Применение минерального сырья в строительстве. Фундаментальные исследования. Природное минеральное сырье

Пензенский государственный университет и архитектуры и строительства.Россия

Важнейшей задачей промышленности строительных материалов является разработка и внедрение эффективных, ресурсосберегающих технологий производства, экологически чистых материалов, изготавливаемых по малозатратным, безотходным технологиям с максимальным использованием местного сырья и техногенных отходов промышленности.

В последние десятилетия все большее внимание ученых привлекают крупнотоннажные побочные продукты и отходы различных отраслей промышленности с целью использования их в строительстве.

Значительную группу техногенных продуктов составляют минеральные шламы, образующиеся при нейтрализации заводских стоков предприятий химической, машиностроительной, химико-фармацевтической, стекольной и других отраслей промышленности, а также в процессе химической подготовки и осветления воды на предприятиях энергетического комплекса. В большинстве случаев минеральные шламы представляют собой ультрадисперсные, гетерогенные системы, которые в процессе последующей коагуляции и обезвоживания осаждаются и в отдельных случаях образуют структуры твердения. Высокая дисперсность и стабильный химический состав некоторых шламов открывают широкие перспективы применения их в качестве минеральных микронаполнителей и химических активаторов гидратации и структурообразования цементных и композиционных материалов.

Теория и практика строительного материаловедения свидетельствуют о том, что цементные растворы и бетоны постепенно переходят из разряда 4-5 компонентных систем в разряд 7-8 и более компонентных систем, наполненных модификаторами различного функционального назначения.

Преимущество структуры цементной матрицы с микронаполнителем заключается в том, что в ней создаются благоприятные условия для формирования межчастичных контактов, во многом определяющих прочность материала. В таких структурах локализуются внутренние дефекты и снижается концентрация напряжений, возникающих в процессе гидратации и твердения.

При рассмотрении механизмов повышения прочности наполненных цементных систем, особенно при использовании тонкодис­персных химически активных наполнителей, особое внимание должно уделяться изучению процессов гидратации, структурообразования и кристаллизации, обеспечивающих, в конечном итоге, прочность и основные свойства твердеющих композитов.

В технологии современных растворов и бетонов все большее значение приобретают высокотехнологичные смеси, модифицированные суперпластификаторами (СП) и комплексными добавками на их основе.

Известно, что тонкомолотые минеральные порошки, полученные на основе природных материалов, и тонкодисперсные техногенные шламы, в отличие от цементных систем в значительной большей степени подвержены разжижающему влиянию суперпластификаторов. Это объясняется тем, что минеральные порошки, являющиеся инертными по отношению к воде, не проявляют гидравлической активности и, следовательно, не связывают воду в гидраты на ранних этапах гидратации. Минералы цементного клинкера и, особенно, алюминатные фазы с первых секунд водозатворения образуют гидраты, включающие в свою структуру большое количество молекул воды (С 2 АН 8 , САН 10 , С 4 А (F) H 13 , C 4 A (F) Н 19 и др.), снижая тем самым эффективность действия практически всех пластификаторов и СП.

Введение в цементные системы тонкодисперсных минеральных наполнителей, инертных по отношению к воде, позволяет создавать необходимые реологические условия для получения высокотехнологичных и удобоукладываемых смесей и формирования плотно упакованных структур твердения. Высокая плотность структуры может быть достигнута за счёт введения в систему 2-3 фракций минеральных микронаполнителей, близких друг к другу по кристаллохимическому строению, и наиболее целесообразным в этом случае является использование микронаполнителей, параметры кристаллических структур которых соизмеримы с аналогичными параметрами гидратных фаз цементных систем.

Значительный научный и практический интерес представляют исследования процессов гидратации и твердения цементных материалов с добавками на основе карбоната кальция. Во многих исследованиях, касающихся механизмов гидратации и твердения цементных систем, наполненных тонкодисперсным кальцитом, отмечается значительное повышение прочности и улучшение других физико-механических свойств материалов. Однако механизмы карбонатной активации гидратации цементных систем, протекающие на молекулярном уровне, исследованы недостаточно.

Исследования механизмов активирующего действия тонкодисперсных карбонатных наполнителей с помощью методов рентгенеструктурного анализа позволяют выявить некоторые аспекты карбонатной активации гидратированных цементных систем и характер образования гидратов в присутствии микронаполнителей.

С целью определения влияния карбонатного микронаполнителя на состав продуктов гидратации цементных систем была проведена серия рентгенофазовых исследований минералов цементного клинкера и цемента, гидратированных в присутствии тонкодисперсного кальцита. В качестве микронаполнителя был принят карбонатный шлам, образующийся на предприятиях энергетики в процессе химической подготовки воды, в состав которого входят тонкодисперсный кальцит (Syfl = 15-17 тыс. см2/г) и остаточное количество гидроксида железа.

Анализ состава продуктов гидратации C 3 S и (3-C 2 S с добавками карбонатного шлама показал, что в присутствии тонкодисперсного кальцита происходит активация гидратации силикатных фаз цемента с образованием из­быточного количества извести и формированием тоберморитоподобных гидросиликатов кальция. Об этом свидетельствует снижение интенсивности линий безводных силикатных минералов на рентгенограммах гидратированных C 3 S и p-C 2 S, увеличение интенсивности линий Са(ОН) 2 (4,93; 2,63; 1,93 А и др.) и отражений, характерных для тоберморитового геля (3,05; 2,82 А).

Аналогичные выводы получены при анализе результатов рентгенофазовых исследований образцов цементного камня с добавкой карбонатного шлама, твердевших в нормальных условиях в срок до 1 года. Анализ состава продуктов гидратации цемента с добавкой карбонатного шлама свидетельствует о том, что одним из возможных механизмов активации гидратации силикатных фаз является образование гидросиликатных фаз, близких по структуре к тобермориту и ксонотлиту. Отражения, характерные для этих гидратов, отмечены в области малых углов (до 15°) на рентгенограммах цементного камня в возрас­те 60 сут.

В сложной системе Si0 2 -CaO-H 2 0 невоспроизводимость большинства твёрдофазовых реакций связана не только с особенностями конденсационных и кристаллизационных процессов при формировании гидросиликатов кальция, но и с огромной ролью дефектов структур различных видов и уровней. Одни и те же реакции с участием одних и тех же реагентов, протекающих при равных условиях, могут давать совершенно различные продукты. Дефекты могут существенно изменять скорость диффузионных процессов, влиять на возникновение зародышей кристаллизации и, в целом, на реакционную способность реагентов. Кроме того, в силикатных системах могут формироваться не только структуры с вполне определёнными параметрами кристаллических решёток и порядком кон­денсации кремнекислородных тетраэдров, но также смешанные и родственные структуры. Во многом формирование той или иной структуры зависит от «подвижности» атома кремния в структуре Si0 4 и способности тетраэдров приспосабливаться к электронному строению катионов и анионов, присутствующих в системе. Малейшее неуравновешенное смещение электронной плотности на связях -Si-О-, -Са-О- или в мостиках -Са-O-Si- и др. вследствие поляризационного влияния ионов может изменить ход и порядок конденсационных процессов. Это доказывается многочисленными ренгенофазовыми и дру­гими исследованиями гидратированных силикатных и цементных систем.

На основании выполненных рентгенофазовых исследований продуктов гидратации цементного камня в присутствии карбонатного шлама можно сделать заключение, что одним из основных механизмов повышения прочности цементных систем является активация образования гидросиликатов кальция и двойных солей на их основе с различной структурой и степенью конденсации кремнекислородных анионов. В присутствии катионов Al 3+ , Fe 3+, Na + , K+ , анионов SO 2- 4 , CO 2- 3 , и других имеющихся в составе шлама формируются напряжённо-деформированные (легированные) структуры гидросиликатов кальция, прорастающие друг в друга, уплотняющие систему и способствующие значительному повышению прочности.

Результаты рентгенофазовых исследований продуктов гидратации С 3 А свидетельствуют об активации образования в присутствии карбонатного шлама метастабильных гидроалюминатов кальция С 4 АН 19 , САН 10 и гидроалюминатов кубической структуры С 3 АН 6 . Установлено также стабильное при­сутствие в системе гидрокарбоалюмината кальция-ЗСаО*А1203*СаС03-12Н20(ГКАК-1). Однако при повышенных дозировках шлама (более 5% от массы вяжущего) на рентгеног­раммах отмечается стабильное появление линий кальцита, свидетельствующее о том, что часть СаС03 находится в несвязанном состоянии.

Значительное увеличение полуширины пиков гидратов ЗСаОАl 2 0 3 -СаС0 3 *12Н 2 0 и Са(0Н) 2 , отмеченное при анализе рентгенограмм С3А с добавкой карбонатного шлама, характеризует возможность искажения кристаллических решеток этих соединений. Подобное явление может быть объяснено встраиванием в структуру ГКАК-1 ионов Al 3+ , Мg 3+ и других, присутствующих в шламе. В наполненных системах при определенных условиях между частицами дисперсных кристаллических структур, например, Са(ОН) 2 и СаС0 3 , имеющих близкие параметры элементарной ячейки, могут возникать контактно-кристаллизационные взаимодействия, в результате которых кристаллы могут срастаться по определенным плоскостям с образованием прочных структур.

Аналогичное явление отмечается для гидратов AFm-фаз, кристаллы которых при определенных условиях могут зарождаться на поверхности тонкодисперсного кальцита и образовывать структуры срастания по бездефектным плоскостям с близкими параметрами элементарной ячейки.

Установлено, что состав продуктов AFm-фаз цементного камня с добавкой карбонатного шлама представлен на ранних стадиях эттрингитом и на более поздних - гидросульфоалюминатом кальция моносульфатной формы (МГСАК), гидрокарбоалюминатами кальция и гидратами AFm-фаз. Разрушение эттрингита может происходить с образованием сложных радикалов, в которых место группы SO 4 2- могут занимать ОН-группы, однако при одновременном присутствии в системе анионов SO 4 2- и С0 3 2- образовавшийся комплекс может снова перейти в эттрингит, либо в гидрокарбоалюминат кальция 3CaO*AI 2 0 3 *3CaC0 3 *32H 2 0 (ГКАК-3). Отражения, характерные для ГКАК-3, отмечены на рентгенограммах цементного камня с добавкой карбонатного шлама. При избытке в системе Са(ОН) 2 сложные радикалы могут реагировать с анионами SO 4 2- и С0 3 2- с образованием таумасита.

Кристаллы САН 10 , имеющие форму гексаго­нальных призм, так же как и кристаллы эттрингита, на ранних стадиях твердения армируют и упрочняют систему. Очевидно, что одной из причин повышения пластической ранней прочности цементных систем в присутствии карбонатных шламов является активация образования гидратов AFm и A Ft - фаз. Установлено, что в цементной системе с добавкой тонкодисперсного кальцита формируются не только устойчивые структуры гидросульфо-алюминатов кальция и гидратов AFm-фаз, но и активируется образование гидрокарбоалю-минатов кальция (ГКАК-3 и ГКАК-1). Кроме того, в присутствии гидратов САН 10 , AI(OH) 3 и Са(ОН) 2 возможно вторичное формирование эттрингита, а при избытке СаС0 3 - образование 3CaO*AI 2 0 3 * 3CaC0 3 *32H 2 0 и ЗСаО*Аl 2 0 3 -СаС0 3 -12Н 2 0.

Вместе с тем следует отметить, что сформированные на раннем этапе твердения метастабильные гидроалюминатные фазы (С 4 АН 13_19 , С 2 АН 8 , САН 10) со временем в зависимости от условий твердения могут перекристаллизовываться в наиболее стабильную кубическую фазу С 3 АН 6 . Перекристаллизация вызывает уменьшение объёма твёрдой фазы и соответственно увеличение пористости материала, что ведёт к временному снижению прочности. Однако в большинстве случаев это снижение незначительно и компенсируется высокой прочностью силикатных фаз цементного камня.

