Свойства корня n ой степени примеры решения. Корень и его свойства. Подробная теория с примерами (2019)

Видеоурок 2: Свойства корня степени n > 1

Лекция: Корень степени n > 1 и его свойства

Корень


Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х 1 = 2 и х 2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.


Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x 2 . Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.


Любой корень - это иррациональное число . К иррациональным числам относятся корни, непериодические бесконечные дроби.


Квадратный корень - это неотрицательное число "а", подкоренное выражение которого равно данному числу "а" в квадрате.

Например,


То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х 1 = 4, х 2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.


4. Существует свойство, обратное данному - внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве.

Сценарий урока в 11 классе по теме:

« Корень n-й степени из действительного числа. »

Цель урока: Формирование у учащихся целостного представления о корне n -ой степени и арифметического корень n-ой степени, формирование вычислительных навыков, навыков сознательного и рационального использования свойств корня при решении различных задач, содержащих радикал. Проверить уровень усвоения учащимися вопросов темы.

Предметные: создать содержательные и организационные условия для усвоения материала по теме « Числовые и буквенные выражения» на уровне восприятия осмысления и первичного запоминания; формировать умения применять данные сведения при вычислении корня n-й степени из действительного числа;

Метопредметные: способствовать развитию вычислительных навыков; умение анализировать, сравнивать, обобщать, делать выводы;

Личностные: воспитывать умение высказывать свою точку зрения, слушать ответы других, принимать участие в диалоге, формировать способность к позитивному сотрудничеству.

Планируемый результат.

Предметные: уметь в процессе реальной ситуации применять свойства корня n-й степени из действительного числа при вычислении корней, решении уравнений.

Личностные: формировать внимательность и аккуратность в вычислениях, требовательное отношение к себе и к своей работе, воспитывать чувство взаимопомощи.

Тип урока: урок изучения и первичного закрепления новых знаний

    Мотивация к учебной деятельности:

Восточная мудрость гласит: «Можно коня привести к воде, но нельзя заставить его пить». И человека невозможно заставить учиться хорошо, если он сам не старается узнать больше, не имеет желания работать над своим умственным развитием. Ведь знания только тогда знания, когда они приобретены усилиями своей мысли, а не одной памятью.

Наш урок пройдёт под девизом: «Покорим любую вершину, если будем к ней стремиться». Нам с вами в течение урока нужно успеть преодолеть несколько вершин, и каждый из вас должен вложить все свои усилия, чтобы покорить эти вершины.

«Сегодня у нас урок, на котором мы должны познакомиться с новым понятием: « Корень n-й степени» и научиться применять это понятие к преобразованию различных выражений.

Ваша цель – на основе различных форм работы активизировать имеющиеся знания, внести свой вклад в изучение материала и получить хорошие оценки»
Корень квадратный из действительного числа мы с вами изучали в 8 классе. Корень квадратный связан с функцией вида y =x 2 . Ребята, вы помните, как мы вычисляли корни квадратные, и какие у него были свойства?
а) индивидуальный опрос:

    что это за выражение

    что называется квадратным корнем

    что называется арифметическим квадратным корнем

    перечислите свойства квадратного корня

б) работа в парах: вычислите.

-

2. Актуализация знаний и создание проблемной ситуации: Решите уравнение x 4 =1 . Как мы его можем решить? (Аналитически и графически). Решим его графически. Для этого в одной системе координат построим график функции у = х 4 прямую у = 1 (рис. 164 а). Они пересекаются в двух точках: А (-1;1) и B(1;1). Абсциссы точек А и B, т.е. х 1 = -1,

х 2 = 1, являются корнями уравнения х 4 = 1.
Рассуждая точно так же, находим корни уравнения х 4 =16: А теперь попробуем решить уравнение х 4 =5; геометрическая иллюстрация представлена на рис. 164 б. Ясно, что уравнение имеет два корня x 1 и x 2 , причем эти числа, как и в двух предыдущих случаях, взаимно противоположны. Но для первых двух уравнений корни были найдены без труда (их можно было найти и не пользуясь графиками), а с уравнением х 4 =5 имеются проблемы: по чертежу мы не можем указать значения корней, а можем только установить, что один корень располагается левее точки -1, а второй - правее точки 1.

