально новой высокоэффективной технологии переработки техногенного сырья.

Важнейшим фактором повышения рентабельности при освоении техногенных месторождений является комплексное использование минерального сырья с извлечением основных и попутных металлов, а также получение важнейших материалов для использования в промышленности и строительстве.

Техногенные отходы часто представляют собой сильно перемешанные породы глинисто-песчано-крупнообломочного состава, которые невозможно непосредственно применять для изготовления важных материалов для промышленности. Учитывая огромные запасы не фракционированного материала, слабую проработку вопросов их технологической проработки, необходима постановка специальных исследований для поисков заменителей традиционных материалов и получения, новых их видов, которые могут найти широкое применение в народном хозяйстве.

Отходы обогатительных фабрик, представляющие мелкозернистый однородный материал, из которого возможно доизвлечь разные металлы, а также получить кварцевые, кварц-полевощпатовые, полевошпатовые, слюдяные, глиноземистые и другие концентраты. Еще более ценны для использования в промышленности отходы химико-металлургического производства и тепловых электростанций.

Министерство образования Российской Федерации Восточно –Сибиркий государственный технологический университет Краткий курс лекций по “Дисциплине специализации” раздел “Комплексное использование минерального сырья и отходов промышленности” для студентов заочного обучения специальности “Производство строительных материалов, изделий и конструкций” Редактор Т.А. Стороженко Составители: Подписано в печать 29.03.02. Щукина Е.Г. Формат 60 х841/16. Усл.п.л. 3,49, уч.-изд.л.3,0 Будаева И.И. Тираж 100экз. Печать опер.,бум.писч. Заказ 73. Издательство ВСГТУ, г.Улан-Удэ ул.Ключевская, 40а г.Улан-Удэ 2002 68 Введение Курс лекций по “Дисциплине специализации” выполнен по разделу “Комплексное использование минерального сырья и отходов промышленности” с учетом использования промышленных отходов в том числе и Забайкалья. Рассмотрены отходы топливно- энергетичсекой, деревообрабатывающей, металлургической, строительной и других отраслей промышленности и использование их в производстве строительных материалов и изделий. Данный курс лекций позволит студентам заочного обучения более глубоко изучить строительные материалы с использованием отходов промышленности и местного минерального сырья. Для более полного усвоения материала предусматри- вается выполнение курсовой работы, перечень тем прилага- ется. Методические указания выполнены в соответствии с требованиями ГОСВО и могут быть рекомендованы к изда- нию. Рецензент доцент кафедры ПСМИ Архинчеева Н.В. 2 67 Комплексное использование минерального сырья и от- Список литературы. ходов промышленности для производства строитель- 1. П.И. Баженов. Комплексное использование минераль- ных материалов. ного сырья при производстве строительных материалов. Лекция 1. Ленинград-Москв, 1983. Введение. 2. К.В. Гладких. Шлаки – не отходы, а ценное сырье. М., Использование отходов горнодобывающей Стройиздат, 1986. промышленности. 3. Ю.Г. Мещариков. Гипсовые попутные промышленные Тенденция постоянного наращивания добычи мине- продукты и их применение в производстве строитель- ральных и топливно-энергетических ресурсов в конечном ных материалов. Ленинград, Стройиздат, 1982. итоге может привести к глобальному рассеянию углеводо- 4. Л.Я. Гольдштейн, Н.П. Штейерт. Использование топ- родного сырья и многих металлов в земной коре. В на- ливных зол и шлаков при производстве цемента. Ле- стоящее время все больше используются запасы с бедным нинград, Стройиздат, 1987. содержанием полезных компонентов, вследствие чего воз- 5. Б.З. Чистяков. Использование отходов промышленно- растают затраты энергии на их добычу и переработку, уве- сти в строительстве, Ленинград, 1987. личивается количество отходов и загрязнение окружаю- 6. В.О. Глуховский. Шлакощелочные бетоны на мелко- щей среды. Современные экосистемы горнодобывающих, зернистых заполнителях. Киев, Вищашкола, 1991. металлургических предприятий и топливно-энергетических 7. Использование отходов, попутных продуктов в произ- комплексов очень опасны для жизни самого человека. Это водстве строительных материалов и изделий. Охрана связано с громадными масштабами выбросов газов и пыли окружающей среды. Научно-технический рефератив- в атмосферу; с формированием опасных стоков, ухудшаю- ный сборник. Вып. 12, М., 1996. щих состояние водных и почвенных ресурсов; с нарушени- 8. Н.