Анализ фазового состава с учётом вышеприведённых данных в определённой степени позволяет судить о характере поведения цементных материалов и предвидеть возможность снижения прочности вследствие перекристаллизации гидроалюминатных фаз. Однако при этом следует учитывать характер изменения пористости материала, поскольку известно, что более плотные гидроалюминатные структуры дают меньшую прочность, чем менее плотные, при высокой пористости, но более высокую прочность при меньшей пористости.

Рассматривая возможность химического взаимодействия карбоната кальция с продуктами гидратации цемента, следует иметь в виду чрезвычайно широкое разнообразие габитусов кристаллов кальцита, что позволяет последним служить хорошей подложкой для наращивания гидратных новообразований цементного камня.

Таким образом, в присутствии карбонатного шлама создаётся плотная структура цементного композита, которая на ранних стадиях упрочняется вследствие активации процессов образования гидратов AFm и A Ft -фаз и на более позднем этапе - вследствие кристаллизации гидроортосиликатов кальция с различной структурой и степенью конденсации кремнекислородных тетраэдров. Выделение из структуры композита сверхструктуры пластинок, призм, игл, волокон, сеток и т. д., способствует повышению прочности цементного камня (рис. 1). Гидросиликаты кальция это неустойчивые, активные и химически независимые образования. Обладая большой реакционной способностью, гидросиликаты кальция связывают в единую структуру все компоненты твердеющей системы. Чем более когерентно связаны метастабильные кристаллы выделяющейся фазы, тем выше прочность материала.

В цементных системах с минеральными микронаполнителями при оптимальном количестве жидкости создаются благоприятные условия для формирования межчастичных контактов срастания в стеснённых условиях, обеспечивающих высокую плотность и прочность структуры уже на ранних этапах гидратации. В начальный период твердения в процессе физического и химического связывания воды частицами цемента происходит непропорциональный прирост объема твердой фазы и геометрические размеры частиц увеличиваются при одновременном уменьшении толщины водных прослоек между ними. В присутствии минеральных наполнителей связывание воды затворения происходит в меньшей степени, а процесс твердения обеспечивается за счет сближения частиц и кристаллизации гидратов из пересыщенных растворов не только на поверхности цементных частиц, но и в точках соприкосновения, а также на поверхности минеральных частиц. В такой структуре происходит активация гидратационных процессов и создается возможность наращивания гидратов, близких по параметрам кристаллических структур к структуре кальцита, на активных гранях карбонатного наполнителя.

При высоких пересыщениях в наполненной цементной системе и малых зазорах между частицами, в местах контактов вследствие разности пересыщения в зонах контактов и вне их развивается градиент концентрации, способствующий образованию кристаллизационных мостов между смежными частицами (рис. 2), приводящих к срастанию частиц и значительному повышению прочности.

Анализ основных направлений развития теории и практики многокомпонентных бетонов нового поколения свидетельствует о том, что для получения высокопрочных материалов в качестве одного из основных компонентов полифункциональных модификаторов используется микрокремнезем или другие ультрадисперсные минеральные компоненты, позволяющие связать гидратную известь в гидросиликатную матрицу композита, обеспечивая при этом дополнительный прирост прочности.

Наиболее эффективными являются минеральные микронаполнители (например, тонкомолотая каменная мука), которые, наряду с высокой реологической способностью по отношению к суперпластификаторам, будут обладать химической активностью в гидратирующейся цементной системе. Каменная мука, полученная из кремнеземсодержащих плотных природных материалов, может быть использована в технологии высокопрочных бетонов, в количестве до 50% от массы цемента. При этом количество цемента в составах с микронаполнителем не снижается, вследствие чего улучшаются не только реологические характеристики бетонных смесей, но повышается плотность и прочность бетона, а, следовательно, морозостойкость, непроницаемость и коррозионная стойкость. Менее плотные, в том числе карбонатные породы и минеральные шламы, могут быть использованы для повышения плотности и прочности растворов и бетонов средних классов по прочности. С использованием подобных минеральных микронаполнителей могут быть получены бетоны с высокими эксплуатационными свойствами, причем из бетонных смесей высокоподвижной и литой консистенции на обычном ПЦ400, при расходе цемента до 500 кг/м3и заполнителях из обычных горных пород.

Исследования влияния минеральных шламов на процессы гидратации и твердения цементных растворов и бетонов, выполненные совместно с анализом механизмов действия шламов на различных уровнях и стадиях формирования структуры цементных композиций, показали целесообразность применения шламов в цементных строительных материалах в качестве добавок - активаторов твердения растворов и бетонов, улучшающих также реологические и технологические свойства растворных и бетонных смесей.

За последние 15 лет минеральные шламы широко применяются в строительных организациях г. Пензы и области. Только на предприятии ОАО «Жилстрой» в период с 1996 по 2007 г.г. было использовано более 10 тыс. т карбонатных и гипсосодержащих шламов в производстве строительных и штукатурных растворов. Внедрение передовой технологии позволило отказаться от использования в композиционных цементных растворах дорогостоящей извести, подготовка которой требовала больших экономических затрат и строгого соблюдения санитарно-гигиенических условий труда.

Исследования, проведённые на 10 основных видах цементов, используемых в строительстве, показали, что оптимальное количество минеральных шламов в цементных системах составляет 10-15% от массы вяжущего. В этом случае достигается повышение прочности цементных растворов на 20-25%, что позволяет снижать расход вяжущего на 15-20%. Кроме того, значительно улучшаются технологические свойства растворных и бетонных смесей.

Получены экспериментальные данные о влиянии на прочность цементных композиций комплексных минеральных добавок на основе карбонатного шлама и кремнезёмсодержащих местных сырьевых материалов (опока, трепел и др.). В свою очередь, это позволит значительно расширить область применения этих добавок в производстве не только строительных материалов, но и сухих смесей. Проводятся исследования возможности использования карбонатного шлама в смеси с пластифицирующими, воздухововлекающими и другими добавками, а также с супер- и гиперпластификаторами. Перспективным направлением применения карбонатных и смешанных шламов является их использование в технологии пенобетонных конструкций.

С целью расширения масштабов применения минеральных шламов в строительстве разработаны технологические схемы подготовки шламов для использования в этой отрасли, технические условия и рекомендации по применению шламов в производстве строительных растворов.

Массовое вовлечение крупнотоннажных шламовых отходов различных отраслей промышленности в производство строительных материалов становится одной из важнейших задач строительного материаловедения. Решение этой проблемы позволит получать не только высокие экономические эффекты за счёт рационального использования цемента, но и имеет огромное природоохранное значение.

