Безопасная опасность. Хранение и переработка оят, производство изотопов Завод по переработке ядерных отходов

Экология потребления.Наука и техника: Отработанное ядерное топливо - это и весьма опасный отход с крайне недешевой утилизацией, и одновременно источник многих уникальных элементов и изотопов, стоящих весьма немалые деньги.

Кажется довольно интересным разобраться с экономикой отработанного ядерного топлива (ОЯТ). На Земле мало вещей с такой сложной экономической двойственностью: ОЯТ это и весьма опасный отход с крайне недешевой утилизацией, и одновременно источник многих уникальных элементов и изотопов, стоящих весьма немалые деньги.

Эта двойственность порождает сложный выбор о дальнейшей судьбе ОЯТ - вот уже много десятилетий подавляющее большинство стран, обладающих атомной энергетикой не могут определится, необходимо ли захоранивать ОЯТ или перерабатывать.

В этом тексте я по возможности аккуратно попытаюсь посчитать расходную и доходную часть экономики ОЯТ.

Использованные термины и сокращения:

Делящиеся материалы (ДМ) - собственно ядерное топливо, поддерживающее цепную реакцию деления (Pu239, U235, Pu241, U233). То, что называется топливом, на самом деле, кроме ДМ обычно содержит и другие материалы - кислород, уран 238 и продукты деления

Продукты деления - осколочные элементы, образующиеся из ДМ в результате реакции деления. Обычно радиоактивные изотопы от 70 до 140 номера таблицы Менделеева.

PWR/ВВЭР - самый распространенный в мире тип ядерных реакторов, с водой под давлением (не кипящей) в первом контуре, с тепловым нейтронным спектром.

БН - другой тип реакторов, с быстрым нейтронным спектром и натрием в качестве теплоносителя.

ЗЯТЦ - замыкание ядерного топливного цикла, перспективный метод расширения топливной базы ядерной энергетики. Подразумевает использование реакторов БН или БРЕСТ.

БРЕСТ - еще один тип реакторов, с быстрым нейтронным спектром и свинцовым теплоносителем, теоретически являющийся более безопасным, чем БН. Ни один подобный реактор пока не построен.

Дебит

Расходы на ОЯТ начинаются у оператора АЭС, когда оно покидает приреакторный бассейн выдержки и отправляется либо в сухое, либо в мокрое хранилище. Удобно здесь и далее все расходы пересчитывать в удельные затраты на килограмм тяжелых металлов ОЯТ, так вот в случае отправки в сухое хранилище такие расходы составляют от 130 до 300 долларов на кг ОЯТ и определяются в основном стоимостью контейнеров хранения либо здания, в котором размещается ОЯТ. Из этой суммы от 5 до 30 долларов приходится на транспортные операции.

Эти суммы, на самом деле, ничтожны. Килограмм ОЯТ, когда еще был топливом, выработал (если взять PWR/ВВЭР) от 400 до 500 МВт*ч электроэнергии, стоимостью где-то 16...50 тысяч долларов, т.е. перемещение в промежуточное хранение не стоит и 1% доходов от производства атомной электроэнергии.

Впрочем, промежуточное хранение на то и промежуточное, что у него должно быть какое-то продолжение. Это может быть либо прямое захоронение ОЯТ в неизменном виде, либо переработка.

Ниже табличка, которая показывает сокращение потребности в природном уране за счет использования делящихся материалов из переработанного топлива.

А теперь посмотрим, нет ли еще чего полезного в ОЯТ, что могло бы улучшить экономику переработки в целом. Тут необходимо вспомнить, что продукты деления урана и плутония - это примерно 70 изотопов 25 элементов. Некоторые нуклиды - стабильные и радиоактивные, в принципе, представляют коммерческий интерес.

Палладий . На каждую тонну продуктов деления приходится примерно 5% палладия сложного изотопного состава. Т.е. из каждой тонны ОЯТ БН, содержащей 100 килограмм продуктов деления, можно будет извлечь около 5 килограмм палладия, из тонны ОЯТ ВВЭР - 800 грамм. К сожалению, палладий будет радиоактивен из-за изотопа Pd-107 (его примерно 14% из всех изотопов палладия в ОЯТ), который имеет период полураспада 6,5 млн лет, т.е. дождаться его распада не получится. Удельная активность извлеченного из ОЯТ палладия будет около 1,2 МБк/г - это довольно много, НРБ-99 устанавливает предел безопасного годового поступления палладия такой активности в 1,45 грамма в год.