Я. Спивак. Легкий бетон. М., Стройиздат, 1990. ем сбалансированного состояния экосистем; с коренным изменением исторически сложившихся ландшафтов с их биоценозами. Для этого необходимо решить следующие задачи: - оценка запасов вторичного сырья, накопленного в результате добычи и переработки, металлургиче- ских руд; - планирование комплексного использования руд- ного и нерудного сырья осваиваемых месторож- дений; - планирование полного использования вскрышных пород и продуктов сжигания каменных и бурых углей; 66 3 - ранжирование сырья по степени вредного воздей- набухания блока. Одной извести для стабилизации ствия на человека. грунтоблоков достаточно ввести около 5% от общего веса В настоящее время ежегодно в России образуется бо- грунтовочной смеси. лее 100 млн. т. золошлаковых отходов от сжигания твердо- Известково-глиняные блоки более прочны, го топлива, свыше 70 млн.т. доменных, конверторных и водостойки и морозостойки, чем грунтоблоки со электроплавильных шлаков, миллионы тонн вскрышных стабилизаторами. Обычный состав смеси по объему: 1 пород предприятий по добыче руд черных и цветных ме- часть извести, 1 часть глины средней пластичности и 4 таллов, химического сырья и топлива, накапливаются хво- части минерального заполнителя. В составы рекомендуется сты обогащения основного полезного ископаемого. Объе- также вводить органические вяжущие (битумы, дегти или мы отходов угледобычи и углеобогащения превышают 2 смолы). млрд.т. в год. В промышленности используются меньше Грунтоцементные блоки это блоки из смеси половины этих отходов, остальная часть складируется в от- естественных глинистых грунтов с небольшим валах, занимая пахотные земли площадью около 1 млрд. га, количеством цемента. Такие блоки прочны, водостойки и что приводит к физическому, химическому загрязнению морозостойки. Лучшими для изготовления окружающей среды, воздействуя на земную кору и меняя грунтоцементных блоков являются смеси, содержащие по ландшафты. Вместе с тем эти отходы представляют собой массе 15-30% глинистых частиц; цемента добавляют 7-12% минеральное сырье, которое может использоваться для из- от массы сухого грунта. Грунтоцементные блоки имеют готовления строительных материалов и изделий различного марки 35, 50 и выше. Со временем их прочность возрастает назначения, заменяет дорогостоящее дефицитное традици- и через 2 года увеличивается в 2 –3 раза. Для уменьшения онное сырье. массы блоков и снижения расхода цемента в грунтовочные В Сибирском регионе накопилось большое количест- смеси можно добавлять утеплители: минеральные до 15%, во отходов, которые можно использовать в качестве мине- органические до 5%. Грунтоблоки можно использовать при рального сырья. В настоящее время определены возможно- строительстве зданий до трех этажей. сти комплексного использования существующих месторо- ждения силикатного, а также вторичного и техногенного сырья Восточной Сибири в производстве строительной ке- рамики, стекломатериалов и пористых заполнителей. При производстве строительных материалов исполь- зуется отходы следующих производств: 1. Отходы угледобывающей промышленности и теп- ловой энергетики (горелые шахтные породы террикоников, отходы угледобывающих фабрик, золы ТЭЦ); 2. Отходы лесной и деревообрабатывающей промыш- ленности (отходы пиления и обработки древесины); 4 65 дневном возрасте прочность 35-45 кгс/см2, из грунтов 3. Отходы биохимической промышленности (гидро- Мытищинского карьера при введении 80% опилок, блоки лизный лигнин); имели прочность 40-70 кгс/см2. Прочность грунтоблоков 4. Отходы переработки рудных пород (отходы флота- зависит от влажности грунта, от наличия глинистых и ции (обогащения руд)); вылеватых частиц, степени уплотнения, количества воды и 5. Отходы химической промышленности (отходы за- вида заполнителя. Карьерная влажность обычно составляет водов синтетических моющих средств, отходы нефтепере- 12-18%, если влажность меньше 12%, то грунт плохо гонного завода, отходы производства целлюлозы, отходы формуется, если больше 18%, то грунт прилипает к мыловаренных заводов); инструменту. Грунтоблоки выпускают размером 6. Отходы промышленности строительных материалов 40х19,5х14см. Кладка осуществляется на густом глиняном (отходы керамической промышленности, отходы производ- растворе. Из грунтоблоков со средней плотностью 1300- ства цемента, отходы производства асбестоцементных ма- 1600 кг/м3 изготавливают стены толщиной 45 см, а с териалов, отходы дробильно-сортировочных предприятий, плотностью 1600-2000кг/м3 толщиной 55см. Стены из отходы производства силикатных изделий, стекольный грунтоблоков оштукатуриваются теплыми глиняными бой); растворами с содержанием утепляющих органических 7. Отходы металлургической промышленности (отхо- заполнителей. ды сталеплавильной промышленности); Грунтоблоки с утеплителями. К ним относят 8. Отходы городского хозяйства (отходы автомобиль- саманные блоки, получаемые из грунтовой массы с ного транспорта, отходы от ремонта дорог); добавлением к ней резаной соломы, древесных опилок, 9.