Министерство образования Российской Федерации Восточно –Сибиркий государственный технологический университет Краткий курс лекций по “Дисциплине специализации” раздел “Комплексное использование минерального сырья и отходов промышленности” для студентов заочного обучения специальности “Производство строительных материалов, изделий и конструкций” Редактор Т.А. Стороженко Составители: Подписано в печать 29.03.02. Щукина Е.Г. Формат 60 х841/16. Усл.п.л. 3,49, уч.-изд.л.3,0 Будаева И.И. Тираж 100экз. Печать опер.,бум.писч. Заказ 73. Издательство ВСГТУ, г.Улан-Удэ ул.Ключевская, 40а г.Улан-Удэ 2002 68 Введение Курс лекций по “Дисциплине специализации” выполнен по разделу “Комплексное использование минерального сырья и отходов промышленности” с учетом использования промышленных отходов в том числе и Забайкалья. Рассмотрены отходы топливно- энергетичсекой, деревообрабатывающей, металлургической, строительной и других отраслей промышленности и использование их в производстве строительных материалов и изделий. Данный курс лекций позволит студентам заочного обучения более глубоко изучить строительные материалы с использованием отходов промышленности и местного минерального сырья. Для более полного усвоения материала предусматри- вается выполнение курсовой работы, перечень тем прилага- ется. Методические указания выполнены в соответствии с требованиями ГОСВО и могут быть рекомендованы к изда- нию. Рецензент доцент кафедры ПСМИ Архинчеева Н.В. 2 67 Комплексное использование минерального сырья и от- Список литературы. ходов промышленности для производства строитель- 1. П.И. Баженов. Комплексное использование минераль- ных материалов. ного сырья при производстве строительных материалов. Лекция 1. Ленинград-Москв, 1983. Введение. 2. К.В. Гладких. Шлаки – не отходы, а ценное сырье. М., Использование отходов горнодобывающей Стройиздат, 1986. промышленности. 3. Ю.Г. Мещариков. Гипсовые попутные промышленные Тенденция постоянного наращивания добычи мине- продукты и их применение в производстве строитель- ральных и топливно-энергетических ресурсов в конечном ных материалов. Ленинград, Стройиздат, 1982. итоге может привести к глобальному рассеянию углеводо- 4. Л.Я. Гольдштейн, Н.П. Штейерт. Использование топ- родного сырья и многих металлов в земной коре. В на- ливных зол и шлаков при производстве цемента. Ле- стоящее время все больше используются запасы с бедным нинград, Стройиздат, 1987. содержанием полезных компонентов, вследствие чего воз- 5. Б.З. Чистяков. Использование отходов промышленно- растают затраты энергии на их добычу и переработку, уве- сти в строительстве, Ленинград, 1987. личивается количество отходов и загрязнение окружаю- 6. В.О. Глуховский. Шлакощелочные бетоны на мелко- щей среды. Современные экосистемы горнодобывающих, зернистых заполнителях. Киев, Вищашкола, 1991. металлургических предприятий и топливно-энергетических 7. Использование отходов, попутных продуктов в произ- комплексов очень опасны для жизни самого человека. Это водстве строительных материалов и изделий. Охрана связано с громадными масштабами выбросов газов и пыли окружающей среды. Научно-технический рефератив- в атмосферу; с формированием опасных стоков, ухудшаю- ный сборник. Вып. 12, М., 1996. щих состояние водных и почвенных ресурсов; с нарушени- 8. Н.Я. Спивак. Легкий бетон. М., Стройиздат, 1990. ем сбалансированного состояния экосистем; с коренным изменением исторически сложившихся ландшафтов с их биоценозами. Для этого необходимо решить следующие задачи: - оценка запасов вторичного сырья, накопленного в результате добычи и переработки, металлургиче- ских руд; - планирование комплексного использования руд- ного и нерудного сырья осваиваемых месторож- дений; - планирование полного использования вскрышных пород и продуктов сжигания каменных и бурых углей; 66 3 - ранжирование сырья по степени вредного воздей- набухания блока. Одной извести для стабилизации ствия на человека. грунтоблоков достаточно ввести около 5% от общего веса В настоящее время ежегодно в России образуется бо- грунтовочной смеси. лее 100 млн. т. золошлаковых отходов от сжигания твердо- Известково-глиняные блоки более прочны, го топлива, свыше 70 млн.т. доменных, конверторных и водостойки и морозостойки, чем грунтоблоки со электроплавильных шлаков, миллионы тонн вскрышных стабилизаторами. Обычный состав смеси по объему: 1 пород предприятий по добыче руд черных и цветных ме- часть извести, 1 часть глины средней пластичности и 4 таллов, химического сырья и топлива, накапливаются хво- части минерального заполнителя. В составы рекомендуется сты обогащения основного полезного ископаемого. Объе- также вводить органические вяжущие (битумы, дегти или мы отходов угледобычи и углеобогащения превышают 2 смолы). млрд.т. в год. В промышленности используются меньше Грунтоцементные блоки это блоки из смеси половины этих отходов, остальная часть складируется в от- естественных глинистых грунтов с небольшим валах, занимая пахотные земли площадью около 1 млрд. га, количеством цемента. Такие блоки прочны, водостойки и что приводит к физическому, химическому загрязнению морозостойки. Лучшими для изготовления окружающей среды, воздействуя на земную кору и меняя грунтоцементных блоков являются смеси, содержащие по ландшафты. Вместе с тем эти отходы представляют собой массе 15-30% глинистых частиц; цемента добавляют 7-12% минеральное сырье, которое может использоваться для из- от массы сухого грунта. Грунтоцементные блоки имеют готовления строительных материалов и изделий различного марки 35, 50 и выше. Со временем их прочность возрастает назначения, заменяет дорогостоящее дефицитное традици- и через 2 года увеличивается в 2 –3 раза. Для уменьшения онное сырье. массы блоков и снижения расхода цемента в грунтовочные В Сибирском регионе накопилось большое количест- смеси можно добавлять утеплители: минеральные до 15%, во отходов, которые можно использовать в качестве мине- органические до 5%. Грунтоблоки можно использовать при рального сырья. В настоящее время определены возможно- строительстве зданий до трех этажей. сти комплексного использования существующих месторо- ждения силикатного, а также вторичного и техногенного сырья Восточной Сибири в производстве строительной ке- рамики, стекломатериалов и пористых заполнителей. При производстве строительных материалов исполь- зуется отходы следующих производств: 1. Отходы угледобывающей промышленности и теп- ловой энергетики (горелые шахтные породы террикоников, отходы угледобывающих фабрик, золы ТЭЦ); 2. Отходы лесной и деревообрабатывающей промыш- ленности (отходы пиления и обработки древесины); 4 65 дневном возрасте прочность 35-45 кгс/см2, из грунтов 3. Отходы биохимической промышленности (гидро- Мытищинского карьера при введении 80% опилок, блоки лизный лигнин); имели прочность 40-70 кгс/см2. Прочность грунтоблоков 4. Отходы переработки рудных пород (отходы флота- зависит от влажности грунта, от наличия глинистых и ции (обогащения руд)); вылеватых частиц, степени уплотнения, количества воды и 5. Отходы химической промышленности (отходы за- вида заполнителя. Карьерная влажность обычно составляет водов синтетических моющих средств, отходы нефтепере- 12-18%, если влажность меньше 12%, то грунт плохо гонного завода, отходы производства целлюлозы, отходы формуется, если больше 18%, то грунт прилипает к мыловаренных заводов); инструменту. Грунтоблоки выпускают размером 6. Отходы промышленности строительных материалов 40х19,5х14см. Кладка осуществляется на густом глиняном (отходы керамической промышленности, отходы производ- растворе. Из грунтоблоков со средней плотностью 1300- ства цемента, отходы производства асбестоцементных ма- 1600 кг/м3 изготавливают стены толщиной 45 см, а с териалов, отходы дробильно-сортировочных предприятий, плотностью 1600-2000кг/м3 толщиной 55см. Стены из отходы производства силикатных изделий, стекольный грунтоблоков оштукатуриваются теплыми глиняными бой); растворами с содержанием утепляющих органических 7. Отходы металлургической промышленности (отхо- заполнителей. ды сталеплавильной промышленности); Грунтоблоки с утеплителями. К ним относят 8. Отходы городского хозяйства (отходы автомобиль- саманные блоки, получаемые из грунтовой массы с ного транспорта, отходы от ремонта дорог); добавлением к ней резаной соломы, древесных опилок, 9.Отходы фарфорового производства; торфяной крошки, которые являются утепляющими 10.Отходы полимерных материалов (разного назначе- добавками, снижающими плотность и делающими их более ния); стойкими. Из грунтов Мытищинского карьера Московской 11.Отходы текстильных материалов (разного назначе- области, содержащих 16-18% глинистых частиц при ния); введении древесных опилок более 50% получались 12.Прочие виды отходов. грунтоблоки с прочностью на сжатие 70кгс/см2. Влажность органических заполнителей должна быть 30%, а Эффективность использования отходов грунтовочной смеси 15-20%. В современных условиях особое значение для Грунтоблоки со стабилизаторами эффективного развития народного хозяйства имеет Для предохранения глиносырцовых и саманных проблема более широкого вовлечения в производство блоков от потери прочности при увлажнении в состав образующихся отходов, что позволяет расширить шихты вводятся стабилизаторы (чаще всего органические сырьевую базу и снизить загрязнение окружающей среды. вяжущие материалы или известь). Стабилизаторы Достаточно эффективно и в значительных объемах препятствуют проникновению воды в поры грунта, из образующиеся отходы могут потреблять такие отрасли, как которого изготовлен блок и предотвращают возможность строительство и промышленность строительных 64 5 материалов. ченный путем формования из смеси глины, суглинков с ор- Использование отходов тепловых электростанций ганическими наполнителями (солома, торф, костра) и вы- (топливных зол и шлаков) следует считать частью общей сушенные до влажности 4-6%. Кирпич-сырец – проблемы сохранения и очистки от загрязнения окружаю- искусственный материал из глины, суглинков с отощите- щей среды. лями и высушенные до влажности 4-6%. Загрязнение окружающей среды- воздуха, воды и Наиболее пригодными являются глины, в которых почвы - одна из важнейших проблем современности, ка- преобладают зерна величиной от 0,01 до 0,02 мм и содер- сающаяся практически всех стран, и в особенности высо- жащих Al2O3 9-12%. Для получения доброкачественой коразвитых. продукции необходимо содержание Al 2O3 не менее 9% и Классификация промышленных отходов не более 14%. Если содержание окиси алюминия меньше 1. Химическая (в основу положен химический 9% (тощий суглинок), то кирпич и саман не будут обладать принцип). необходимой прочностью, если окиси алюминия - кремнистые отходы (свободного SiO2>50%) содержится 14-25%, то глины жирные и требуют - силикатные (Са, MgS) отощителей, так как имеют достаточную степень - карбонатные (CaCo3, MgCo3) пластичности. Наиболее подходящими являются - сульфатные (CaSo4 2H2O) среднепластичные. Малопластиные глины дают - хлорсодержащие (MgCl2) небольшую прочность и требуют повышения - фторсодержащие пластичности, которую можно повысить следующими - смешанные минеральные способами: вылеживанием замоченной глины в течение - органические длительного времени, вымораживанием, добавлением - водоорганоминеральные высокопластичной глины и использованием - органоминеральные пластификаторов. Технология получения: заготовка глины 2. Отраслевая и наполнителей → замачивание глины → шихтовка с Химическая наполнителем → проминка глины→формование сырца → Деревообрабатывающая сушка (естественная). При строительстве во влажных Металлургическая местах саман после сушки рекомендуется окуривать-сушка Энергетическая дымом. Строительный комплекс Грунтоблочные стены появились в 30-х годах 20 века. Нефтеперерабатывающая Для производства грунтоблоков пригодны глины, 3. По коэффициенту насыщения суглинки, лессы, супеси, чернозем при естественной Кнас=(CaO+MgO)/(SiO2+Al2O3+Fe2O3) влажности. Для оценки пригодности определяется Коэффициент насыщения прогнозирует вяжущие свойства, связность, т.е. берется проба из свежевырытого грунта с если Кн=0 – отходы являются ультракислыми, Кн=0- 0,8 – глубины 25-30 см. Например, сглинки (г.Ступино) в кислые, Кн=0,8- 1,2 – нейтральные; Кн=1,2 -3 – основные, которые вводилось 25% по объему опилок имели в 7-ми 6 63 образуется до 1% от общего количества производимого при Кн>3 ультраосновные. цемента. Возрат всей пыли в производство цемента во Ультракислые и кислые отходы вяжущими свойст- многих случаях нежелательно т.к. в клинкере содержатся вами не обладают, к ним относятся отходы с преобладани- щелочи, а их содержание ограничивается ГОСТом.поэтому ем SiO2, нейтральные обладают скрытыми вяжущими свой- проблема самоутилизации цементной пыли нерешена. В ствами к ним относятся доменные шлаки, вяжущие свойст- зависимости от содержания щелочей в цементной пыли она ва проявляются в автоклавах; к основным относится нефе- делится на 3 вида: линовый шлам, к ультраосновным – известь, карбидный ил. Малощелочная – 1,08–3,05%; Техногенное сырье часто бывает сильно обводнено Среднещелочная – 3,59–10,35%; (например, золы гидроудаления, фосфогипсовые шламы, Высокощелочная – 26,72 –35,10%. нефелиновые шламы содержат до 60% воды), что требует Удельнаяповерхность пыли 7000-10000см2/г. кроме дополнительной обработки перед их непосредственным того цементная пыль содержит от 0,2 до 22% свободного использованием. СаО, окиси серы от 9,64 до 24,5%, F2O от 0,82 до 8,8%Ю, Что необходимо сделать, чтобы широко использо- которые придают отрицательные свойства при возврате в вать отходы производства: печь в процессе обжига. Цементная пыль мспользуется - дать оценку возможности промышленного использования; также при приготовлении шлакощелочных вяжущих, как - должна быть проведена детальная разведка или исследо- наполнительв асфальтобетоны, при изготовлении местных вание промышленных отвалов; малоклинкерных вяжущих. - должно быть произведено усреднение состава; Использование отходов ультраосновных пород. - необходимо провести специальные технологические раз- Известно, что в большинстве случаев в качестве работки с целью освоения этих отвалов. заполнителя при изготовлении панелей и других Рациональное использование природных богатств – строительных конструкций используется щебень из одна из важнейших задач современной науки и техники. гранитных пород. В условиях Баженовского Хотя общие запасы минерального сырья неисчерпаемы, все месторождения хризотил-асбеста при разработке открытым же месторождения с высоким содержанием полезного ис- способом образуется большое количество каменных копаемого в доступных к настоящему времени глубинах отходов из вмещающих пород – перидотитов и земной коры истощаются, и будут встречаться все реже. серпентинитов. С целью реализации отходов разработана Производства, потребляющие “бедное” (т.е. содержащее технология производства щебня. Оказалось что такой менее 10% полезного ископаемого) сырье или требующие щебень, будучи использован в строительных конструкциях сложного технологического процесса и многокомпонент- для жилых зданий, создает комфортные условия вследствие ной смеси, характерны наличием большого количества по- незначительного содержания в щебне естественных бочных продуктов-“отходов производства”. Даже при пе- радионуклидов. реработке Безобжиговые стеновые материалы. Саман-это искусственный стеновой материал, полу- 62 7 Таблица 1. Технологическая нитка должна включать: Классификация, техногенного сырья по агрегатному -разрушение крупногабаритных конструкций; состоянию в момент выделения их из основного техноло- -извлечение арматуры; гического процесса. -дробление бетона; Основные Попутные Агре- Характеристика -фракционирование дробленого заполнителя; продукты продукты гатное -проведение активации. Класс состоя- На сегодня разработаны установки, позволяющие ние разрушать изделия с длиной до 24 м, шириной 3,5 м и вы- сотой до 0,6 м; УПН-7(12)-3-0,6, УПН 24-3,5-0,6. А Продук- а) карьер- Твер- Крупный камень, Технология процесса. На колосниковый стан с помо- ты, не ут- ные ос- дое щебень, пески, по- щью подъемного механизма укладываются некондицион- ратившие татки при рошки ные железобетонные или другие бетонные отходы, на изде- природ- добыче лие опускается рычажный пресс. Дробленый бетон по мере ных горных разрушения через колосниковую решетку с диаметром 250 свойств пород Растворы, суспен- мм поступает по ленточному транспортеру на дальнейшую б) остатки Жид- зии, шламы, грязи. переработку. Арматурный каркас, очищенный от бетона на после кое Крупный камень, специальных площадках передается для сбыта в металло- обогаще- щебень, пески, по- лом. Попавшие куски арматуры через колосниковую ре- ния на рошки шетку извлекаются навесным электромагнитом ПМ-15. полезное Твер- Для вторичного дробления бетона используется ще- ископае- дые ковая дробилка СМД-109, СМД-108. Выход фракций, со- мое держащих куски до 70 мм, используется в дорожных по- Б Искусст- а) Обра- Газы Газы, смесь газов, крытиях. Дальнейшее дробление производится в конусной венные зовав- водяной пар, паро- дробилке СМД-27Б с выделением фракций до 5, 5-20, 20-40 продукты, шиеся газовая смесь мм. В таком виде полученные зерна применять нецелесо- получен- при обра- образно, необходима термомеханическая активация с це- ные в ре- ботке ни- лью восстановления гидравлической активности. Если зультате же темпе- иметь еще помольную установку после активации, то мож- глубоких ратуры но полностью заменить цемент в строительных растворах, а физико- спекания в бетонах расход цемента снижается до 40-60%. химиче- Жид- Растворы, суспен- Использование пыли цементных заводов ских про- кие зии, шламы, грязи При производстве портландцемента образуется цессов. цементная пыль, которую можно использовать при производстве строительных материалов. Цементной пыли 8 61 стоит в прессовании смеси пластмассовых отходов и песка, Продолжение таблицы 1. взятых в соответствии 1:1. Песок просеивают, нагревают до Твер- Крупный камень, 500оС, добавляют к смеси отходы полиэтилена и полисти- дые щебень, пески-ос- рола, смешивают при температуре 150оС в течение 25 мин, татки после выще- затем полученную массу прессуют. лачивания, сепара- По аналогичной технологии получают материалы из ции и отмучивания. пластмассовых отходов в смеси с мелом, стекловолокном, Порошки – осажде- асбестом и другими минеральными наполнителями. Все нная пыль, проду- компоненты в течение 2 часов подсушивают при 120оС, за- кты самопроизво- тем их пластифицируют в смесителе при 250-300оС в тече- льного рассыпания ние 15 мин, выгружают при 180оС в форму и прессуют. По- крупных кусков. лученные композиции обладают хорошими прочностными б) образо- Газы Газы, смесь газов, показателями и высокой стойкостью и истиранию, что по- вавшися водяной пар зволяет использовать их при изготовлении плит для полов. при темпе- Жид- Растворы, смесь Для улучшения внешнего вида изделий при смешивании ратурах, кие газов, водяной пар, добавляют также пигменты, как оксиды железа и хрома вызвавших парогазовая смесь желтый крон, диоксид титана. полное или Твер- Крупный камень, Также способом получения строительных материалов частичное дые щебень, пески, с применением отходов является расплавление полимеров с расплавле- порошки, последующим смешиванием их с цементом, разливкой в ние измельченная формы и охлаждением. Эти изделия обладают высокой осажденная пыль плотностью и стойкостью против горения. в) образо- Жид- Растворы, шламы, Использование бетонолома вавшиеся кие грязи, суспензии Источниками получения бетонолома являются: раз- осаждени- Твер- Крупный камень, борка старых сборных бетонных и железобетонных конст- ем из рас- дые щебень, порошки, рукций; брак на производстве; стихийные бедствия (земле- творов измельченная трясения, ураганы и т.д. осажденная пыль Одним из важнейших резервов материальных и энер- гетических ресурсов в области строительной индустрии яв- ляется вовлечение отходов от некондиционного бетона и железобетона с целью обеспечения принципа безотходного производства. Для этого требуется разработать высокоме- ханизированную линию по переработке некондиционного бетона и железобетона. 60 9 старение. Продолжение таблицы 1 Изменяя состав битумно-резинового вяжущего, вид В Продук- - Газы Газы, смесь наполнителей и способ обработки можно изготавливать в. ты, обра- газов, виде рулонного материала, кровельных плиток или гидро- зовав- водяной пар изоляционной мастики. шиеся в Жидкие Растворы, Рулонный изол – безосновный материал, обладающий результа- эмульсии, высокой водо- и гнилостойкостью, а также деформативной те дли- суспензии способностью. Из листа изола вырубают кровельные плит- тельного ки. хранения Близким к изолу по свойствам является бризол. Его в отвалах изготавливают вальцеванием и последующим каландриро- Твердые Щебень, ванием смеси нефтяного битума дробленой резиновой пески, крошки асбестового волокна и пластификатора. порошки Бризол подразделяют на две марки: средней (бр-с) и богатых руд большие объемы производств приводят к повышенной прочности (бр-п). Первый применяют при ра- образованию отвалов, что порождает проблему использо- бочей температуре 5-30оС, а второй 20-25оС. вания отходов (доменные шлаки, золы и шлаки твердого Битумно-резиновые материалы выпускают также в топлива, фосфогипс и т.д.) виде пористых жгутов и полос (пороизол) для герметиза- Комплексное использование местных вулканических ции стыков конструкций, а также как приклеивающие и пород, отходов горно-обогатительных фабрик и вскрыш- изоляционные мастики. Изол и бризол применяют для гид- ных пород роизоляции подвальных этажей зданий, подземных трубо- Распространение наиболее важных минералов в зем- проводов и других сооружений, бассейнов, антикоррозион- ной коре по Белянкину приводится (в %) ниже: ной защиты и устройства кровли. Полевые шпаты 55 Перспективным способом утилизации отходов полио- Орто- и метасиликаты 15 лефинов, как и других термопластов, является их повторная Кварц 12 переработка, отходы предварительно сортируют от ино- Слюда 3 родных включений, а затем подвергают измельчению, аг- Магнетит и др. окислы железа 3 ломерации и грануляции. Из гранулята получают различ- Глины 1,5 ные изделия, в т. ч. строительного назначения. Кальцит 1,5 Вторичное сырьё целесообразно вводить в полимер- Доломит 1,0 ные композиции в количестве до 40-50% первичного вме- Апатит и др. фосфаты 0,7 сте с пластификаторами, наполнителями и стабилизатора- Пирит и др. сульфиды 0,3 ми. Один из методов получения строительных плит со- 10 59