Теоретически, если этот радиоактивный палладий найдет применение (в каких-нибудь промышленных катализаторах, скажем) и цена его будет равна цене природного (~30000 долларов за кг!), то добытый из ОЯТ палладий будет восполнять 1-2% стоимости переработки ОЯТ.

Родий . Другой металл платиновой группы. Из тонны ОЯТ БН можно будет извлечь 1,2 кг родия, а из тонны ОЯТ ВВЭР - порядка 500 грамм. Самый долгоживущий радиоактивный изотоп Rh-102 с периодом полураспада 3,74 года, Где-то за 50 лет выдержки радиоактивность родия упадет до значений, после которых его можно считать не радиоактивным. Стоимость родия примерно такая же (сейчас даже больше), чем у палладия, соответственно добытый из ОЯТ родий будет восполнять 0,3-0,5% стоимости переработки.

Рутений . Кроме печально известного Ru-106 среди продуктов деления есть и стабильные изотопы этого элемента. Рутения по массе в ОЯТ примерно на 25% больше, чем палладия, а не радиоактивным (после распада основного количества Ru-106) он становится примерно за 40 лет выдержки. К сожалению, стоимость рутения в 6 раз ниже, чем палладия, поэтому он так же добавляет при продаже всего 0,2-0,4% от стоимости переработки ОЯТ.

Серебро . Среди осколков деления его доля приблизительно 0,8%. Т.е. из этой тонны осколков его будет около 8 кг. Имеет два относительно долгоживущих радиоактивных изотопа. Ag-110m с периодом полураспада 250 суток и Ag-108m c периодом полураспада 418 лет. Второй изотоп образуется со сравнительно малым выходом. Остаточная активность после 30 лет выдержки будет 2,9 мкКи/г, несколько повыше радиоактивности природного урана, но соизмеримо. Пригодно для технического применения, однако из-за относительно низкой стоимости вряд ли экономически оправдано.

Ксенон . Это самый распространенный из осколков урана или плутония - только стабильные изотопы составляют около 12% массы продуктов деления. Не смотря на его низкую, на фоне палладия или рутения, стоимость (~50 долларов за кг) тот факт, что ксенон - это благородный газ делает его интересным. При любой переработке ОЯТ ксенон выделяется в газообразном виде, поэтому никакой специальной радиохимии для его получения не нужно, что резко снижает себестоимость. Есть, правда, одна проблема - хотя среди изотопов ксенона нет долгоживущих (подарок природы!), его всегда сопровождает криптон, изотоп Kr-85 которого является долгоживущим радиоактивным элементом.
Тем не менее криогенная ректификация может помочь получить чистый ксенон, который находит сегодня все больше применения в ионных двигателях космических аппаратов, в наркозе и т.п. Не смотря на это, мне не удалось найти следов практики сохранения ксенона при переработке ОЯТ - обычно его просто сбрасывают в атмосферу.

Технически есть еще несколько элементов, которые в будущем могут представлять интерес для извлечения из ОЯТ - например теллур. Однако текущая стоимость этих материалов, как и в случае серебра не оправдывает их добычи из ОЯТ.

Получается следующая градация действий - дешевле всего “промежуточно” хранить, однако этот процесс рискует затянуться (как это происходит в США, где национальное захоронение ОЯТ обсуждается уже 40 лет) и стать существенным фактором в общей цене жизненного цикла ядерного топлива. Наилучшим мгновенным решением в плане стоимости является как можно более быстрое захоронение ОЯТ в глубокой геологии. Ну а если есть надежда на развитие атомной энергетики в сторону ЗЯТЦ - то необходимо развивать переработку ядерного топлива.

Кстати, посмотрите классный ролик про создание и испытания бетонной пробки для туннелей финского захоронения Онкало.

ЖЖ-пользователь uralochka пишет в своем блоге: Побывать на «Маяке» мне хотелось всегда.
Шутка ли, это место которое является одним из самых наукоемких предприятий России, здесь
был в 1948 году запущен первый атомный реактор в СССР, специалистами ПО «Маяк» был выпущен
плутониевый заряд для первой советской ядерной бомбы. Когда то Озерск назывался
Челябинском-65, Челябинском-40, с 1995 года он стал Озерском. У нас в Трехгорном,
некогда Златоусте-36, городе который также является закрытым, Озерск всегда называли
«Сороковкой», относились с уважением и трепетом.