Отходы фарфорового производства; торфяной крошки, которые являются утепляющими 10.Отходы полимерных материалов (разного назначе- добавками, снижающими плотность и делающими их более ния); стойкими. Из грунтов Мытищинского карьера Московской 11.Отходы текстильных материалов (разного назначе- области, содержащих 16-18% глинистых частиц при ния); введении древесных опилок более 50% получались 12.Прочие виды отходов. грунтоблоки с прочностью на сжатие 70кгс/см2. Влажность органических заполнителей должна быть 30%, а Эффективность использования отходов грунтовочной смеси 15-20%. В современных условиях особое значение для Грунтоблоки со стабилизаторами эффективного развития народного хозяйства имеет Для предохранения глиносырцовых и саманных проблема более широкого вовлечения в производство блоков от потери прочности при увлажнении в состав образующихся отходов, что позволяет расширить шихты вводятся стабилизаторы (чаще всего органические сырьевую базу и снизить загрязнение окружающей среды. вяжущие материалы или известь). Стабилизаторы Достаточно эффективно и в значительных объемах препятствуют проникновению воды в поры грунта, из образующиеся отходы могут потреблять такие отрасли, как которого изготовлен блок и предотвращают возможность строительство и промышленность строительных 64 5 материалов. ченный путем формования из смеси глины, суглинков с ор- Использование отходов тепловых электростанций ганическими наполнителями (солома, торф, костра) и вы- (топливных зол и шлаков) следует считать частью общей сушенные до влажности 4-6%. Кирпич-сырец – проблемы сохранения и очистки от загрязнения окружаю- искусственный материал из глины, суглинков с отощите- щей среды. лями и высушенные до влажности 4-6%. Загрязнение окружающей среды- воздуха, воды и Наиболее пригодными являются глины, в которых почвы - одна из важнейших проблем современности, ка- преобладают зерна величиной от 0,01 до 0,02 мм и содер- сающаяся практически всех стран, и в особенности высо- жащих Al2O3 9-12%. Для получения доброкачественой коразвитых. продукции необходимо содержание Al 2O3 не менее 9% и Классификация промышленных отходов не более 14%. Если содержание окиси алюминия меньше 1. Химическая (в основу положен химический 9% (тощий суглинок), то кирпич и саман не будут обладать принцип). необходимой прочностью, если окиси алюминия - кремнистые отходы (свободного SiO2>50%) содержится 14-25%, то глины жирные и требуют - силикатные (Са, MgS) отощителей, так как имеют достаточную степень - карбонатные (CaCo3, MgCo3) пластичности. Наиболее подходящими являются - сульфатные (CaSo4 2H2O) среднепластичные. Малопластиные глины дают - хлорсодержащие (MgCl2) небольшую прочность и требуют повышения - фторсодержащие пластичности, которую можно повысить следующими - смешанные минеральные способами: вылеживанием замоченной глины в течение - органические длительного времени, вымораживанием, добавлением - водоорганоминеральные высокопластичной глины и использованием - органоминеральные пластификаторов. Технология получения: заготовка глины 2. Отраслевая и наполнителей → замачивание глины → шихтовка с Химическая наполнителем → проминка глины→формование сырца → Деревообрабатывающая сушка (естественная). При строительстве во влажных Металлургическая местах саман после сушки рекомендуется окуривать-сушка Энергетическая дымом. Строительный комплекс Грунтоблочные стены появились в 30-х годах 20 века. Нефтеперерабатывающая Для производства грунтоблоков пригодны глины, 3. По коэффициенту насыщения суглинки, лессы, супеси, чернозем при естественной Кнас=(CaO+MgO)/(SiO2+Al2O3+Fe2O3) влажности. Для оценки пригодности определяется Коэффициент насыщения прогнозирует вяжущие свойства, связность, т.е. берется проба из свежевырытого грунта с если Кн=0 – отходы являются ультракислыми, Кн=0- 0,8 – глубины 25-30 см. Например, сглинки (г.Ступино) в кислые, Кн=0,8- 1,2 – нейтральные; Кн=1,2 -3 – основные, которые вводилось 25% по объему опилок имели в 7-ми 6 63 образуется до 1% от общего количества производимого при Кн>3 ультраосновные. цемента. Возрат всей пыли в производство цемента во Ультракислые и кислые отходы вяжущими свойст- многих случаях нежелательно т.к. в клинкере содержатся вами не обладают, к ним относятся отходы с преобладани- щелочи, а их содержание ограничивается ГОСТом.