Помимо охарактеризованных выше, существует еще множество видов минерального строительного сырья: стекольные пески, керамические огнеупорные и тугоплавкие глины, гипс, различные полевошпатовые материалы, асбест, разнообразные горные породы для получения минеральной ваты и многие другие.

Разведанные запасы и добыча этих полезных ископаемых в целом по стране велики, но размещены очень неравномерно, что приводит к необходимости транспортировки сырья на большие расстояния, затрудняет ритмичную работу предприятий, удорожает стоимость конечной продукции. Кроме того, качество природного сырья не всегда отвечает требованиям промышленности.

Пути решения проблемы многочисленны. С одной стороны - это поиски и разведка новых месторождений, для чего в ряде районов имеются реальные перспективы; с другой - это освоение новых технологий обогащения, позволяющих расширить круг используемых видов природного сырья и получать высококачественные кварцевые, полевошпатовые и другие концентраты. И, наконец, третий путь - это использование техногенного сырья, утилизация которого открывает возможности усовершенствования территориального размещения ресурсов, повышения качества выпускаемых изделий, не говоря уже о том, что оно позволяет экономить природное сырье и улучшать экологическую обстановку в промышленных районах.

Одной из областей, имеющих широкие возможности для утилизации минерального техногенного сырья, является строительная керамика. В этой отрасли могут применяться золошлаковые отходы тепловых электростанций, отходы углеобогащения, хвосты флотации руд цветных металлов, отсевы камнедробления и др.

Возможность использования шлаков ТЭС и золы-уноса при производстве плиток для внутренней облицовки стен и фасадных плиток изучена в НИИСМИ (г. Киев). Составы масс на основе шлаков Приднепровской ГРЭС и технологические параметры производства апробированы в условиях Днепропетровского заводоуправления строительных материалов. В Монастырисском заводоуправлении строительных материалов в Тернопольской области из керамической массы на основе шлаков Бурштынской ГРЭС получены плитки высшей категории качества.

Для производства дренажных труб пригодны молотые отходы добычи и гравитационного обогащения, а также хвосты флотации углей. Трубы, полученные на экспериментально-исследовательском заводе НИИСМИ из отходов флотации углей с содержанием угля 20 % и более, имеют меньшую массу и более высокое водопоглощение черепка, чем изделия, изготовленные из глин. Это может позволить выпуск труб большей длины, что повысит производительность заводов и ускорит сооружение дренирующих систем. Несмотря на экономическую целесообразность использования отходов углеобогащения в качестве добавки в шихту для производства дренажных труб, широкого применения в этой отрасли они пока еще не нашли. На Репнинском заводе стройматериалов в Черниговской области велась отработка технологии производства с добавкой 10-15 % отходов флотации. В ближайшей перспективе намечено использовать отходы углеобогащения для получения дренажных труб в Канско-Ачинском и Экибастузском районах.


Довольно широко освоено промышленное получение керамических кварц-полевошпатовых концентратов из отходов обогащения редкометальных пегматитов на Урале, в Сибири, Казахстане. Высококачественное керамическое кварц-полевошпатовое сырье можно получать по уже разработанным технологиям из каолинит-полевошпато-кварцевых песков. Могут быть утилизированы при составлении керамических масс хвосты обогащения ильменитовых, вольфрам-молибденовых руд, каолина. Применяются в производстве керамических плиток в качестве интенсификаторов спекания нефелин-эгирин-полевошпатовые отходы обогащения редкоземельных руд. Они снижают температуру обжига, уменьшают водопоглощение, увеличивают механическую прочность. Исследования, проведенные Харьковским политехническим институтом, показали, что нефелин-эгирин-полевошпатовые отходы можно использовать также в производстве фасадных плиток и плиток для пола. В настоящее время такие керамические плитки выпускает Мукачевский завод в Закарпатье. Введение в состав масс комбинированных интенсификаторов спекания позволяет получать изделия специального назначения с высокими физико-механическими свойствами.

Перспективным керамическим сырьем, пригодным в качестве плавня, являются некоторые отходы камнедробления. Экспериментальные исследования отсевов переработки сиенитов Кальчикской дробильно-сортировочной фабрики в Донецкой области показали, что их шихтование с гидрослюдисто-каолинитовой глиной обеспечивает интенсификацию спекания. В 1984 г. на Славянском керамическом комбинате выпущено 60 тыс. м 3 керамических плиток с использованием отсева Кальчикской дробильно-сортировочной фабрики.

Широкое применение может получить техногенное сырье и в стекольной промышленности, где оно способно полностью заменять природный кварцевый песок. В этом отношении наиболее перспективны отходы обогащения некоторых полезных ископаемых - ракушняковых фосфоритов, россыпных руд цветных металлов, остаточных каолинов, каолинит-кварцевых песков. Разработанные технологии дообогащения этих отходов позволяют получать не только тарное, но и техническое, а также листовое стекло. Очень ценно то, что перечисленные виды стекольного техногенного сырья имеются в тех районах, где природного сырья недостаточно, а потребности в нем велики,- в Сибири, на Дальнем Востоке, в Средней Азии, в Ленинградской области. Тем не менее, они пока практически не используются.

Некоторые хвосты флотации руд цветных металлов могут находить применение в производстве тарного стекла. Исследования, проведенные в Грузии, показали, что темно-зеленое бутылочное стекло, полученное из отходов обогащения полиметаллических руд Квайсинского рудоуправления, не уступает по качественным показателям стеклу из привозных песков Таманского месторождения в Краснодарском крае. Установлена также пригодность для получения темно-зеленой стеклотары хвостов обогащения медноколчеданных руд Маднеульского ГОКа.