Это сейчас можно о многом прочитать в официальных источниках, а еще больше в неофициальных,
а было время когда даже примерное расположение и название этих городов хранились в строжайшей
тайне. Помню как мы с моим дедом Яковлевым Евгением Михайловичем, ездили на рыбалку, дак на
вопросы местных - откуда мы, дед всегда отвечал, что из Юрюзани (соседний городок с Трехгорным),
а на въезде в город не было никаких знаков кроме неизменного «кирпича». У деда был один из
лучших друзей, звали его Митрошин Юрий Иванович, я его почему то все детство звал не иначе
как «Ванализ», не знаю почему. Помню, как то я поинтересовался у моей бабушки, а почему,
Ванализ, такой лысый, ведь не единой волосинки? Бабушка, тогда, шепотом объяснила мне,
что Юрий Иванович служил в «сороковке» и ликвидировал последствия большой аварии в 1957,
получил большую дозу радиации, порядком подпортил себе здоровье, и волосы у него больше не растут…

…А теперь спустя много лет я, как фотокорреспондент еду снимать тот самый завод РТ-1 для
агентства «Фото ИТАР-ТАСС». Время меняет все.

Озерск - город режимный, въезд по пропускам, моя анкета больше месяца была на проверке и
вот все готово, можно ехать. Встретили меня сотрудники пресс-службы на КПП, в отличии от
наших тут есть нормальная компьютеризированная система, заезжай с любого КПП, выезжай так
же с любого. После этого мы проехали до административного здания пресс-службы, там я оставил
свою машину, мне посоветовали оставить и мобильный, потому что на территории завода с
мобильными средствами связи находится запрещено. Сказано сделано, едем на РТ-1. На заводе
долго маялись на КПП, как то не сразу нас пропустили со всей моей фототехникой, но вот оно
случилось. Нам дали сурового мужчину с черной кобурой на поясе и в белой одежде. Мы встретились
с администрацией, нам сформировали целую команду провожатых и мы двинули в сан. пропускник.
К сожалению, внешнюю территорию завода, и какие либо охранные комплексы фотографировать
строго запретили, по этому все это время моя камера пролежала в рюкзаке. Вот этот кадр я
снял уже в самом конце, здесь условно начинается «грязная» территория. Разделение это
действительно условно, но соблюдается очень строго, именно это позволяет не растаскивать
радиоактивную грязь по всей окрестности.

Сан. пропускник раздельный, женщины с одного входа, мужчины с другого. Мне мои спутники
показали на шкавчик, сказали снимай все (совсем все), одевай резиновые шлепки, закрывай
шкафчик и двигай вон к тому окошку. Так я и сделал. Стою абсолютно голый, в одной руке у
меня ключ, в другой рюкзак с камерой, а женщина из окошка, которое почему то находится
слишком низко, для такого моего положения интересуется какой у меня размер обуви. Долго
смущаться не пришлось, мне оперативно выдали что то вроде подштанников, легкой рубашки,
комбинезона и обувь. Все белое, чистое и очень приятное на ощупь. Оделся, прицепил к
нагрудному кармашку таблетку дозиметра и почувствовал себя увереннее. Можно выдвигаться.
Ребята меня сразу проинструктировали, что рюкзак на пол не ставить, лишнего не трогать,
фотографировать только то что позволят. Да без проблем - говорю, рюкзак мне еще рано
выкидывать, а проблемы секреты мне тоже не нужны. Вот место где одевается и снимается
грязная обувь. В центре чисто, по краям грязно. Условный порог территории завода.

