Нагревание атмосферного воздуха. Как нагревается воздух атмосферы


Основным источником тепла, нагревающим земную поверхность и атмосферу, служит солнце. Другие источники – луна, звезды, разогретые недра Земли – поставляют столь малое количество тепла, что ими можно пренебречь.

Солнце излучает в мировое пространство колоссальную энергию в виде тепловых, световых, ультрафиолетовых и других лучей. Вся совокупность лучистой энергии Солнца называется солнечной радиацией. Земля получает ничтожную долю этой энергии – одну двухмиллиардную часть, которой, однако, достаточно не только для поддержания жизни, но и для осуществления экзогенных процессов в литосфере, физико-химических явлений в гидросфере и атмосфере.

Различают радиацию прямую, рассеянную и суммарную.

При ясной, безоблачной погоде поверхность Земли нагревается в основном прямой радиацией, которую мы ощущаем как теплые или горячие солнечные лучи.

Проходя через атмосферу, солнечные лучи отражаются от молекул воздуха, капелек воды, пылинок, отклоняются от прямолинейного пути и рассеиваются. Чем пасмурнее погода, тем плотнее облачность и тем большее количество радиации рассеивается в атмосфере. При сильной запыленности воздуха, например во время пыльных бурь или в промышленных центрах, рассеивание ослабляет радиацию на 40–45 %.

Значение рассеянной радиации в жизни Земли очень велико. Благодаря ей освещаются предметы, находящиеся в тени. Она же обусловливает цвет неба.

Интенсивность радиации зависит от угла падения солнечных лучей на земную поверхность. Когда солнце находится высоко над горизонтом, его лучи преодолевают атмосферу более коротким путем, следовательно, меньше рассеиваются и сильнее нагревают поверхность Земли. По этой причине в солнечную погоду утром и вечером всегда прохладнее, чем в полдень.

На распределение радиации на поверхности Земли огромное влияние оказывают ее шарообразность и наклон земной оси к плоскости орбиты. В экваториальных и тропических широтах солнце в течение всего года находится высоко над горизонтом, в средних широтах его высота меняется в зависимости от времени года, а в Арктике и Антарктике высоко над горизонтом оно не поднимается никогда. В результате в тропических широтах солнечные лучи рассеиваются меньше, а на единицу площади земной поверхности приходится их большее количество, чем в средних или высоких широтах. По этой причине количество радиации зависит от широты места: чем дальше от экватора, тем меньше ее поступает на земную поверхность.

Поступление лучистой энергии связано с годичным и суточным движением Земли. Так, в средних и высоких широтах ее количество зависит от времени года. На Северном полюсе, например, летом солнце не заходит за горизонт 186 дней, т. е. 6 месяцев, и количество поступающей радиации даже больше, чем на экваторе. Однако солнечные лучи имеют малый угол падения, и большая часть радиации рассеивается в атмосфере. В результате поверхность Земли нагревается незначительно.

Зимой солнце в Арктике находится за горизонтом, и прямая радиация на поверхность Земли не поступает.

На количество поступающей солнечной радиации влияет и рельеф земной поверхности. На склонах гор, холмов, оврагов и т. д., обращенных к солнцу, угол падения солнечных лучей увеличивается, и они сильнее нагреваются.

Совокупность всех этих факторов приводит к тому, что на земной поверхности нет места, где интенсивность радиации была бы постоянной.

Неодинаково происходит и нагревание суши и воды. Поверхность суши нагревается и охлаждается быстро. Вода же нагревается медленно, но зато дольше удерживает тепло. Объясняется это тем, что теплоемкость воды больше теплоемкости горных пород, слагающих сушу.

На суше солнечные лучи нагревают только поверхностный слой, а в прозрачной воде тепло проникает на значительную глубину, в результате чего нагревание происходит медленнее. На его скорость влияет и испарение, так как на него нужно много тепла. Вода остывает медленно, в основном потому, что объем прогреваемой воды во много раз больше объема нагревающейся суши; к тому же при ее охлаждении верхние, остывшие слои воды опускаются на дно, как более плотные и тяжелые, а на смену им из глубины водоема поднимается теплая вода.