поэтому ем SiO2, нейтральные обладают скрытыми вяжущими свой- проблема самоутилизации цементной пыли нерешена. В ствами к ним относятся доменные шлаки, вяжущие свойст- зависимости от содержания щелочей в цементной пыли она ва проявляются в автоклавах; к основным относится нефе- делится на 3 вида: линовый шлам, к ультраосновным – известь, карбидный ил. Малощелочная – 1,08–3,05%; Техногенное сырье часто бывает сильно обводнено Среднещелочная – 3,59–10,35%; (например, золы гидроудаления, фосфогипсовые шламы, Высокощелочная – 26,72 –35,10%. нефелиновые шламы содержат до 60% воды), что требует Удельнаяповерхность пыли 7000-10000см2/г. кроме дополнительной обработки перед их непосредственным того цементная пыль содержит от 0,2 до 22% свободного использованием. СаО, окиси серы от 9,64 до 24,5%, F2O от 0,82 до 8,8%Ю, Что необходимо сделать, чтобы широко использо- которые придают отрицательные свойства при возврате в вать отходы производства: печь в процессе обжига. Цементная пыль мспользуется - дать оценку возможности промышленного использования; также при приготовлении шлакощелочных вяжущих, как - должна быть проведена детальная разведка или исследо- наполнительв асфальтобетоны, при изготовлении местных вание промышленных отвалов; малоклинкерных вяжущих. - должно быть произведено усреднение состава; Использование отходов ультраосновных пород. - необходимо провести специальные технологические раз- Известно, что в большинстве случаев в качестве работки с целью освоения этих отвалов. заполнителя при изготовлении панелей и других Рациональное использование природных богатств – строительных конструкций используется щебень из одна из важнейших задач современной науки и техники. гранитных пород. В условиях Баженовского Хотя общие запасы минерального сырья неисчерпаемы, все месторождения хризотил-асбеста при разработке открытым же месторождения с высоким содержанием полезного ис- способом образуется большое количество каменных копаемого в доступных к настоящему времени глубинах отходов из вмещающих пород – перидотитов и земной коры истощаются, и будут встречаться все реже. серпентинитов. С целью реализации отходов разработана Производства, потребляющие “бедное” (т.е. содержащее технология производства щебня. Оказалось что такой менее 10% полезного ископаемого) сырье или требующие щебень, будучи использован в строительных конструкциях сложного технологического процесса и многокомпонент- для жилых зданий, создает комфортные условия вследствие ной смеси, характерны наличием большого количества по- незначительного содержания в щебне естественных бочных продуктов-“отходов производства”. Даже при пе- радионуклидов. реработке Безобжиговые стеновые материалы. Саман-это искусственный стеновой материал, полу- 62 7 Таблица 1. Технологическая нитка должна включать: Классификация, техногенного сырья по агрегатному -разрушение крупногабаритных конструкций; состоянию в момент выделения их из основного техноло- -извлечение арматуры; гического процесса. -дробление бетона; Основные Попутные Агре- Характеристика -фракционирование дробленого заполнителя; продукты продукты гатное -проведение активации. Класс состоя- На сегодня разработаны установки, позволяющие ние разрушать изделия с длиной до 24 м, шириной 3,5 м и вы- сотой до 0,6 м; УПН-7(12)-3-0,6, УПН 24-3,5-0,6. А Продук- а) карьер- Твер- Крупный камень, Технология процесса. На колосниковый стан с помо- ты, не ут- ные ос- дое щебень, пески, по- щью подъемного механизма укладываются некондицион- ратившие татки при рошки ные железобетонные или другие бетонные отходы, на изде- природ- добыче лие опускается рычажный пресс. Дробленый бетон по мере ных горных разрушения через колосниковую решетку с диаметром 250 свойств пород Растворы, суспен- мм поступает по ленточному транспортеру на дальнейшую б) остатки Жид- зии, шламы, грязи. переработку. Арматурный каркас, очищенный от бетона на после кое Крупный камень, специальных площадках передается для сбыта в металло- обогаще- щебень, пески, по- лом. Попавшие куски арматуры через колосниковую ре- ния на рошки шетку извлекаются навесным электромагнитом ПМ-15. полезное Твер- Для вторичного дробления бетона используется ще- ископае- дые ковая дробилка СМД-109, СМД-108. Выход фракций, со- мое держащих куски до 70 мм, используется в дорожных по- Б Искусст- а) Обра- Газы Газы, смесь газов, крытиях. Дальнейшее дробление производится в конусной венные зовав- водяной пар, паро- дробилке СМД-27Б с выделением фракций до 5, 5-20, 20-40 продукты, шиеся газовая смесь мм. В таком виде полученные зерна применять нецелесо- получен- при обра- образно, необходима термомеханическая активация с це- ные в ре- ботке ни- лью восстановления гидравлической активности. Если зультате же темпе- иметь еще помольную установку после активации, то мож- глубоких ратуры но полностью заменить цемент в строительных растворах, а физико- спекания в бетонах расход цемента снижается до 40-60%. химиче- Жид- Растворы, суспен- Использование пыли цементных заводов ских про- кие зии, шламы, грязи При производстве портландцемента образуется цессов. цементная пыль, которую можно использовать при