По территории завода мы перемещались на небольшом автобусе. Внешняя территория без особых
прикрас, блоки цехов связанные галереями для прохода персонала и передачи химии по трубам.
С одной стороны идет большая галерея для забора чистового воздуха из соседнего леса. Это
сделано для того чтобы люди в цехах дышали внешним чистым воздухом. РТ-1 является лишь
одним из семи заводов ПО «Маяк», его назначение прием и переработка отработанного ядерного
топлива (ОЯТ). Это цех с которого все начинается, сюда приходят контейнеры с ОЯТ.
Справа вагон с открытой крышкой. Специалисты отвинчивают верхние винты специальным
оборудованием. После этого из этого помещения все удаляются, закрывается большая дверь
толщиной около полуметра (к сожалению режимщики потребовали снимки с ней удалить).
Дальнейшая работа идет кранами, которые управляются удаленно через камеры. Краны снимают
крышки и извлекают сборки с ОЯТ.

Кранами сборки переносятся вот в эти люки. Обратите внимание на кресты, они нарисованы,
чтобы проще было позиционировать положение крана. Под люками сборки погружаются в
жидкость - конденсат (попросту говоря в дистиллированную воду). После этого сборки на
тележках перемещаются в соседний бассейн, который является временным складом.

Не знаю точно как это называется, но суть понятна - простое приспособление, чтобы не
перетаскивать радиоактивную пыль из одного помещения в другое.

Слева, та самая дверь.

А это то самое смежное помещение. Под ногами сотрудников находится бассейн, с глубиной от 3,5 до 14
метров заполненный конденсатом. ? Еще там видны два блока с Белоярской АЭС, длина их 14 метров.
Называются АМБ - «Атом мирный большой».

Когда смотришь между металлических плит, видишь примерно вот такую картину. Под конденсатом
виднеется сборка топливных элементов от судоходного реактора.

А вот эти сборки только пришли с АЭС. Когда выключили свет, они светились бледно синим свечением.
Очень впечатляюще. Это Черенковское свечение, о сути этого физического явления можно почитать в википедии.

Общий вид цеха.

Идем дальше. Переходы между отделами по коридорам с тусклым желтым светом. Под ногами достаточно
специфичное покрытие, закатанное на все углы. Люди в белом. В общем я как то сразу «Черную Мессу»
вспомнил))). Кстати, про покрытие, очень разумное решение, с одной стороны так удобнее мыть,
ничего нигде не застрянет, и самое главное, в случае любой утечки или аварии, грязный пол можно
легко демонтировать.

Как мне пояснили дальнейшие операции с ОЯТ идут в закрытых помещениях в автоматическом режиме.
Всем процессом, когда то управляли вот с этих пультов, а сейчас все происходит с трех терминалов.
Каждый из них работает на своем автономном сервере, все функции дублируются. В случае отказа всех
терминалов оператор сможет завершить процессы с пульта.

Вкратце о том что происходит с ОЯТ. Сборки разбираются, начинка извлекается, распиливается на
части и помещается в растворитель (азотная кислота), после этого растворенное отработанное топливо
проходит целый комплекс химических преобразований, от туда извлекается уран, плутоний, нептуний.
Не растворимые части, которые не подлежат переработки прессуются и остекленяются. И хранятся на
территории завода под постоянным наблюдением. На выходе после всех этих процессов формируется
готовые сборки уже «заряженные» свежим топливом, которое производят здесь же. Таким образом Маяк
осуществляет полный цикл по работе с ядерным топливом.

Отдел по работе с плутонием.

От активных элементов оператора защищает восемь слоев освинцованного 50 мм стекла. Манипулятор
связан исключительно электрическими связями, никаких «дырок» соединяющих с внутренним отсеком нет.

Мы переместились в цех, который занимается отгрузкой готовой продукции.

Желтый контейнер предназначен для перевозки готовых топливных сборок. На переднем плане крышки от контейнеров.

Внутренности контейнера, сюда по видимому, монтируются твэлы.

Крановщик, управляет краном с любого удобного ему места.

По бокам цельнонержавеющие контейнеры. Как мне объяснили таких всего 16 в мире.

Отработанное ядерное топливо энергетических реакторов Начальная стадия послереакторного этапа ЯТЦ одинакова для открытого и закрытого циклов ЯТЦ.

Она включает в себя извлечение ТВЭЛов с отработанным ядерным топливом из реактора, хранение его в пристанционном бассейне («мокрое» хранение в бассейнах выдержки под водой) в течение нескольких лет и затем транспортировка к заводу переработки. В открытом варианте ЯТЦ отработанное топливо помещают в специально оборудованные хранилища («сухое» хранение в среде инертного газа или воздуха в контейнерах или камерах), где выдерживают нескольких десятилетий, затем перерабатывают в форму, предотвращающую хищение радионуклидов и подготавливают к окончательному захоронению.