Накопленное тепло вода расходует более равномерно. В результате море в среднем теплее суши, а колебания температуры воды никогда не бывают такими резкими, как колебания температуры суши.

Температура воздуха

Солнечные лучи, проходя через прозрачные тела, нагревают их очень слабо. По этой причине прямые солнечные лучи почти не нагревают воздух атмосферы, а нагревают поверхность Земли, от которой прилегающим слоям воздуха передается тепло. Нагреваясь, воздух становится более легким и поднимается вверх, где перемешивается с более холодным, в свою очередь нагревая его.

По мере поднятия вверх воздух охлаждается. На высоте 10 км температура постоянно держится на отметке 40–45 °C.

Понижение температуры воздуха с высотой – это общая закономерность. Однако нередко наблюдается и повышение температуры по мере поднятия вверх. Такое явление называют температурной инверсией, т. е. перестановкой температур.

Возникают инверсии либо при быстром охлаждении земной поверхности и прилегающего воздуха, либо, наоборот, при стекании тяжелого холодного воздуха по склонам гор в долины. Там этот воздух застаивается и вытесняет более теплый вверх по склонам.

В течение суток температура воздуха не остается постоянной, а непрерывно изменяется. Днем поверхность Земли нагревается и нагревает прилегающий слой воздуха. Ночью Земля излучает тепло, охлаждается, и происходит охлаждение воздуха. Наиболее низкие температуры наблюдаются не ночью, а перед восходом солнца, когда земная поверхность уже отдала все тепло. Аналогично этому наиболее высокие температуры воздуха устанавливаются не в полдень, а около 15 ч.

На экваторе суточный ход температур однообразен, днем и ночью они почти одинаковы. Очень незначительны суточные амплитуды на морях и у морских побережий. А вот в пустынях днем поверхность земли часто нагревается до 50–60 °C, а ночью нередко охлаждается до 0 °C. Таким образом, суточные амплитуды превышают здесь 50–60 °C.

В умеренных широтах наибольшее количество солнечной радиации поступает на Землю в дни летних солнцестояний, т. е. 22 июня в Северном полушарии и 21 декабря в Южном. Однако самым жарким месяцем является не июнь (декабрь), а июль (январь), так как в день солнцестояния огромное количество радиации расходуется на нагревание земной поверхности. В июле (январе) радиация уменьшается, но эта убыль компенсируется сильно нагретой земной поверхностью.

Аналогично этому самый холодный месяц не июнь (декабрь), а июль (январь).

На море, в связи с тем что вода более медленно охлаждается и нагревается, смещение температур еще больше. Здесь самый жаркий месяц август, а самый холодный – февраль в Северном полушарии и соответственно самый жаркий – февраль и самый холодный – август в Южном.

Годовая амплитуда температур в значительной степени зависит от широты места. Так, на экваторе амплитуда в течение года остается почти постоянной и составляет 22–23 °C. Самые высокие годовые амплитуды характерны для территорий, расположенных в средних широтах в глубине континентов.

Любая местность характеризуется также абсолютными и средними температурами. Абсолютные температуры устанавливают путем многолетних наблюдений на метеостанциях. Так, самое жаркое (+58 °C) место на Земле находится в Ливийской пустыне; самое холодное (-89,2 °C) – в Антарктиде на станции «Восток». В Северном полушарии самая низкая (-70,2 °C) температура отмечена в поселке Оймякон в Восточной Сибири.

Средние температуры определяют как среднеарифметическое нескольких показателей термометра. Так, чтобы определить среднесуточную температуру, производят измерения в 1; 7; 13 и 19 ч, т. е. 4 раза в сутки. Из полученных цифр находят среднеарифметическую величину, которая и будет среднесуточной температурой данной местности. Затем находят среднемесячные и среднегодовые температуры как среднеарифметическое среднесуточных и среднемесячных.

На карте можно обозначить точки с одинаковыми значениями температур и провести линии, соединяющие их. Эти линии называют изотермами. Наиболее показательны изотермы января и июля, т. е. самого холодного и самого теплого месяца в году. По изотермам можно определить, как распределяется тепло на Земле. При этом прослеживаются отчетливо выраженные закономерности.