На основе металлургических шлаков и золошлаковых отходов тепловых электростанций получают ценный стеклокристаллический материал - шлако- и золоситаллы, характеризующиеся высокой износостойкостью, огнеупорностью, устойчивостью к действию кислот и щелочей, практически нулевым водопоглощением, декоративностью.

Шлакоситаллы получают из охлажденных доменных кислых и основных шлаков, которые вводятся в шихту в количестве 40-70 %, Технология применения огненно-жидких доменных шлаков пока не отработана.

Золоситаллы - ситаллы на основе золы-уноса тоже пока в СНГ не выпускаются, хотя имеется разработанная технология. Полученные на экспериментальном заводе Кировского филиала Росоргтехстрома золоситалловые плитки характеризуются хорошим качеством и невысокой себестоимостью.

Для производства ситаллов могут быть утилизированы также отходы обогащения титановых руд, хвосты мокрой магнитной сепарации.

Установлено, что отходы мокрой магнитной сепарации железных руд пригодны для получения марблитового стекла, пеностекла. Технология производства марблита с использованием отходов мокрой магнитной сепарации железистых кварцитов КМА апробирована на Константиновском заводе "Автостекло". На Гомельском стекольном заводе им. М.В. Ломоносова выпущена опытная партия пеностекла с использованием тех же отходов. Полученное пеностекло обладает не только звуко- и теплоизоляционными свойствами, но и высокой декоративностью.

В МХТИ им. Д.И. Менделеева на основе доменных шлаков разработан новый декоративный материал сигран - синтетический гранит, по фактуре напоминающий природный. Сигран можно изготавливать в виде непрерывной ленты и прессованных плит. Вводя красители, можно получать материал различной окраски. Плотность сиграна 2600-2800 кг/м 3 , прочность на сжатие - 500-550 МПа. Согласно проекту, выполненному для Калужского завода, технологическая линия по производству сиграна обеспечит выпуск 100 тыс. м 3 плиток в год.

Минеральные отходы могут эффективно использоваться не только в производстве керамических и стекольных изделий, но и многих других, строительных материалов.

В СНГ в больших количествах получают минеральную вату из шлакового щебня. При этом требуется значительно меньше сырья, топлива и электроэнергии, чем при ее производстве из горных пород. Для этих целей наиболее пригодны доменные кислые шлаки, богатые кремнеземом и глиноземом и не содержащие металл. Основные шлаки следует подкислять введением кислых присадок, повышающих текучесть. Применяются также электротермофосфорные шлаки. Требования к качеству шлакового щебня для производства минеральной ваты регламентируются ГОСТом 18866-81.

Минеральную вату можно получать и на основе отходов сжигания углей на тепловых электростанциях. Соответствующая технология разработана в НИИстромпроекте (г. Алма-Ата) .

Огненно-жидкие шлаки являются ценным сырьем для получения литых изделий - высокопрочных, износостойких и химически инертных материалов для облицовки технологических аппаратов и узлов. Производство литых изделий из шлаков значительно экономичнее, чем из природного сырья (базальтов, диабазов и др.). В СНГ оно пока развито слабо. Металлургические шлаки применяются в расплаве с горными породами для футеровки внутреннего слоя трубопроводов. Используются они также при изготовлении литых крупноразмерных плит. В небольших масштабах организовано промышленное производство шлаковой брусчатки на Урале на предприятиях Нижнего Тагила и Чусового.

Изучение возможности использования зол ТЭЦ для получения каменных строительных материалов проводится в ГИСе. Разработана технология применения измельченных шлаков ТЭЦ-22 (г. Москва) для получения наполнителя кислотостойких замазок.

Самые оригинальные и, пожалуй, самые ценные компоненты золы - алюмосиликатные полые микросферы (АСПМ). Представляют собой полые, почти идеальной формы силикатные шарики с гладкой поверхностью, диаметром от 10 до нескольких сотен микрометров, в среднем около 100 мкм. Толщина стенок от 2 до 10 мкм, температура плавления 1400-1500°С, плотность 580- 690 кг/м 3 .

Образование микросфер происходит следующим образом. При высоких температурах силикатный минеральный материал углей плавится и в газовом потоке продуктов сгорания дробится на мельчайшие капли. Газовые включения в минеральных частицах при нагреве расширяются и раздувают отдельные капли расплава. Те капли, в которых внутреннее давление газа уравновешивается силами поверхностного натяжения, образуют полые шарики. В остальных происходит разрыв капель (внутреннее давление больше сил поверхностного натяжения), либо они остаются просто силикатными шариками, сплошными или пористыми (поверхностное натяжение больше внутреннего давления). Содержание АСПМ в золошлаковых материалах составляет обычно десятые доли процента, тем не менее, их «производство» на крупных теплоэлектростанциях России может достигать нескольких тысяч тонн в год.

Ценность АСПМ определяется тем, что они - идеальные наполнители. Для придания многим изделиям из пластмасс и керамики необходимых свойств, например для снижения плотности (веса) изделий, повышения тепло-, электро- и звукоизоляционных характеристик, в их состав вводятся изготавливаемые промышленными способами стеклянные микросферы. Это довольно сложный процесс. Так почему бы не использовать для этих целей уже готовые микросферы - АСПМ из золы угольных теплоэлектростанций? По приблизительным подсчетам, стоимость таких микросфер в десять и более раз ниже, чем микросфер, получаемых промышленными методами.

Полимерные материалы с микросферами (так называемые сферопластики) используются при изготовлении разных плавсредств (лодок, сигнальных буёв, блоков плавучести, спасательных жилетов и др.), мебели, радиопрозрачных теплоизоляционных экранов для радиотехнической аппаратуры, изоляции теплотрасс, дорожно-разметочных термопластиков и пр. АСПМ успешно применяют в составе цементных растворов при изготовлении «лёгких» бетонов и теплоизоляционных жаростойких бетонов. Имеются патенты на использование АСПМ при бурении геологоразведочных и эксплуатационных скважин. Это далеко не полный перечень возможностей применения АСПМ.

Важно отметить, что в отличие от других компонентов полые микросферы сравнительно просто выделяются из золы. Благодаря низкой плотности они всплывают на поверхность воды гидротехнических сооружений (прудов-отстойников, каналов оборотной воды) и могут быть собраны любыми, в том числе самыми простыми, средствами.

АСПМ пользуются большим спросом за рубежом. Однако готовые приобретать их фирмы требуют высокой степени очистки материала от посторонних примесей. Кроме того, во многих технологиях используются только микросферы определённого размера (диаметра). Всё это требует соответствующей производственной базы. Высокая стоимость подготовленных подобным образом АСПМ на мировых рынках минерального сырья гарантирует экономическую эффективность предприятий по их «производству».

Большие перспективы открывает использование продуктов камнеобработки в производстве отделочных материалов - клеевых плит, мозаичных плиток на цементном вяжущем и крошке. Для этих целей пригодны отходы обработки большинства облицовочных и пильных камней, многих рудоносных пегматитов.

В СНГ не нашел пока еще применения шлам камнеобработки -порошкообразный продукт резания, составляющий 25-33 % от массы поступающего на обработку камня. Однако установлено, что и этот шлам можно использовать, частично заменяя цемент в производстве прессованных облицовочных плит. Результаты промышленных испытаний показали, что при замене шламом до 50 % цемента получаются плиты более высокого качества, чем на одном цементе.

В заключение следует сказать, что возможности утилизации отходов обогащения полезных ископаемых, металлургических и электротермофосфорных шлаков, золошлаковых отходов тепловых электростанций значительно шире, чем было показано выше. Так, из отходов переработки слюдяных пегматитов можно получать мелкоразмерную слюду, из хвостов обогащения вермикулита - оливиновый концентрат, из отходов флотации сульфидно-никелевых руд - тальковый концентрат и т.д. Металлургические шлаки можно применять в стекольном производстве. Многие отходы переработки карбонатных пород пригодны для получения извести. Большие возможности использования в промышленности строительных материалов имеют отходы производства фосфорной кислоты - фосфогипсы, из которых можно получать гипсовые вяжущие, сульфатизированные цементы, известь и др. Отходы флотации серных медно-колчеданных, марганцевых руд, золошлаковые отходы тепловых электростанций являются хорошими наполнителями асфальтобетонов.

Утилизация техногенного сырья почти всегда очень эффективна. Однако при этом следует учитывать, что она требует тщательного изучения качества отходов, его соответствия требованиям государственных, отраслевых стандартов и технических условий. Требуются новые технологии дообогащения отходов и производства изделий из них. Для реализации проектов использования отходов необходимы немалые капитальные затраты.

Рассматриваемые вопросы

1. Основные виды минерального сырья для производства строительных материалов

2. Магматические, осадочные м метаморфические горные породы

3. Техногенные вторичные ресурсы

Основным природным сырьем для производства строительных материалов являются горные породы . Их используют для изготовления керамики, стекла, металла, неорганических вяжущих веществ. Сотни кубометров песка, гравия и щебня применяют ежегодно в качестве заполнителей для бетонов и растворов.

Другим важным сырьевым источником являются техногенные вторичные ресурсы (отходы промышленности). Пока они используются недостаточно. Но по мере истощения природных ресурсов, повышения требований к охране окружающей среды и разработки новых эффективных технологий техногенное сырье будет применяться значительно шире.

Горные породы как сырьевая база
производства строительных материалов

Горные породы – это значительные по объему скопления минералов в земной коре, образовавшиеся в результате физико-химических процессов. Минералы – это вещества, обладающие определенным химическим составом, однородным строением и характерными физико-механическими свойствами. По условиям образования горные породы разделяют на три основные группы:

Магматические (первичные) горные породы образовались при охлаждении и отвердевании магмы.

Осадочные (вторичные) горные породы образовались в результате естественного процесса разрушения первичных и других пород под влиянием воздействия внешней среды.

Метаморфические (видоизмененные) горные породы образовались в результате последующего изменения первичных и вторичных пород.

Магматические горные породы

Глубинные – это породы, образовавшиеся при застывании магмы на разной глубине в земной коре. Излившиеся породы образовались при вулканической деятельности, излиянии магмы и ее затвердении на поверхности.

Главные породообразующие минералы – кварц (и его разновидности), полевые шпаты, железисто-магнезиальные силикаты, алюмосиликаты. Все эти минералы отличаются друг от друга по свойствам, поэтому преобладание в породе тех или иных минералов меняет ее строительные свойства: прочность, стойкость, вязкость и способность к обработке (к полировке, шлифовке и т.п.).

Кварц , состоящий из кремнезема (диоксида кремния SiО 2) в кристаллической форме, является одним из самых прочных и стойких минералов. Он обладает: исключительно высокой прочностью (при сжатии до 2000 МПа); высокой твердостью, уступающей только твердости топаза, корунда и алмаза; высокой химической стойкостью при обычной температуре; высокой огнеупорностью (плавится при температуре 1700°С). Цвет кварца чаще всего молочно-белый, серый. Благодаря высокой прочности и химической стойкости кварц остается почти неизменным при выветривании магматических пород, в состав которых он входит. Полевые шпаты – это самые распространенные минералы в магматических породах (до 2/3 от общей массы породы). Они представляют собой, так же как и кварц, светлые составные части пород (белые, розоватые, красные и т.п.). Главными разновидностями полевых шпатов являются ортоклаз и плагиоклазы. По сравнению с кварцем полевые шпаты обладают значительно меньшими прочностью (120-170 МПа на сжатие) и стойкостью, поэтому они реже встречаются в осадочных породах (главным образом, в виде полевошпатовых песков). Результатом выветривания является глинистый минерал – каолинит.

В группе железисто-магнезиальных силикатов наиболее распространены оливин, пироксены (например, авгит), амфиболы (роговая обманка). Среди магнезиальных силикатов встречаются вторичные минералы, чаще всего замещающие оливин, – серпентин, хризотил-асбест.