х 2 = - (читается: «корень четвертой степени из пяти»).

Мы говорили об уравнении х 4 = а, где а 0. С равным успехом мы могли говорить и об уравнении х 4 =а, где а 0, а n - любое натуральное число. Например, решая графически уравнение х 5 = 1, находим х = 1 (рис. 165); решая уравнение х 5 " = 7, устанавливаем, что уравнение имеет один корень х 1 , который располагается на оси х чуть правее точки 1 (см. рис. 165). Для числа х 1 введем обозначение .

Определение 1. Корнем n-й степени из неотрицательного числа а (n = 2, 3,4, 5,...) называют такое неотрицательное число, которое при возведении в степень n дает в результате число а.

Это число обозначают , число а при этом называют подкоренным числом, а число n - показателем корня.
Если n=2, то обычно не говорят «корень второй степени», а говорят "«корень квадратный». В этом случае не пишут Это тот частный случай, который вы специально изучали в курсе алгебры 8-го класса.

Если n = 3, то вместо «корень третьей степени» часто говорят «корень кубический». Первое знакомство с кубическим корнем у вас также состоялось в курсе алгебры 8-го класса. Мы использовали кубический корень в курсе алгебры 9-го класса.

Итак, если а ≥0, n= 2,3,4,5,…, то 1) ≥ 0; 2) () n = а.

Вообще, =b и b n =а - одна и та же зависимость между неотрицательными числами а и b, но только вторая описана более простым языком (использует более простые символы), чем первая.

Операцию нахождения корня из неотрицательного числа называют обычно извлечением корня. Эта операция является обратной по отношению к возведению в соответствующую степень. Сравните:


Еще раз обратите внимание: в таблице фигурируют только положительные числа, поскольку это оговорено в определении 1. И хотя, например, (-6) 6 =36 - верное равенство, перейти от него к записи с использованием квадратного корня, т.е. написать, что нельзя. По определению - положительное число, значит = 6 (а не -6). Точно так же, хотя и 2 4 =16, т (-2) 4 =16, переходя к знакам корней, мы должны написать = 2 (и в то же время ≠-2).

Иногда выражение называют радикалом (от латинского слова гаdix - «корень»). В русском языке термин радикальный используется довольно часто, например, «радикальные изменения» - это значит «коренные изменения». Между прочим, и само обозначение корня напоминает о слове гаdix: символ - это стилизованная буква r.

Операцию извлечения корня определяют и для отрицательного подкоренного числа, но только в случае нечетного показателя корня. Иными словами, равенство (-2) 5 = -32 можно переписать в эквивалентной форме как =-2. При этом используется следующее определение.

Определение 2. Корнем нечетной степени n из отрицательного числа а (n = 3,5,...) называют такое отрицательное число, которое, будучи возведено в степень n, дает в результате число а.

Это число, как и в определении 1, обозначают , число а - подкоренное число, число n - показатель корня.
Итак, если а , n=,5,7,…,то: 1) 0; 2) () n = а.

Таким образом, корень четной степени имеет смысл (т.е. определен) только для неотрицательного подкоренного выражения; корень нечетной степени имеет смысл для любого подкоренного выражения.

5. Первичное закрепление знаний:

1. Вычислить: № № 33.5; 33.6; 33.74 33.8 устно а) ; б) ; в) ; г) .

г) В отличие от предыдущих примеров мы не можем указать точное значение числа Ясно лишь, что оно больше, чем 2, но меньше, чем 3, поскольку 2 4 =16 (это меньше, чем 17), а З 4 = 81 (это больше, чем 17). Замечаем, что 24 намного ближе к 17, чем З4, так что есть основания использовать знак приближенного равенства:
2. Найти значения следующих выражений.

Поставить около примера соответствующую букву.

Небольшая информация о великом учёном. Рене Декарт (1596-1650) французский дворянин, математик, философ, физиолог, мыслитель. Рене Декарт заложил основы аналитической геометрии, ввел буквенные обозначения x 2 , y 3 . Всем известны декартовы координаты, определяющие функцию переменной величины.