производстве строительных материалов. Цементной пыли 8 61 стоит в прессовании смеси пластмассовых отходов и песка, Продолжение таблицы 1. взятых в соответствии 1:1. Песок просеивают, нагревают до Твер- Крупный камень, 500оС, добавляют к смеси отходы полиэтилена и полисти- дые щебень, пески-ос- рола, смешивают при температуре 150оС в течение 25 мин, татки после выще- затем полученную массу прессуют. лачивания, сепара- По аналогичной технологии получают материалы из ции и отмучивания. пластмассовых отходов в смеси с мелом, стекловолокном, Порошки – осажде- асбестом и другими минеральными наполнителями. Все нная пыль, проду- компоненты в течение 2 часов подсушивают при 120оС, за- кты самопроизво- тем их пластифицируют в смесителе при 250-300оС в тече- льного рассыпания ние 15 мин, выгружают при 180оС в форму и прессуют. По- крупных кусков. лученные композиции обладают хорошими прочностными б) образо- Газы Газы, смесь газов, показателями и высокой стойкостью и истиранию, что по- вавшися водяной пар зволяет использовать их при изготовлении плит для полов. при темпе- Жид- Растворы, смесь Для улучшения внешнего вида изделий при смешивании ратурах, кие газов, водяной пар, добавляют также пигменты, как оксиды железа и хрома вызвавших парогазовая смесь желтый крон, диоксид титана. полное или Твер- Крупный камень, Также способом получения строительных материалов частичное дые щебень, пески, с применением отходов является расплавление полимеров с расплавле- порошки, последующим смешиванием их с цементом, разливкой в ние измельченная формы и охлаждением. Эти изделия обладают высокой осажденная пыль плотностью и стойкостью против горения. в) образо- Жид- Растворы, шламы, Использование бетонолома вавшиеся кие грязи, суспензии Источниками получения бетонолома являются: раз- осаждени- Твер- Крупный камень, борка старых сборных бетонных и железобетонных конст- ем из рас- дые щебень, порошки, рукций; брак на производстве; стихийные бедствия (земле- творов измельченная трясения, ураганы и т.д. осажденная пыль Одним из важнейших резервов материальных и энер- гетических ресурсов в области строительной индустрии яв- ляется вовлечение отходов от некондиционного бетона и железобетона с целью обеспечения принципа безотходного производства. Для этого требуется разработать высокоме- ханизированную линию по переработке некондиционного бетона и железобетона. 60 9 старение. Продолжение таблицы 1 Изменяя состав битумно-резинового вяжущего, вид В Продук- - Газы Газы, смесь наполнителей и способ обработки можно изготавливать в. ты, обра- газов, виде рулонного материала, кровельных плиток или гидро- зовав- водяной пар изоляционной мастики. шиеся в Жидкие Растворы, Рулонный изол – безосновный материал, обладающий результа- эмульсии, высокой водо- и гнилостойкостью, а также деформативной те дли- суспензии способностью. Из листа изола вырубают кровельные плит- тельного ки. хранения Близким к изолу по свойствам является бризол. Его в отвалах изготавливают вальцеванием и последующим каландриро- Твердые Щебень, ванием смеси нефтяного битума дробленой резиновой пески, крошки асбестового волокна и пластификатора. порошки Бризол подразделяют на две марки: средней (бр-с) и богатых руд большие объемы производств приводят к повышенной прочности (бр-п). Первый применяют при ра- образованию отвалов, что порождает проблему использо- бочей температуре 5-30оС, а второй 20-25оС. вания отходов (доменные шлаки, золы и шлаки твердого Битумно-резиновые материалы выпускают также в топлива, фосфогипс и т.д.) виде пористых жгутов и полос (пороизол) для герметиза- Комплексное использование местных вулканических ции стыков конструкций, а также как приклеивающие и пород, отходов горно-обогатительных фабрик и вскрыш- изоляционные мастики. Изол и бризол применяют для гид- ных пород роизоляции подвальных этажей зданий, подземных трубо- Распространение наиболее важных минералов в зем- проводов и других сооружений, бассейнов, антикоррозион- ной коре по Белянкину приводится (в %) ниже: ной защиты и устройства кровли. Полевые шпаты 55 Перспективным способом утилизации отходов полио- Орто- и метасиликаты 15 лефинов, как и других термопластов, является их повторная Кварц 12 переработка, отходы предварительно сортируют от ино- Слюда 3 родных включений, а затем подвергают измельчению, аг- Магнетит и др. окислы железа 3 ломерации и грануляции. Из гранулята получают различ- Глины 1,5 ные изделия, в т. ч. строительного назначения. Кальцит 1,5 Вторичное сырьё целесообразно вводить в полимер- Доломит 1,0 ные композиции в количестве до 40-50% первичного вме- Апатит и др. фосфаты 0,7 сте с пластификаторами, наполнителями и стабилизатора- Пирит и др. сульфиды 0,3 ми. Один из методов получения строительных плит со- 10 59