Все вышеперечисленные минералы характеризуются высокой прочностью и ударной вязкостью, а также повышенной плотностью.

Глубинные (интрузивные) горные породы. При медленном остывании магмы в глубинных условиях возникают полнокристаллические структуры. Следствием этого является ряд общих свойств глубинных горных пород: весьма малая пористость, большая плотность и высокая прочность.. Средние показатели важнейших строительных свойств таких пород: прочность при сжатии 100–300 МПа; плотность 2600–3000 кг/м 3 ; водопоглощение меньше 1 % по объему; теплопроводность около 3 Вт/(м×°С).

Граниты обладают благоприятным для строительного камня минеральным составом, отличающимся высоким содержанием кварца (25–30 %), натриево-калиевых шпатов (35–40 %) и плагиоклаза (20–25 %), обычно небольшим количеством слюды (5-10 %) и отсутствием сульфидов. Граниты имеют высокую механическую прочность при сжатии – 120–250 МПа (иногда до 300 МПа). Сопротивление растяжению, как у всех каменных материалов, относительно невысокое и составляет лишь около 1/30–1/40 от сопротивления сжатию.

Одним из важнейших свойств гранитов является малая пористость, не превышающая 1,5 %, что обусловливает водопоглощение около 0,5 % (по объему). Поэтому морозостойкость их высокая. Огнестойкость гранита недостаточна, так как он растрескивается при температурах выше 600 °С вследствие полиморфных превращений кварца. Гранит, так же, как и большинство других плотных магматических пород, обладает высоким сопротивлением истиранию.

Из всех изверженных пород граниты наиболее широко используют в строительстве, так как они являются самой распространенной из глубинных магматических пород. Остальные глубинные породы (сиениты, диориты, габбро и др.) встречаются и применяются значительно реже.

Излившиеся (эффузивные) горные породы. Магматические породы, образовавшиеся при кристаллизации магмы на небольших глубинах и занимающие по условиям залегания и структуре промежуточное положение между глубинными и излившимися породами, имеют полнокристаллические неравномернозернистые и неполнокристаллические структуры.

Среди неравномернозернистых структур выделяют порфировидные и порфировые структурыКварцевые порфиры по своему минеральному составу близки к гранитам. Их прочность, пористость, водопоглощение сходны с показателями этих свойств, присущими гранитам. Но порфиры более хрупки и менее стойки вследствие наличия крупных вкраплений.

Горные породы, образовавшиеся в результате излияния магмы, ее охлаждения и застывания на поверхности земли, состоят, как правило, из отдельных кристаллов, вкрапленных в основную мелкокристаллическую, скрытокристаллическую и даже стекловатую массу. Излившиеся породы в результате неравномерного распределения минеральных компонентов сравнительно легко разрушаются при выветривании. К плотным излившимся породам относят андезиты, базальты, диабазы, трахиты, липариты.

Андезиты – излившиеся аналоги диоритов – породы серого или желтовато-серого цвета. Структура может быть неполнокристаллическая или стекловатая. Плотность андезитов 2700-3100 кг/м 3 , предел прочности при сжатии 140-250 МПа. Андезиты применяют для получения кислотостойкого бетона.

Базальты применяют главным образом в качестве бутового камня и щебня для бетонов, в дорожном строительстве (для мощения улиц); особо плотные породы используют в гидротехническом строительстве. Базальты являются исходным сырьем для литых каменных изделий, используются для получения минеральных волокон в производстве теплоизоляционных материалов.

К пористым излившимся породам относят пемзу, вулканические туфы и пеплы, туфолавы. Пемза представляет собой пористое вулканическое стекло, образовавшееся в результате выделения газов при быстром застывании кислых и средних лав. Пористость ее достигает 60 %; стенки между порами сложены стеклом. Твердость пемзы около 6, истинная плотность 2–2,5 г/см 3 , плотность 0,3–0,9 г/см 3 . Большая пористость пемзы обусловливает хорошие теплоизоляционные свойства, а замкнутость большинства пор – достаточную морозостойкость. Пемза –ценный заполнитель в легких бетонах (пемзобетоне). Наличие в пемзе активного кремнезема позволяет использовать ее в виде гидравлической добавки к цементам и извести Вулканический пепел – наиболее мелкие частицы лавы, обломки отдельных минералов, выброшенные при извержении вулкана. Размеры частичек пепла колеблются от 0,1 до 2 мм. Вулканический пепел является активной минеральной добавкой.

Туф и туфолавы используют в виде пиленого камня для кладки стен жилых зданий, устройства перегородок и огнестойких перекрытий. Применяются туфы и в виде щебня для легких бетонов.

Осадочные горные породы

Большинство осадочных пород имеет более пористое строение, чем плотные магматические породы, а следовательно, и меньшую прочность. Некоторые их них сравнительно легко растворяются (например, гипс) или распадаются в воде на мельчайшие частицы (например, глины).

Главные породообразующие минералы. Наиболее распространенные минералы группы кремнезема – кварц, опал, халцедон. В осадочных породах присутствует кварц магматического происхождения и кварц осадочный . Осадочный кварц отлагается непосредственно из растворов, а также образуется в результате перекристаллизации опала и халцедона. Опал – аморфный кремнезем. Опал чаще всего бесцветен или молочно-белый, но в зависимости от примесей может быть желтым, голубым или черным. Плотность 1,9-2,5 г/см 3 , максимальная твердость 5-6, хрупок. Опал, халцедон, некоторые вулканические породы при применении в составе соответствующих горных пород в качестве заполнителей бетона могут вступать в реакцию со щелочами цемента, вызывая разрушение бетона. Минералы группы карбонатов имеют широкое распространение в осадочных породах. Наиболее важную роль в них играют кальцит, доломит и магнезит.

Кальцит (СаСО 3) – бесцветный или белый, при наличии механических примесей серый, желтый, розовый или голубоватый минерал. Блеск стеклянный. Плотность 2,7 г/см 3 , твердость 3. Характерным диагностическим признаком является бурное вскипание в 10 %-ной соляной кислоте.

Доломит 2 – бесцветный, белый, часто с желтоватым или буроватым оттенком минерал. Блеск стеклянный. Плотность 2,8 г/см 3 , твердость 3-4. В 10 %-ной соляной кислоте вскипает только в порошке и при нагревании. Доломит обычно мелкозернистый, крупные кристаллы встречаются редко. Образуется он либо как первичный химический осадок, либо в результате доломитизации известняков. Минерал доломит слагает породу того же названия.

Магнезит (MgCO 3) – бесцветный, белый, серый, желтый, коричневый минерал. Плотность 3,0 г/см 3 , твердость 3,5-4,5. Растворяется в НСl при нагревании. Минерал магнезит слагает породу того же названия.

К группе глинистых минералов относятся каолинит, монтмориллонит и гидрослюды.

Каолинит (Al 2 O 3 ×2SiO 2 ×2H 2 O) – белый, иногда с буроватым или зеленоватым оттенком минерал. Плотность 2,6 г/см 3 , твердость 1. На ощупь жирный. Каолинит слагает каолиновые глины, входит в состав полиминеральных глин, иногда присутствует в цементе обломочных пород.

Наиболее распространенными минералами группы сульфатов являются гипс и ангидрит.

Гипс (CaSO 4 ×2H 2 O) представляет собой скопление белых или бесцветных кристаллов, иногда окрашенных механическими примесями в голубые, желтые или красные тона. Плотность 2,3 г/см 3 , твердость 2.

Ангидрит (CaSO 4) – белый, серый, светло-розовый, светло-голубой минерал. Плотность 3,0 г/см 3 , твердость 3–3,5. Как правило, встречается в виде сплошных мелкозернистых агрегатов..

Обломочные породы. Породы рассматриваемой группы сложены преимущественно зернами устойчивых к выветриванию минералов и горных пород.

Рыхлые обломочные породы – песок (с зернами преимущественно до 5 мм) и гравий (с зернами свыше 5 мм) – применяют в качестве заполнителей для бетона, в дорожном строительстве, для железнодорожного балласта. Пески служат компонентом сырьевой смеси в производстве стекла, керамических и многих других изделий.

Глинистые породы сложены более чем на 50 % частицами мельче 0,01 мм, причем не менее 25 % из них имеют размеры меньше 0,001 мм. Они характеризуются сложным минеральным составом. За основу минералогической классификации глинистых пород принимается состав глинистых минералов. Каолиновые глины сложены минералом каолинитом. Обычно эти глины окрашены в светлые тона, жирные на ощупь, они малопластичны, огнеупорны.

Полимиктовые глины представлены двумя или несколькими минералоами, причем ни один из них не является преобладающим Каолиновые глины являются огнеупорными и их широко используют в керамической промышленности Гидрослюдистые глины и глины полимиктового состава применяют для изготовления кирпича, грубой керамики и других изделий. Глины являются также компонентом сырьевой смеси в производстве цемента. Глины используют как строительный материал при возведении земляных плотин (экраны и пр.).

Сцементированные обломочные породы – песчаники, конгломераты, брекчии. Песчаник состоит из зерен песка, сцементированных различными природными «цементами». Если в состав пород входят крупные куски (гравий или щебень), то им даются название конгломерата (при округлых кусках) и брекчии (при остроугольных кусках). Из них чаще всего применяются в строительстве песчаники (так же, как и плотные известняки

Наиболее распространенными карбонатными породами являются известняки и доломиты. Известняк – порода, сложенная более чем на 50 % кальцитом; доломит – более чем на 50 % доломитом Порода, характеризующаяся приблизительно равным содержанием карбонатного и глинистого материала, называется мергелем .

Пористость плотных известняков не превышает десятых долей процента, а рыхлых достигает 15–20 %. Доломиты по внешнему виду похожи на известняки. Цвет доломитов белый, желтовато-белый, светло-бурый. Для них характерны микрозернистые и кристаллически-зернистые структуры. Благодаря широкому распространению, легкой добыче и обработке известняки, доломитизированные известняки и доломиты применяют в строительстве чаще, чем другие породы. Их используют в виде бутового камня для фундаментов, стен неотапливаемых зданий или жилых домов в районах с теплым климатом, а наиболее плотные породы применяют в виде плит и фасонных деталей для наружных облицовок зданий. Известняковый щебень часто используют в качестве заполнителя для бетона. Известняки широко применяют как сырье для получения вяжущих веществ – извести и цемента. Доломиты используют для получения вяжущих и огнеупорных материалов в цементной, стекольной, керамической и металлургической промышленности.

Сульфатные породы – гипс и ангидрит служат сырьем для получения вяжущих веществ, иногда их применяют в виде облицовочных изделий.

Аллитовые породы характеризуются высоким содержанием глинозема. В этой группе выделяют две главные породы: бокситы и латериты. Породообразующими минералами бокситов являются гидроксиды алюминия (гиббсит и диаспор). Бокситы разнообразны по внешнему виду. Они могут быть мягкими, рыхлыми, похожими на глину Пластичностью бокситы не обладают.Их используют для производства алюминия, искусственных абразивов, огнеупоров, глиноземистого цемента.

Метаморфические горные породы

Метаморфизмом называют преобразование горных пород, происходящее в недрах земной коры под влиянием высоких температур и давлений. В этих условиях может происходить кристаллизация минералов без их плавления.