3 . Решить уравнения: а) = -2; б) = 1; в) = -4

Решение: а) Если = -2, то y = -8. Фактически обе части заданного уравнения мы должны возвести в куб. Получим: 3х+4= - 8; 3х= -12; х = -4. б) Рассуждая, как в примере а), возведем обе части уравнения в четвертую степень. Получим: х=1.

в) Здесь не надо возводить в четвертую степень, это уравнение не имеет решений. Почему? Потому, что согласно определению 1 корень четной степени - неотрицательное число.
Вашему вниманию предложено несколько заданий. Когда вы выполните эти задания, вы узнаете имя и фамилию великого учёного-математика. Этот учёный в 1637 г первым ввел знак корня.

6. Давайте немного отдохнём.

Поднимает руки класс - это «раз».

Повернулась голова – это «два».

Руки вниз, вперёд смотри – это «три».

Руки в стороны пошире развернули на «четыре»,

С силой их к рукам прижать –это «пять».

Всем ребятам надо сесть –это «шесть».

7. Самостоятельная работа:

    вариант: 2 вариант:

б) 3-. б)12 -6 .

2. Решите уравнение: а) х 4 = -16; б) 0,02х 6 -1,28=0; а) х 8 = -3; б)0,3х 9 – 2,4=0;

в) = -2; в)= 2

8. Повторение: Найдите корень уравнения = - х. Если уравнение имеет более одного корня, в ответ впишите меньший из корней.

9. Рефлексия: Чему вы научились на уроке? Что было интересным? Что было трудным?

Цели урока:

Образовательная : создать условия для формирования у обучающихся целостного представления о корне n-ой степени, навыков сознательного и рационального использования свойств корня при решении различных задач.

Развивающая : создать условия для развития алгоритмического, творческого мышления, развивать навыки самоконтроля.

Воспитательные : способствовать развитию интереса к предмету, активности, воспитывать аккуратность в работе, умение выражать собственное мнение, давать рекомендации.

Ход урока

1. Организационный момент.

Добрый день! Добрый час!

Как я рада видеть вас.

Прозвенел уже звонок

Начинается урок.

Улыбнулись. Подравнялись.

Друг на друга поглядели

И тихонько дружно сели.

2. Мотивация урока.

Выдающийся французский философ, ученый Блез Паскаль утверждал: «Величие человека в его способности мыслить». Сегодня мы попытаемся почувствовать себя великими людьми, открывая знания для себя. Девизом к сегодняшнему уроку будут слова древнегреческого математика Фалеса:

Что есть больше всего на свете? - Пространство.

Что быстрее всего? - Ум.

Что мудрее всего? - Время.

Что приятнее всего? - Достичь желаемого.

Хочется, чтобы каждый из вас на сегодняшнем уроке достиг желаемого результата.

3. Актуализация знаний.

1. Назовите взаимообратные алгебраические операции над числами. (Сложение и вычитание, умножение и деление)

2. Всегда ли можно выполнить такую алгебраическую операцию, как деление? (Нет, делить на нуль нельзя)

3. Какую еще операцию вы можете выполнять с числами? (Возведение в степень)

4. Какая операция будет ей обратной? (Извлечение корня)

5. Корень какой степени вы можете извлекать? (Корень второй степени)

6. Какие свойства квадратного корня вы знаете? (Извлечение квадратного корня из произведения, из частного, из корня, возведение в степень)

7. Найдите значения выражений:

Из истории. Ещё 4000 лет назад вавилонские ученые составили наряду с таблицами умножения и таблицами обратных величин (при помощи которых деление чисел сводилось к умножению) таблицы квадратов чисел и квадратных корней чисел. При этом они умели находить приблизительное значение квадратного корня из любого целого числа.

4. Изучение нового материала.

Очевидно, что в соответствии с основными свой-ствами степеней с натуральными показателями, из любого положительного числа существует два проти-воположных значения корня четной степени, напри-мер, числа 4 и -4 являются корнями квадратными из 16, так как (-4)2 = 42 = 16, а числа 3 и -3 являют-ся корнями четвертой степени из 81, так как (-3)4 = З4 = 81.