Использование техногенного сырья ¾ мощный экологический ресурс

В условиях нарастающей экологической напряженности в мире проблема рационального использования и эффективного сбережения природных ресурсов становится важнейшей задачей жизнедеятельности любого государства.

Исключительно важное значение имеет не только сбережение сырьевых ресурсов, но и их повторное использование. Значение вторичных сырьевых ресурсов для поддержания экологически безопасного уровня воздействия на окружающую среду весьма значительно, в частности, их использование является одним из необходимых условий внедрения малоотходных и безотходных технологий.

Важную роль в утилизации (использовании) вторичных сырьевых ресурсов играет строительство и промышленность строительных материалов. Как известно, эти отрасли промышленности используют два вида сырья: природное и техногенное (вторичное).

Природное сырье ¾ это строительные камни, песчано-гравийная смесь, гравий, песок, щебень и другие горные породы. Сюда же относят отвалы вскрышных пород, образующиеся при разработке карьеров и строительных котлованов.

К сожалению, многие районы России не обеспечены природным сырьем в необходимом количестве, а в других ¾ их запасы значительно исчерпаны. Во многих случаях это приводит к значительным затратам на их транспортировку из других районов, что нецелесообразно ни с экономической, ни с экологической точки зрения, так как подобные перевозки сопровождаются неизбежными экологическими нарушениями.

Поэтому с развитием техники и ухудшением в стране экологической ситуации все большее значение в строительной отрасли начинает приобретать техногенное сырье . К нему относят самые разнообразные промышленные отходы и побочные продукты: металлургические шлаки, бокситовые и другие шламы, отходы горно-обогатительных комбинатов (ГОК), золу и золошлаковые отходы ТЭС, отходы углеобогащения, вторичные полимеры, продукты переработки древесины и др.

Техногенное сырье рассматривается многими специалистами как национальное достояние, как исключительно ценный продукт, аккумулирующий в себе ранее затраченные инвестиционные и энергетические ресурсы. Его использование в производстве строительных материалов во многих случаях оказалось значительно дешевле, чем разработка и освоение природных ресурсов.

Использование техногенного сырья для производства строительных материалов с экологической точки зрения весьма перспективно: 1) резко сокращаются объемы добычи дефицитных природных строительных материалов; 2) утилизируется и химически прочно связывается огромное количество загрязняющих окружающую среду промышленных отходов; 3) освобождаются ценные земельные участки, отчуждаемые под хвосто- и шламохранилища и др. Только под хранение золошлаковых отходов ТЭС отчуждаются огромные территории.

В строительной индустрии находят широкое применение многие виды промышленных отходов и побочных продуктов. Приводим несколько примеров их использования.

Зола и золошлаковые отходы (ЗШО). В настоящее время в России ежегодно образуются десятки миллионов тонн золошлаковых отходов. Каждые сутки работы на угле ТЭС накапливается до 1 тыс. т золы и шлака. Подавляющая их часть направляется в отвалы, а в строительной индустрии утилизируется лишь 3-5% ЗШО. Для сравнения: в США и Германии ¾ 40-60%. В США из 20 млн т ежегодно образующихся зол уноса только для изготовления бетона утилизируется 7 млн т.

Золошлаковые отходы ¾ незаменимый компонент формовочных смесей для получения высококачественных строительных материалов. Их используют для производства ячеистого бетона, силикатного кирпича, пенозолсиликата, аглопорита, асфальтового основания дорожных одежд и т. д. ЗШО считаются прекрасным цементосберегающим материалом. При производстве бетонов введение зол позволяет экономить до 100 кг/м 3 цемента, а при использовании добавок-модификаторов ¾ до 200 кг/м 3 . Одновременно улучшается структура цементного теста и повышаются теплозащитные свойства конструкций.

Прекрасно зарекомендовала себя разработанная ВНИИстроем, безотходная технология производства лицевого кирпича на основе зол ТЭС, позволяющая не только сэкономить средства на строительство и эксплуатацию золоотвалов, но и значительно уменьшить загрязнение среды. По данным Л. С. Бариновой и Ю. С. Волкова (2002), замена в бетоне или растворе 15%-ного цемента на золу уноса или металлургический шлак, что технологически допускается, в перерасчете на мировые объемы их применения, могло бы снизить количество выбросов в атмосферу диоксида углерода (СО 2) на 300 млн т в год.