Основные разновидности метаморфических горных пород. Некоторые разновидности глинистых, кремнистых, слюдистых и иных сланцев являются естественными кровельными материалами – кровельными сланцами . Эти сланцы легко раскалываются по плоскостям сланцеватости на ровные и тонкие (2–8 мм) плоские плитки. Они должны отвечать определенным требованиям: иметь достаточную плотность и вязкость, твердость, малое водопоглощение, высокую водостойкость, стойкость к выветривания. Плотность кровельных сланцев около 2,7–2,8 г/см 3 , пористость 0,3–3 %, предел прочности при сжатии 50–240 МПа. Большое значение имеет также прочность на излом перпендикулярно сланцеватости. Кровельные сланцы используют в производстве кровельных плиток и некоторых строительных деталей (плит для внутренней облицовки помещений, лестничных ступеней, плит для пола, подоконных досок и т.п.).

Гнейсы – породы метаморфического генезиса, образовавшиеся при температуре 600–800 °С и высоком давлении. Исходными являются глинистые и кварцево-полевошпатовые (граниты) породы. Гнейсы по механическим и физическим свойствам не уступают гранитам, однако сопротивление на излом у них в 1,5–2 раза меньше.

Применяют гнейсы при бутовой кладке, для кладки фундаментов, в качестве материала для щебня и отчасти в виде плит для мощения дорог. Щебень из сильно сланцеватого гнейса не используют для бетона и дорожного строительства из-за нежелательной формы зерен.

Образование кварцитов связано с перекристаллизацией песчаников. Важными свойствами кварцитов являются высокая огнеупорность (до 1710–1770 °С) и прочность на сжатие (100–450) МПа. В строительстве кварциты используют в качестве стенового камня, подферменных камней в мостах, бута, щебня и брусчатки, а кварциты с красивой и неизменяющейся окраской – для облицовки зданий. Кварциты применяют в производстве динаса – огнеупора, обладающего высокой кислотостойкостью.

Мрамор – мелко-, средне- и крупнозернистая плотная карбонатная порода, состоящая главным образом из кальцита и представляющая собой перекристаллизованный известняк. Прочность на сжатие составляет 100-300 МПа. Мрамор легко поддается обработке, вследствие малой пористости хорошо полируется. Мрамор широко применяется для внутренней отделки стен зданий, ступеней лестниц и т.п. В виде песка и мелкого щебня (крошки) его используют для цветных штукатурок, облицовочного декоративного бетона и т.п. В условиях сульфатной коррозии для наружных облицовок мрамор не применяют.

Техногенные и вторичные ресурсы

По данным ЮНЕСКО, в мире ежегодно извлекают из недр более 120 млрд. т руд, горючих ископаемых, другого сырья (20 т сырья на каждого жителя планеты). По масштабам извлекаемого и перерабатываемого сырья хозяйственная деятельность человека превзошла вулканическую (10 млрд. т в год) и размыв суши всеми реками мира (25 млрд. т в год). Эта деятельность, кроме того, сопровождается образованием колоссального количества отходов. Основными источниками многотоннажных отходов являются: горнообогатительная, металлургическая, химическая, лесная и деревообрабатывающая, текстильная отрасли промышленности; энергетический комплекс; промышленность строительных материалов; агропромышленный комплекс; бытовая деятельность человека.

Отходы производства или побочные продукты промышленности являются вторичными материальными ресурсами. Многие отходы по своему составу и свойствам близки к природному сырью. Установлено, что использование промышленных отходов позволяет покрыть до 40 % потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10-30 % снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, создавать новые строительные материалы с высокими технико-экономическими показателями и, кроме того, уменьшить загрязнение окружающей среды.

Шлаки черной металлургии – побочный продукт при выплавке чугуна из железных руд (доменные, мартеновские, ферромарганцевые). Выход шлаков очень велик и составляет от 0,4 до 0,65 т на 1 т чугуна. В их состав входит до 30 различных химических элементов, главным образом в виде оксидов. Основные оксиды: SiO 2 , Аl 2 О 3 , CaO, MgO. В меньших количествах присутствуют FeO, MnO, P 2 O 5 , ТiO 2 , V 2 O 5 и др. Состав шлака зависит от состава кокса, пустой породы и определяет особенности применения шлака.

В производстве строительных материалов используется 75 % общего количества доменных шлаков. Основным потребителем является цементная промышленность. Ежегодно она потребляет миллионы тонн гранулированного доменного шлака. Грануляция заключается в быстром охлаждении шлакового расплава, в результате чего шлак приобретает стекловидную структуру и, соответственно, высокую активность.

Сталеплавильные (мартеновские) шлаки применяются в меньшей степени. Трудности их использования связаны с неоднородностью, непостоянством химического состава.

Шлаки цветной металлургии чрезвычайно разнообразны по составу. Наиболее перспективное направление их использования – комплексная переработка: предварительное извлечение цветных и редких металлов из шлака; выделение железа; использование силикатного остатка шлака для производства строительных материалов.

При получении цветных образуются шламы. Например, побочным продуктом при производстве алюминия является бокситовый шлам - рыхлый сыпучий материал красного цвета. При получении глинозема из нефелинового сырья образуется нефелиновый шламла. Если глинозем получают из высокоалюминатных глин, в качестве побочного продукта образуется каолиновый шлам и т.д. Основное применение все эти шламы находят в цементном производстве.

(ТЭС) – минеральный остаток от сжигания твердого топлива. Одна ТЭС средней мощности ежегодно выбрасывает в отвалы до 1 млн. т золы и шлака, а ТЭС, сжигающая многозольное топливо, – до 5 млн. т. По химическому составу топливные золы и шлаки состоят из SiO 2 , AI 2 O 3 , СаО, MgO и др., а также содержат несгоревшее топливо. Используются топливные золы и шлаки всего на 3–4 % от их ежегодного выхода.

Золы и шлаки ТЭС можно использовать при производстве практически всех строительных материалов и изделий. Например, введение 100–200 кг активной золы (уноса) на 1 м 3 бетона дает возможность экономить до 100 кг цемента. Шлаковый песок пригоден для замены природного песка, а шлаковый щебень – в качестве крупного заполнителя.

Отходы горнодобывающей промышленности . Вскрышные породы – горнорудные отходы, отходы добычи разнообразных полезных ископаемых. Особенно большое количество этих отходов образуется при добыче открытым способом. По ориентировочным подсчетам в стране ежегодно образуется свыше 3 млрд. т отходов, которые являются неисчерпаемым источником сырья для промышленности строительных материалов. Однако в настоящее время они используются лишь на 6–7 %. Вскрышные и пустые породы находят применение в зависимости от своего состава (карбонатные, глинистые, мергелистые, песчаные и т.д.).

Вскрышные породы – не единственные отходы горнодобывающей промышленности. Большое количество пустой породы поднимается на поверхность земли, и направляется в отвалы. Горнообогатительные комбинаты сбрасывают в отвалы большое количество флотационных хвостов, образующихся в частности при переработке руд цветных металлов. Отходы угледобычи и углеобогащения образуются на углеобогатительных фабриках. Для отходов угледобычи характерно постоянство состава, что их выгодно отличает от других видов минеральных отходов.

Попутнодобываемые породы и отходы промышленной переработки рудных полезных ископаемых отличаются по генезису, минеральному составу, структуре и текстуре от традиционно применяемых при производстве строительных материалов. Это объясняется существенным отличием глубин карьеров по добыче сырья для стройиндустрии (20–50 м) от современной разработки рудных месторождений (350–500 м).

Гипсовые отходы химической промышленности – продукты, содержащие сульфат кальция в той или иной форме. Научные исследования показали полноценную заменимость традиционного гипсового сырья отходами химической промышленности.

Фосфогипс – отход при производстве фосфорных удобрений из апатитов и фосфоритов. Он представляет собой CaSO 4 ×2H 2 O с примесями неразложившегося апатита (или фосфорита) и неотмытой фосфорной кислоты.

Фторгипс (фторангидрит) – побочный продукт при производстве фтористоводородной кислоты, безводного фтористого водорода, фтористых солей. По составу это CaSO 4 с примесями исходного неразложившегося флюорита.

Титаногипс – отход при сернокислотном разложении титансодержащих руд. Борогипс – отход производства борной кислоты. Сульфогипс получается при улавливании серного ангидрида из дымовых газов ТЭС.

Электротермофосфорные шлаки – отходы производства фосфорной кислоты, получаемой по электротермическому способу. В гранулированном виде содержат 95-98 % стекла. Основные оксиды, входящие в их состав, SiO 2 и СаО. Являются ценным сырьем в производстве вяжущих веществ.

Отходы деревообработки и лесохимии. В настоящее время в нашей стране лишь 1/6 часть древесных отходов используется в целлюлозно-бумажной промышленности и промышленности строительных материалов. Практически не используются кора, пни, вершины, ветви, сучья, а также отходы деревообработки – стружка, щепа, опилки.

Отходы целлюлозно-бумажной промышленности – осадки сточных вод и другие промышленные шламы. Скоп – продукт, получившийся в результате механической очистки сточных вод. Это грубодисперсные примеси, состоящие в основном из волокон целлюлозы и частиц каолина. Активный ил – продукт биологической очистки сточных вод, находящийся в виде коллоидов и молекул.

Отходы промышленности строительных материалов. При получении цементного клинкера до 30 % объема обжигаемого продукта уносится с дымовыми газами из печей в виде пыли. Эта пыль может

Таблица 2.1. Отходы промышленности, используемые в производстве строительных материалов

Отходы Области применения и материалы
Шлаки черной металлургии: доменные, мартеновские, ферромарганцевые Портландцемент (производство клинкера), портландцемент с минеральной добавкой, шлакопортландцемент, смешанные бесцементные вяжущие, заполнители для бетонов, шлаковая вата, шлакоситаллы и т.д.
Отходы цветной металлургии: шлаки (медеплавильных печей, никелевого производства, свинцовой шахтной плавки и т.д.), шламы (бокситовый, нефелиновый, каолиновый) Вяжущие автоклавного твердения, песок и щебень, портландцемент (производство клинкера), нефелиновый цемент, материалы для укрепления грунтов, огнеупоры, теплоизоляционные материалы и т.д.
Золы и шлаки тепловых электростанций Вяжущие, пористый гравий, газобетон, силикатные изделия, добавки к керамике и т.п.
Вскрышные породы: вскрышные и пустые породы, хвосты обогащения и т.д. Портландцемент (производство клинкера), воздушная известь, минеральная вата, стекло, пигменты, керамический кирпич, силикатный кирпич, заполнители для бетонов и т.д.
Отходы угледобычи и углеобогащения: коксохимических предприятий, углеобогатительных фабрик, шахтные негорелые породы Пористый заполнитель для бетона, керамический кирпич, материалы для строительства дорог
Гипсовые отходы химической промышленности: фосфогипс, фторгипс, титаногипс, борогипс, сульфогипс Замена традиционного гипсового сырья
Отходы древесины и лесохимии: кора, пни, вершины, ветви, сучья, горбыль, стружки, щепа, опилки, лигнин, скоп и т.д. Арболит, фибролит, ДВП, ДСП, столярные плиты, опилкобетон, ксилолит, клееные изделия, щитовой паркет, дрань, лигноуглеводные древесные пластики, королит, блоки из сучков, плиты из цельной коры, выгорающие добавки, пластифицирующие добавки, отделочные материалы, кровельный картон и т.д.
Отходы промышленности строительных материалов: цементная пыль, каменная пыль, крошка, кирпичный бой, бракованный и старый бетон Портландцемент, заполнители для бетона, минеральный наполнитель, добавки, смешанные вяжущие вещества и т.д.
Пиритные огарки Портландцемент (корректирующая добавка)
Электротермофосфорные шлаки Портландцемент (компонент сырьевой смеси), ШПЦ, сульфатостойкий ШПЦ, литой щебень, шлаковая пемза, стеновая керамика (компонент шихты)
Прочие отходы и вторичные ресурсы: стекольный бой и отходы стекла, макулатура, тряпье, изношенные шины и т.д. Стекло, наполнитель для асфальта, добавка при производстве стеновой керамики, пористый заполнитель для бетона, кровельный картон, изол, фольгоизол и т.д.