1. Самые высокие температуры наблюдаются не на экваторе, а в тропических и субтропических пустынях, где преобладает прямая радиация.

2. В обоих полушариях температуры понижаются от тропических широт к полюсам.

3. В связи с преобладанием моря над сушей ход изотерм в Южном полушарии более плавный, а амплитуды температур между самым жарким и самым холодным месяцем меньше, чем в Северном.

Расположение изотерм позволяет выделить 7 тепловых поясов:

1 жаркий, расположенный между годовыми изотермами 20 °C в Северном и Южном полушариях;

2 умеренных, заключенных между изотермами 20 и 10 °C самых теплых месяцев, т. е. июня и января;

2 холодных, расположенных между изотермами 10 и 0 °C также самых теплых месяцев;

2 области вечного мороза, в которых температура самого теплого месяца ниже 0 °C.

Границы поясов освещенности, проходящие по тропикам и полярным кругам, не совпадают с границами тепловых поясов.





Воздух прозрачен, и поэтому солнечные лучи свободно проходят сквозь него, практически его не нагревая. Они нагревают земную поверхность, От неё уже нагревается и воздух, находящийся близко к ней (тропосфера) Рассмотрим главную причину различия температур на Земле.





















Дни недели Температура воздуха Атмосферное давление Облачность/ осадки Понедельник -7 о 755 мм.рт.ст.ясно Вторник -8 о 753 мм.рт.ст.ясно Среда -7 о 754 мм.рт.ст.ясно Четверг -7 о 752 мм.рт.ст.ясно Пятница -3 о 744 мм.рт.ст.Переменная облачность Суббота -1 о 740 мм.рт.ст.снег Воскресенье 0 о 0 о 739 мм.рт.ст.снег Понедельник +1 о 738 мм.рт.ст.облачно Вторник +1 о 738 мм.рт.ст.снег Среда 0 о 0 о 739 мм.рт.ст.облачно Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда


Дни недели Температура воздуха Атмосферное давление Облачность/ осадки Понедельник -7 о 755 мм.рт.ст.ясно Вторник -8 о 753 мм.рт.ст.ясно Среда -7 о 754 мм.рт.ст.ясно Четверг -7 о 752 мм.рт.ст.ясно Пятница -3 о 744 мм.рт.ст.Переменная облачность Суббота -1 о 740 мм.рт.ст.снег Воскресенье 0 о 0 о 739 мм.рт.ст.снег Понедельник +1 о 738 мм.рт.ст.облачно Вторник +1 о 738 мм.рт.ст.снег Среда 0 о 0 о 739 мм.рт.ст.облачно Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Атмосферное д а в л е н и е мм. рт. ст. снег Суббота Воскресенье Вторник облачно Понедельник Среда Переменная облачность Пятница


Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Атмосферное д а в л е н и е мм. рт. ст. Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда Атмосферное давление высокое, ясно и холодно. Атмосферное давление пониженное, стало теплее, пасмурно и временами идет снег. Погода резко меняется

Малое количество солнечных лучей (до 5%) отражается от водной поверхности в часы, когда Солнце расположено высоко над горизонтом.
Существует 2 основных источника энергии всех процессов, происходящих на поверхности Земли:
Зависимость нагрева подстилающей поверхности Земли от угла падения солнечных лучей.
Величина нагрева поверхности Земли зависит от угла падения солнечных лучей.
Незначительное количество солнечных лучей (5-10%) отражается от влажной почвы.
Как нагревается атмосферный воздух
Выполнила: учитель географии
Есина Алёна Викторовна
Владивосток, 2013г
Спасибо за внимание!
Подстилающая поверхность
- это поверхность Земли (почва, вода, снег, лед, растительность), которая взаимодействует с атмосферой, обмениваясь с ней теплом и влагой.
Также более всего (70-90%) солнечные лучи отражает водная поверхность, когда Солнце находится у горизонта.
Распределение солнечной энергии
Чем выше над Землей, тем меньше воздуха: в горах на высоте 3000 м над уровнем моря уже трудно дышать. На высочайшую вершину планеты Эверест даже тренированные альпинисты поднимаются с кислородными масками. Если же пассажир самолета, летящего на высоте 10 км, подышит воздухом, находящимся за бортом, он потеряет сознание. Практически весь воздух атмосферы сосредоточен в слое до 10-12 км над поверхностью Земли. Здесь воздух, поднимающийся вверх, «поворачивает» вниз и, происходит изменение погоды: образуются облака, рождаются грозы, ливни, снегопады.
Более всего (70-90%) отражает солнечные лучи
свежевыпавший снег.
К

верхней границе атмосферы доходит около одной двухмиллиардной доли энергии, излучаемой Солнцем. Но даже такая малая часть солнечной энергии целиком не достигает поверхности Земли.