Кроме того, не существует корня четной степени из отрицательного числа, поскольку четная степень любого действительного числа неотрицательна . Что же касается корня нечетной степени, то для любого действительного числа существует только один ко-рень нечетной степени из этого числа. Например, 3 есть корень третьей степени из 27, так как З3 = 27, а -2 есть корень пятой степени из -32, так как (-2)5 = 32.

В связи с существованием двух корней четной сте-пени из положительного числа, введем понятие ариф-метического корня, чтобы устранить эту двузначность корня.

Неотрицательное значение корня n-й степени из неотрицательного числа называется арифметическим корнем.

Обозначение: - корень n-й степени.

Число n называется степенью арифметического корня. Если n = 2, то степень корня не указывается и пишется. Корень второй степени принято называть квадратным, а корень третьей степени - кубическим.

B, b2 = а, а ≥ 0, b ≥ 0

B, bп = а, п - четное а ≥ 0, b ≥ 0

п - нечетное а, b - любые

Свойства

1. , а ≥ 0, b ≥ 0

2. , а ≥ 0, b >0

3. , а ≥ 0

4. , m, n, k - натуральные числа

5. Закрепление нового материала.

Устная работа

а) Какие выражения имеют смысл?

б) При каких значениях переменной а имеет смысл выражение?

Решить № 3, 4, 7, 9, 11.

6. Физкультминутка.

Во всех делах умеренность нужна,

Пусть будет главным правилом она.

Гимнастикой займись, коль мыслил долго,

Гимнастика не изнуряет тела,

Но очищает организм всецело!

Закройте глаза, расслабьте тело,

Представьте - вы птицы, вы вдруг полетели!

Теперь в океане дельфином плывете,

Теперь в саду яблоки спелые рвете.

Налево, направо, вокруг посмотрели,

Открыли глаза, и снова за дело!

7. Самостоятельная работа.

Работа в парах с. 178 №1, №2.

8. Д/з. Выучить п.10 (с.160-161), решить № 5, 6, 8, 12, 16(1, 2).

9. Итоги урока. Рефлексия деятельности.

Достиг ли урок своей цели?

Чему вы научились?

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок и презентация на тему: "Свойства корня n-ой степени. Теоремы"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Свойства корня n-ой степени. Теоремы

Ребята, мы продолжаем изучать корни n-ой степени из действительного числа. Как практически все математические объекты, корни n-ой степени обладают некоторыми свойствами, сегодня мы будем их изучать.
Все свойства, которые мы рассмотрим, формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаком корня.
В случае нечетного показателя корня они выполняются и для отрицательных переменных.

Теорема 1. Корень n-ой степени из произведения двух неотрицательных чисел равен произведению корней n-ой степени этих чисел: $\sqrt[n]{a*b}=\sqrt[n]{a}*\sqrt[n]{b}$ .

Давайте докажем теорему.
Доказательство. Ребята, для доказательства теоремы давайте введем новые переменные, обозначим:
$\sqrt[n]{a*b}=x$.
$\sqrt[n]{a}=y$.
$\sqrt[n]{b}=z$.
Нам надо доказать, что $x=y*z$.
Заметим, что выполняются и такие тождества:
$a*b=x^n$.
$a=y^n$.
$b=z^n$.
Тогда выполняется и такое тождество: $x^n=y^n*z^n=(y*z)^n$.
Степени двух неотрицательных чисел и их показатели равны, тогда и сами основания степеней равны. Значит $x=y*z$, что и требовалось доказать.

Теорема 2. Если $а≥0$, $b>0$ и n – натуральное число, которое большее 1, тогда выполняется следующее равенство: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ .

То есть корень n-ой степени частного равен частному корней n-ой степени.

Доказательство.
Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Примеры вычисления корня n-ой степени

Пример.
Вычислить: $\sqrt{16*81*256}$.
Решение. Воспользуемся теоремой 1: $\sqrt{16*81*256}=\sqrt{16}*\sqrt{81}*\sqrt{256}=2*3*4=24$.