возвращаться в производство, а также использоваться в производстве вяжущих веществ.

Кирпичный бой, старый и бракованный бетон используются в качестве искусственного щебня. Бетонный лом – отход предприятий сборного железобетона и сноса строительных объектов. Огромные объемы реконструкции жилого фонда, промышленных предприятий, транспортных сооружений, автодорог и т.д. ставят важную научно-техническую задачу по переработке отходов бетона и железобетона. Разработаны различные технологии разрушения строительных конструкций, а также специальное оборудование для переработки некондиционного бетона и железобетона.

Прочие отходы и вторичные ресурсы – отходы и бой стекла, макулатура, резиновая крошка, отходы и попутные продукты производства полимерных материалов, попутные продукты нефтехимической промышленности и т.д.

Важнейшие виды строительных материалов, получаемые из вышеперечисленных отходов промышленности, приведены в табл. 1.

Контрольные вопросы

1. Глубинные породообразующие минералы магматических горных породи их физические свойства

2. Породообразующие минералы осадочных горных пород (группа кремнезема) и их свойства

3. Породообразующие минералы осадочных горных пород (группа глинистых) и их свойства

4. Разновидности метаморфических горных пород и их свойства

5. Отрасли промышленности – источники много тоннажных отходов.

6. Шлаки черной металлургии и области их применения.

7. Отвальные продукты цветной металлургии и области их применения.

8. Отходы горнодобывающей промышленности и области их применения.

9. Гипсовые отходы химической промышленности.

10. Отходы промышленности строительной индустрии и области их применения.

В качестве строительного минерального сырья используется большой пере­чень горных пород, пользующихся широким, а некоторые - весьма ограничен­ным распространением на территории Крымского полуострова. Среди большо­го разнообразия строительного минерального сырья по его предназначению и практическому использованию выделяется более 10 групп . Так, в качестве цементного сырья в Крыму используются мергель и суглинки, запасы которых в большом количестве (188,1млн.т) сосредоточены в Бахчисарайском комплексном месторождении. На их основе функционирует одноименный цементный завод, который полностью обеспечивает потребность Республики в цементе высокого качества. Для производства цемента предназначены также запасы трепельных глин Баксинского месторождения в количестве 680 тыс.тонн в Ленинском районе, однако они в данное в Ремя не используются. В качестве сырья для производства стекла многие годы использовался чистый кварцевый песок Заморского месторождения в Ленинском Районе. К настоящему времени разведанные запасы этого месторождения отработаны. Других месторождений высококачественного песка для стекольного производства не выявлено, так как он имеет весьма ограниченное распространение в нашем регионе (Рас.Ю).

В качестве сырья для строительной керамики используются преимуществен-

0 глины, имеющие широкое распространение на полуострове(рис.П). Глинистые

°Роды приурочены к отложениям различного возраста от триаса и сред-

е и юры до четвертичного. Практическое значение имеют глины нижнего мела,

°бенно пластичные глины аптского яруса, которые широко используются для

производства строительного кирпича. Разведано и учтено Государственным ба­лансом 12 месторождений этого сырья: Марьинское, Партизанское, Керченское, Феодосийское, Балаклавское, Баксинское, Васильковское, Зеленогорское, Марь-яновское, Вилинское, Константиновское и Молочное. Общие разведанные запасы их значительные (млн.м 3): глины обычной - 23,8; глины аргиллитоподобной - 6,4; глины трепельной - 0,5; суглинков - 3,2. Эксплуатируются 2 месторождения.

Сырьем для производства строительного камня (бута, щебня, крошки, искус­ственного песка) являются карбонатные и изверженные горные породы(рис.12).

Карбонатные породы широко распространены. Они представлены 4-мя разновидностями: высокопрочными мраморизованными известняками верхней юры и сходными по качеству известняками нижнего мела; известняками средней прочности сарматского и мэотического возраста на Керченском полуострове и малопрочными известняками сарматского, мэотического и понтического возраста в Равнинном Крыму и на Тарханкутском полуострове. Учтено 23 месторождения известняков с разведанными запасами 119,1 млн. м 3 и предварительно разведанными 25,5 млн. м 3 .

Извержанные горные породы представленны диоритами, диабазами, диабазовыми порфиритами и плагиогранитами. Распространены они весьма ограниченно. Большая часть тел этих пород сосредоточена в районах между г. Алушта и Гурзуфом, к югу и юго-востоку от г. Симферополя, в долинах рек Салгирка, Альмы и Бодрака. Они слагают небольшие тела в виде лакколитов, пластовых залежей и штоков. Разведано 5 месторождений изверженных горных пород с общими запасами 41,1 млн. м 3 . Кроме того, разведано 1 месторождение песчаника Бугаз на территории Судакского городского совета с запасами 175 тыс. м 3 , из них 150 тыс. м 3 разведанные.

Всего в Крыму выявленно 29 месторождений строительного камня с общими запасами 186,3 млн. м 3 . Разрабатываются 15 месторождений, годовой объем добычи составляет 170 тыс. м 3 .

В строительной индустрии широко применяются стеновые блоки и камни из горных пород - так называемых пильных известняков. В качестве сырья для про­изводства стеновых блоков используются мшанковые известняки датского яруса нижнего палеогена и нуммулитовые известняки симферопольского яруса средне­го палеогена, а стенового камня - менее прочные известняки-ракушечники нижнего палеогена, нуммулитовые известняки симферопольского яруса среднего палеогена, известняки-ракушечники верхнего сармата, оолитовые и детритовые известняки мэотиса, раковинно-детритовые известняки понтического яруса. Разведано 96 месторождений известняка, из которых 36 находятся в эксплуатации и 12 месторождений подготавливаются к промышленному освоению. Общие разведанные запасы этого сырья составляют 308,1 млн. м 3 и 4,4 млн. м 3 - предварительно раведанные. Годовой объем добычи в 1999 г. составил 513 тыс. м 3 , что в 6,2 раза меньше по сравнению с добычей в 1988 г. Потери сырья при добыче составили 30,8%. Сырьем для производства керамзита служат глинистые породы, которые при скоростном обжиге без добавок или с неорганическими (с содержанием железа и алюминия) и органическими (мазут, соляровое масло, древесные опилки, бурый

уголь, торф, отработанное машинное масло и др.) добавками, вспучиваются, образуя легковесный гравий . В качестве керамзитового сырья пригодны глинистые сланцы таврической серии (триас - нижняя юра), глины майкопской серии (олигоцен - нижний миоцен), миоцена (нижнего подъяруса сарматского яруса) и плиоцена. Особенностью этих глин является преобладание в их составе монтмориллонита, гидрослюд, а также наличие примеси органического вещества.

Разведано 4 месторождения с общими запасами 28,5 млн.м 3 ; периодически разрабатывается одно Плодовское месторождение.

Пески, пригодные для строительства, вне пляжей не имеют широкого распро­странения. Они представляют собой смесь в разной степени окатанных зерен минералов и горных пород четвертичного, неогенового, палеогенового и мелового возраста. Наибольший интерес имеют морские и озерные пески, однако разработка морских песков запрещена, так как это приводит к разрушению пляжной зоны морского побережья и к активизации оползневых процессов. Разведано 2 месторождения: Донузлавское, приуроченное к донным отложениям оз. Донузлав, с разведанными запасами в количестве 10,5 млн. м 3 и предварительно разведанными 854 тыс. м 3 , и Крымрозовское с разведанными запасами песка 1,8 млн. м 3 . Разрабатывается только Донузлавское месторождение; в 1999 г. было добыто 246 тыс. м 3 песка.

Разведано также одно Сасыкское месторождение песчано-гравийной смеси на оз. Сасык-Сиваш с запасами 3,7 млн. м 3 . В 1999 г. здесь было добыто 61,0 тыс.м смеси.

Для производства извести используются обычные известняки. Для этих целей разведано 7 месторождений с запасами 154,6 млн.тонн, из них разрабатывается одно Евпаторийское месторождение с запасами известняка 64,8 млн.тонн. В1999 г. здесь было добыто 573 тыс. т. известняка. Разведано одно Элькеджи-Элинское месторождение гипса в Ленинском районе с запасами 2,1 млн. т. Разведано 2 месторождения строительного мергеля: Барасханское с запасами 661 тыс. т. и Феодосийское с запасами 861 тыс. т. В 1999 г. была добыта всего 1 т. мергеля на Барасханском месторождении.

Подготовлена сырьевая база облицовочных материалов. С этой целью разве­дано 3 месторождения: Белинское (Ленинский район), представленное мшанко- выми рифогенными известняками, Биюк-Янкойское (Симферопольский район) и Гаспринское (Ялтинский горсовет) мраморовидных известняков. Запасы их значительные, порядка 9.75 млн.м 3 , а за исключением Гаспринского месторож­дения, где вряд-ли возможны горные разработки, - 3.5 млн.м 3 . Месторождения не разрабатываются.

На мощной минерально-сырьевой базе в Крыму налажено производство строительной минеральной продукции широкого ассортимента. В табл. 4 приводится динамика производства строительных материалов в период с 1980 г. по 1999 г. Несмотря на большой перечень производимой минеральной продукции, Крым не полностью обеспечивает свою потребность в некоторых видах стройматериалов.

Таблица 4.

Динамика производства строительных материалов за период

с 1980 по 1999 год (по данным Комитета Автономной

Республики Крым по статистике).

Виды продукции

Единицы измерения

Стеновые материалы

млнлнт.уо1кир.

Кирпич строителышй

млилкусаиф.

Стеновые блоки мелкие

млнлит.усл.кир

Стеновые блоки из природного камня

млнлгЕуаъкир.

Стеновые блоки крупные

млнлпт.усшкир.

Кирпич и камни пустотелые

млнлгг.услкир.

Известь строительная

Гипс строительный

Мука известняковая

Перегородочные плиты и панели для крупнопанельного строительства

Плитки керамичес­кие для внутренней облицовки

Облицовочные изде­лия из природного камня

Пористые заполни­тели (керамзит)

Бутовый камень

Песок строительный

Песчано-гравийная смесь

Мел строительный

Из-за ограниченности разведанных запасов и подготовленных к разработке объектов некоторые предприятия продолжают завозить из других регионов Украины строительный песок, высокопрочный щебень и высококачественные облицовочные материалы (мрамор, гранит, лабрадорит). Как видно из таблицы, объем производства минеральной продукции для строительства в период 1990 -1999гт. последовательно с каждым годом сокращался и в 1999 году по отноше­нию к 1990 году составил 63,1% по стеновым блокам, 54,3% по песчано-гравийной смеси, 37, 3% по бутовому камню, 35,7% по цементу, 17,0% по кирпичу строительному, 12,9% по стеновым материалам, 12,5% по щебню, 11,6% по строительной извести. Объем производства остальных видов продукции составил от 1,1% до 6,0%. Сократилась также в 3 раза по сравнению с 1990 годом добыча известняка для производства металлургического флюса в районе Балаклавы и на Керченском полуострове, что объясняется значительным сокращением (более чем в 2 раза) выплавки чугуна и стали в Украине. Резкий спад производства минеральной продукции для строительства полностью отражает кризисное состояние экономики. Конечно, сокращение горных работ с целью добычи полезных ископаемых есть благо с точки зрения экологии, а именно снижения техногенных нагрузок на окружающую среду. Однако постоянно высокая потребность в строительных материа­лах и экономическая нецелесообразность их транспортировки на большие расстоя­ния из других регионов Украины предопределяют необходимость освоения собст­венных сырьевых баз минеральных ресурсов в разумных пределах и с соблюде­нием норм природоохранного законодательства.