Также величина нагрева зависит от способности подстилающей поверхности
ОТРАЖАТЬ
и
ПОГЛОЩАТЬ
солнечную энергию.
Днём земная поверхность нагревается солнечными лучами: чем выше Солнце над горизонтом, тем сильнее она нагревается. Атмосфера нагревается не солнечными лучами, главным образом она нагревается за счет энергии, поглощенной подстилающей поверхностью.


По теме: методические разработки, презентации и конспекты

Загрязнение атмосферного воздуха

Цель. Ознакомить учащихся с источниками загрязнения атмосферы; видами загрязнений и последствиями.Задачи. Учащиеся смогут распознавать естественные и антропогенные источники загрязнения атмосферы; дат...

Нагревание атмосферы

Нагревание атмосферы происходит в результате действия солнечного излучения (солнечной радиации). Солнечная радиация представляет собой совокупность двух типов излучения: корпускулярного и электромагнитного. Корпускулярное излучение (корпускулярная радиация) представляет собой движущийся от Солнца с большой скоростью поток элементарных частиц, главным образом, протонов, которые почти полностью улавливаются в верхних слоях атмосферы магнитным полем Земли (магнитосферой). Электромагнитная солнечная радиация (лучистая радиация) представляет собой электромагнитные волны различной длины, проникающие в атмосферу Земли со скоростью 300 км/с. В зависимости от длины электромагнитных волн различают три диапазона излучения: ультрафиолетовое, видимое (свет) и инфракрасное излучение. Почти половина энергии электромагнитного излучения Солнца лежит в области видимого излучения. Ультрафиолетовое излучение почти полностью поглощается озоновым слоем стратосферы. Поглощение озоновым слоем солнечной ультрафиолетовой радиации является основным фактором нагревания воздушной массы в стратосфере. Инфракрасное (длинноволновое) излучение Солнца поглощается в тропосфере и стратосфере, в основном, парами воды и углекислым газом. Для видимого излучения атмосфера является прозрачной.

Но не все излучение, для которого атмосфера прозрачна, непосредственно достигает земной поверхности, часть ее рассеивается в атмосфере водяным паром, аэрозольными частицами, облаками. Эта часть солнечного излучения называется рассеянной радиацией , та же часть, которая непосредственно падает на земную поверхность, носит название прямой радиации . Часть рассеянной радиации поступает к земной поверхности. Прямая и рассеянная радиация вместе поступающие на поверхность Земли составляют солнечную суммарную радиацию . Таким образом, на земную поверхность в виде прямой и рассеянной радиации попадает примерно лишь 48% солнечной лучистой энергии, поступающей на внешнюю границу атмосферы. В каждом конкретном месте Земного шара количество суммарной радиации зависит от угла падения солнечных лучей (широты места), продолжительности дня, прозрачности атмосферы и облачности. Количество суммарной радиации уменьшается от экватора к полюсам, т.е. подчиняется зональной закономерности.

Суммарная радиация частично поглощается земной поверхностью, а частично отражается от нее. Поэтому в ней выделяют отраженную и поглощенную радиацию. Величина отраженной радиации зависит от отражательной способности земной поверхности и называется альбедо. Альбедо – это отношение количества отраженной радиации от земной поверхности к солнечной суммарной радиации, падающей на эту поверхность. Выражается альбедо в процентах. Так, например, альбедо поверхности, покрытой свежевыпавшим снегом, достигает 90%, а альбедо только что вспаханной поверхности – не более 10%.