Пример.
Вычислить: $\sqrt{7\frac{19}{32}}$.
Решение. Представим подкоренное выражение в виде неправильной дроби: $7\frac{19}{32}=\frac{7*32+19}{32}=\frac{243}{32}$.
Воспользуемся теоремой 2: $\sqrt{\frac{243}{32}}=\frac{\sqrt{243}}{\sqrt{32}}=\frac{3}{2}=1\frac{1}{2}$.

Пример.
Вычислить:
а) $\sqrt{24}*\sqrt{54}$.
б) $\frac{\sqrt{256}}{\sqrt{4}}$.
Решение:
а) $\sqrt{24}*\sqrt{54}=\sqrt{24*54}=\sqrt{8*3*2*27}=\sqrt{16*81}=\sqrt{16}*\sqrt{81}=2*3=6$.
б) $\frac{\sqrt{256}}{\sqrt{4}}=\sqrt{\frac{256}{4}}=\sqrt{64}=24$.

Теорема 3. Если $a≥0$, k и n – натуральные числа больше 1, то справедливо равенство: $(\sqrt[n]{a})^k=\sqrt[n]{a^k}$.

Чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.

Доказательство.
Давайте рассмотрим частный случай для $k=3$. Воспользуемся теоремой 1.
$(\sqrt[n]{a})^k=\sqrt[n]{a}*\sqrt[n]{a}*\sqrt[n]{a}=\sqrt[n]{a*a*a}=\sqrt[n]{a^3}$.
Так же можно доказать и для любого другого случая. Ребята, докажите сами для случая, когда $k=4$ и $k=6$.

Теорема 4. Если $a≥0$ b n,k – натуральные числа большие 1, то справедливо равенство: $\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$.

Чтобы извлечь корень из корня, достаточно перемножить показатели корней.

Доказательство.
Докажем опять кратко, используя таблицу. Для доказательства воспользуемся упрощенной схемой в виде таблицы:

Пример.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.
$\sqrt{\sqrt{a}}=\sqrt{a}$.

Теорема 5. Если показатели корня и подкоренного выражения умножить на одно и тоже натуральное число, то значение корня не изменится: $\sqrt{a^{kp}}=\sqrt[n]{a}$.

Доказательство.
Принцип доказательства нашей теоремы такой же, как и в других примерах. Введем новые переменные:
$\sqrt{a^{k*p}}=x=>a^{k*p}=x^{n*p}$ (по определению).
$\sqrt[n]{a^k}=y=>y^n=a^k$ (по определению).
Последнее равенство возведем в степень p
$(y^n)^p=y^{n*p}=(a^k)^p=a^{k*p}$.
Получили:
$y^{n*p}=a^{k*p}=x^{n*p}=>x=y$.
То есть $\sqrt{a^{k*p}}=\sqrt[n]{a^k}$, что и требовалось доказать.

Примеры:
$\sqrt{a^5}=\sqrt{a}$ (разделили показатели на 5).
$\sqrt{a^{22}}=\sqrt{a^{11}}$ (разделили показатели на 2).
$\sqrt{a^4}=\sqrt{a^{12}}$ (умножили показатели на 3).

Пример.
Выполнить действия: $\sqrt{a}*\sqrt{a}$.
Решение.
Показатели корней - это разные числа, поэтому мы не можем воспользоваться теоремой 1, но применив теорему 5, мы можем получить равные показатели.
$\sqrt{a}=\sqrt{a^3}$ (умножили показатели на 3).
$\sqrt{a}=\sqrt{a^4}$ (умножили показатели на 4).
$\sqrt{a}*\sqrt{a}=\sqrt{a^3}*\sqrt{a^4}=\sqrt{a^3*a^4}=\sqrt{a^7}$.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{32*243*1024}$.
2. Вычислить: $\sqrt{7\frac{58}{81}}$.
3. Вычислить:
а) $\sqrt{81}*\sqrt{72}$.
б) $\frac{\sqrt{1215}}{\sqrt{5}}$.
4. Упростить:
а) $\sqrt{\sqrt{a}}$.
б) $\sqrt{\sqrt{a}}$.
в) $\sqrt{\sqrt{a}}$.
5. Выполнить действия: $\sqrt{a^2}*\sqrt{a^4}$.