Металлургические шлаки ¾ высококачественное сырье для производства шлакопортландцементов, шлаковаты, гипсошлаковых блоков, щебня и др. Годовой объем выхода шлаков металлургических заводов исчисляется многими десятками миллионов тонн. В нашей стране очень высок объем утилизации доменных шлаков, 80% выхода которых идет для изготовления шлакопортландцемента и пористых заполнителей.

В последние годы все большее применение в качестве крупного и мелкого заполнителя в бетонах получают создаваемые по безотходной технологии шлаковая пемза (термозит) и шлакостеклогранулят, не уступающие природному щебню по большинству показателей. Например, прочность бетона на шлаковом цементе на 15-20% выше, чем на гранитном.

Широко известен ценнейший конструктивный материал ¾ шлакоситалл, обладающий высокими физико-механическими, химическими свойствами и экологической чистотой. Исключительно большое значение для производства портландцементного клинкера и шлакопортландцементов высокого качества имеет гранулированный доменный шлак, придающий цементу антикоррозийность, повышенную прочность, текучесть и быстроту твердения.

В связи с тем, что в ближайшие годы в России ожидается реконструкция предприятий по переработке отработанного ядерного топлива (ОЯТ), резко усиливается спрос на особо тяжелые бетоны для радиационной защиты. Для этих целей учеными предлагается использовать бетон, в составе которого вместо дорогостоящего металла будут использованы отходы и шихта металлургического производства.

Прекрасным примером блокирования фенолформальдегидных и других загрязнителей в структуре строительных материалов является использование отработанных формовочных смесей (ОФС) , образующихся в ходе металлургического литейного передела. Формовочная глина, используемая как связующее, нетоксична и может широко применяться при производстве строительных материалов.

Продукты переработки древесины и других растительных отходов. В России на лесопромышленных комплексах и деревоперерабатывающих комбинатах ежегодно образуется свыше 200 млн м 3 отходов древесины. Кроме того, сжигается и вывозится в отвалы в огромном количестве древесная тара, отходы переработки хлопчатника, лубяных культур и другого экологически ценного сырья, пригодного для производства строительных материалов.

По мнению В. И. Сметанина (2000), важнейшим направлением рационального, экологически целесообразного использования древесины в строительной индустрии является производство различных древесных бетонов: арболита, фибролита, опилкобетона, королита и др.

Наиболее известным из этих экологически чистых дешевых строительных материалов является арболит . Это легкий крупнопористый бетон, состоящий из древесной дробилки (в основном отходы от лиственных пород) и портландцемента марки 400. Широко применяется в качестве стеновых блоков при строительстве малоэтажных зданий. При устройстве ограждающих конструкций и перегородок используют королит ¾ теплоизоляционный материал, состоящий из коры, цемента (или строительного гипса) и добавок.

В промышленности строительных материалов широкое применение находит ценнейшее экологически чистое сырье, вырабатываемое из отходов целлюлозно-бумажного производства ¾ лигносульфонаты , обладающие обеспыливающими, пластифицирующими, пенообразующими и другими ценными свойствами.

Отходы химического комплекса . Несмотря на огромные объемы и разнообразие видов вторичного минерального сырья, эти отходы в строительной индустрии используются недостаточно. Находят некоторое применение электротермофосфорные шлаки (шлакопортландцемент, силикатный кирпич), отходы содового производства (автоклавное производство материалов, газогипс), кубовые остатки перегонных производств и битумы (ячеистые бетоны с добавками нефтебитума и др.).

С точки зрения экологии следует более подробно остановиться на побочном продукте, получаемом при переработке апатитовых и фосфоритовых концентратов ¾ фосфогипсе . Применяется он при изготовлении цемента, строительных блоков, сухой штукатурки и др. Только в Японии в 70-х гг. строительная промышленность ежегодно расходовала около 3 млн т фосфогипса.

Однако проведенные в 80-90-е гг. исследования показали, что «фосфогипс обладает гораздо большей удельной радиоактивностью, чем природный гипс… и, по-видимому, люди, живущие в домах с его применением, получают облучение на 30% более интенсивное, чем жители других домов». (Доклад Комитета по атомной энергии, ООН, г. Нью-Йорк.) Л. Брунарски (1990) считает, что фосфогипс может быть применен в строительстве лишь после специальной проверки на радиоактивность. Выяснилось также, что фосфогипс, перерабатываемый по существующей технологии, помимо радионуклидов может содержать и такие вредные для здоровья человека вещества, как фтористые соединения (Долгорев, 1990).

Помимо рассмотренных выше золошлаковых отходов, металлургических шлаков, продуктов переработки древесины и отходов химического производства при производстве строительных материалов находят применение и другие виды техногенного сырья. Важно подчеркнуть, что практически для любого вида выпускаемых в России строительных материалов вместо природного сырья возможно и экологически целесообразно использование различных видов техногенного сырья.