Поглощенная солнечная радиация, превращаясь в теплоту, нагревает поверхность Земли. Нагретая земная поверхность в свою очередь излучает тепло обратно в атмосферу в виде инфракрасного (длинноволнового) излучения, получившего название излучаемой радиации , земного излучения или земной радиации . Но тепловое излучение Земли не улетучивается бесследно в космическое пространство, а задерживается углекислым газом и парами воды в тропосфере, согревая воздушную массу и земную поверхность. Это явление сравнивают с процессом нагревания, происходящим в парниках. Поэтому данное атмосферное явление получило название парниковый (тепличный) эффект . Парниковый эффект атмосферы не позволяет за ночь сильно остывать поверхности Земли. При его отсутствии температура большей части земной поверхности опускалась бы за ночь даже летом намного ниже 0°С.

Сумма прихода и расхода радиации составляет радиационный баланс. Радиационный баланс может рассчитываться отдельно для атмосферы, для земной поверхности и для системы атмосфера – земная поверхность. Он может быть положительным и отрицательным . Радиационный баланс земной поверхности складывается из суммы поглощенной и излучаемой радиации. При положительном радиационном балансе (росте приходной части) температура поверхности повышается (как, например, днем или летом), при отрицательном (росте расходной части) – температура поверхности понижается (ночью, зимой). Радиационный баланс входит составной частью в соответствующий тепловой баланс, представляющий собой частный случай закона сохранения энергии.

Температура воздуха . Нагревание воздуха происходит, в основном, за счет излучаемой (земной) радиации. В целом атмосфера Земли получает в 3 раза больше тепла от нагретой Солнцем земной поверхности, чем непосредственно от солнечного излучения. Средняя температура приземного слоя воздуха для Земли в целом составляет около +15°С. Максимально низкие температуры зарегистрированы в Антарктиде (–89°С) и на северо-востоке России в Оймяконе (–71°С). Наиболее высокие температуры воздуха фиксируются в тропических пустынях, максимальные (около +58°С) отмечены в Мексике и на севере Африке в Ливии. Поскольку поступление солнечной лучистой энергии к поверхности Земли зависит от угла падения солнечных лучей, следовательно, ее нагревание и излучение изменяется соответственно широте, убывая от экватора к полюсам, т.е. изменение температуры воздуха подчиняется общей зональной закономерности. Кроме этого, наблюдается закономерное изменение суточной температуры (день, ночь) и годовой (зима, лето). Разность самой высокой и самой низкой температуры в течение суток называется суточной амплитудой температур , а разность самой высокой и самой низкой температуры в течение года – годовой амплитудой температур . В том и другом случае на величину амплитуды температуры влияет близость моря. Наиболее высокие амплитуды наблюдаются внутри континентов, а наиболее низкие – на побережье.

Если мы нанесем на глобус или карту точки с одинаковыми средними температурами, полученными за определенный промежуток времени (например, год, месяц), и соединим их линиями, то получим изотермы. Изотерма – это линия одинаковой температуры за определенный промежуток времени . Соответственно зональной закономерности изотермы должны были бы совпадать с параллелями, но этого не происходит из-за влияния на распределение температуры таких факторов, как распределение суши и воды, альбедо поверхности, циркуляция воздуха в атмосфере, наличие теплых и холодных течений в Мировом океане. Поэтому изотермы имеют извилистый характер.



В соответствии с изотермами на Земле выделяют тепловые пояса . Следует отличать тепловые пояса от поясов освещенности. Границами поясов освещенности служат параллели (тропики и полярные круги), а границами тепловых поясов являются изотермы. Выделяют 7 тепловых поясов: один жаркий пояс, приуроченный к экваториальным широтам и ограниченный среднегодовыми изотермами +20°С в северном и южном полушариях; два умеренных пояса (по одному в каждом полушарии) между среднегодовыми изотермами +20°С и среднемесячными изотермами +10°С самого теплого месяца (июля для северного полушария и января для южного полушария); два холодных пояса между среднемесячными изотермами наиболее теплого месяца +10°С и 0°С; два морозных пояса около полюсов, оконтуриваемых среднемесячной изотермой 0°С самого теплого месяца, где среднемесячные температуры в течение всего года не поднимаются выше 0°С.

Вопросы для самоконтроля.