Вторичные ресурсы (отходы производства) широко используются не только в промышленности строительных материалов, но и в дорожном строительстве (в качестве инертных наполнителей вместо песка, скальных пород, гравийных смесей и др.), в фундаментостроении, при устройстве гидротехнических плотин и др. Переработка строительных отходов во вторичное сырье рассмотрена нами в п. 2.6.

Значительный интерес представляет использование отходов промышленности в такой материалоемкой отрасли строительства, как устройство оснований фундаментов зданий и сооружений. Исследования, проведенные НИИОСПом, показали, что для этих целей наиболее пригодны вскрышные и отвальные породы, у которых завершился процесс самораспада, а также доменные и сталеплавильные шлаки. При устройстве оснований из этих отходов их уплотняют, трамбуют, используют глубинное уплотнение с помощью мелких взрывов и др.

В последние годы в нашей стране использование промышленных отходов, как в строительстве, так и в промышленности строительных материалов, заметно сократилось, что связано как с общим падением уровня промышленного производства, так и с отсутствием должного стимулирования использования вторичных ресурсов в производстве.

По мнению Г. А. Денисова (2002), низкий уровень использования техногенного сырья в России помимо указанных выше причин вызван принципиально различным подходом к этой проблеме в экономически развитых странах и в России. Там, например, золошлаки в этих странах являются продуктом (товаром), а не отходом, и использованием (реализацией) этого продукта занимаются его производители, т. е. ТЭС. Интересно отметить, что, как показывают расчеты, рентабельность производства товаров-продуктов из золошлаков (бетонные смеси, многоцелевые вяжущие, песок, щебень и др.) значительно выше рентабельности производства самой электроэнергии на ТЭС.

В этом отношении пример показывают западные страны. Например, в Дании уровень утилизации рециклируемых материалов достиг 100%. В Нидерландах создана цельная, экологически выдержанная концепция развития строительной индустрии, которая основана на внедрении замкнутого безотходного производства с многократным использованием техногенного сырья.

Важнейшее сырье - минеральное. Оно изучается минералогией - наукой, насчитывающей в настоящее время сведения почти о 2500 различных минералах, отличающихся друг от друга по химическому составу, физическим свойствам, кристаллической форме и прочим признакам.

Минеральное сырье делят на рудное, нерудное и горючее. Рудным минеральным сырьем называют горные породы или минеральные агрегаты, содержащие металлы, которые могут быть экономически выгодно извлечены в технически чистом виде. Нерудным (или неметаллическим) называют все сырье, используемое в производстве химических, строительных и других неметаллических материалов и не являющееся источником получения металлов. Однако большая часть нерудного сырья содержит металлы (например, фосфориты, апатиты, алюмосиликаты). К горючему минеральному сырью относятся органические ископаемые: уголь, торф, сланцы, нефть и др., используемые как топливо или сырье для химической промышленности. Естественно, что основной интерес представляет сырье, которое встречается в земной коре часто, в наибольших количествах, с достаточным содержанием полезных элементов н по воз­можности однородно по составу и свойствам. Поэтому все более расширяется переработка и применение весьма распространенных в земной коре песка, глины, известняка, гипса, а также воды, воздуха, природных газов, твердых и жидких горючих ископаемых.

Земная кора (99,5 %) состоит из 14 химических элементов: кислорода - 49,13%, кремния - 26,00, алюминия - 7,45, железа - 4,20, кальция - 3,25, натрия - 2,40, магния - 2,35, калия - 2,35, водорода - 1,00 % и др.

К наиболее применяемым в народном хозяйстве элементам относятся свинец, ртуть, бром, иод и др. Некоторые элементы, находящиеся в достаточном количестве в земной коре, чрезвычайно рассеяны в пределах доступного для разработки слоя земной коры, в то время как другие сконцентрированы в виде отдельных скоплений. Масштабы промышленного использования многих элементов находятся в резком несоответствии с их распространенностью в земной коре. Например, титана почти в два раза больше, чем углерода в земной коре, в то время как добывается его ежегодно примерно в 10 5 раз меньше. Однако с развитием научно-технического прогресса в ведущих отраслях, предъявляющих повышающийся спрос на редкие и рассеянные металлы, меняется народнохозяйственное значение отдельных продуктов, что сглаживает границы между основными и попутными видами сырья.

Самыми общими и распространенными видами сырья являются вода и воздух. Сухой воздух содержит; азота, - 78 об.%, кислорода - 21, аргона- 0,94, углекислого газа - 0,03 об. % и незначительные количества водорода и инертных газов, а также водяные пары, пыль и т. д. Кислород воздуха находит широкое применение во многих отраслях промышленности; в металлургии, машиностроении, химической и топливной промышленности. Большое применение находит азот (например, в синтезе аммиака, а также для создания инертных сред во многих химических реакциях),