В закрытом варианте ЯТЦ отработавшее топливо поступает на радиохимический завод, где перерабатывается с целью извлечения делящихся ядерных материалов.

Отработанное ядерное топливо (ОЯТ) - особый вид радиоактивных материалов – сырьё для радиохимической промышленности.

Облученные тепловыделяющие элементы, извлеченные из реактора после их отработки, обладают значительной накопленной активностью. Различают два вида ОЯТ:

1) ОЯТ промышленных реакторов, которое имеет химическую форму как самого топлива, так и его оболочки, удобную для растворения и последующей переработки;

2) ТВЭЛы энергетических реакторов.

ОЯТ промышленных реакторов перерабатывают в обязательном порядке, тогда как ОЯТ перерабатывают далеко не всегда. Энергетическое ОЯТ относят к высокоактивным отходам, если не подвергают дальнейшей переработке, или к ценному энергетическому сырью, если подвергают переработке. В некоторых странах (США, Швеция, Канада, Испания, Финляндия) ОЯТ полностью относят к радиоактивным отходам (РАО). В Англии, Франции, Японии – к энергетическому сырью. В России часть ОЯТ считается радиоактивными отходами, часть поступает на переработку на радиохимические заводы (146).

Из-за того, что далеко не все страны придерживаются тактики замкнутого ядерного цикла, ОЯТ в мире постоянно увеличивается. Практика стран, придерживающихся замкнутого уранового топливного цикла показала, что частичное замыкание ЯТЦ легководных реакторов убыточно даже при возможном в последующие десятилетия удорожании урана в 3-4 раза. Тем не менее эти страны замыкают ЯТЦ легководных реакторов, покрывая затраты за счет увеличения тарифов на электроэнергию. Наоборот, США и некоторые другие страны отказываются от переработки ОЯТ, имея в виду будущее окончательное захоронение ОЯТ, предпочитая его длительную выдержку, что оказывается дешевле. Тем не менее, ожидается, что к двадцатым годам переработка ОЯТ в мире увеличится.



Извлеченное из активной зоны энергетического реактора ТВС с отработанным ядерным топливом хранят в бассейне выдержки на АЭС в течение 5-10 лет для снижения в них тепловыделения и распада короткоживущих радионуклидов. В 1 кг отработавшего ядерного топлива АЭС в первый день после его выгрузки из реактора содержится от 26 до 180 тыс. Ки радиоактивности. Через год активность 1 кг ОЯТ снижается до 1 тыс. Ки, через 30 лет-до 0,26 тыс. Ки. Через год после выемки, в результате распада короткоживущих радионуклидов активность ОЯТ сокращается в 11 - 12 раз, а через 30 лет - в 140 - 220 раз и дальше медленно уменьшается в течение сотен лет 9 (146).

Если в реактор первоначально загружался природный уран, то в отработавшем топливе остается 0,2 - 0,3% 235U. Повторное обогащение такого урана экономически нецелесообразно, поэтому он остается в виде так называемого отвального урана. Отвальный уран в дальнейшем может быть использован как воспроизводящий материал в реакторах на быстрых нейтронах. При использовании для загрузки ядерных реакторов низкообогащенного урана ОЯТ содержит 1% 235U. Такой уран может быть дообогащен до первоначального содержания его в ядерном топливе, и возвращен в ЯТЦ. Восстановление реактивности ядерного топлива может быть осуществлено добавлением в него других делящихся нуклидов - 239Pu или 233U, т.е. вторичного ядерного топлива. Если к обедненному урану добавляется 239Pu в количестве, эквивалентном обогащению топлива 235U, то реализуется уран-плутониевый топливный цикл. Смешанное уран-плутониевое топливо используется как в реакторах на тепловых, так и на быстрых нейтронах. Уран-плутониевое топливо обеспечивает максимально полное использование урановых ресурсов и расширенное воспроизводство делящегося материала. Для технологии регенерации ядерного топлива чрезвычайно важны характеристики выгружаемого из реактора топлива: химический и радиохимический состав, содержание делящихся материалов, уровень активности. Эти характеристики ядерного топлива определяются мощностью реактора, глубиной выгорания топлива в реакторе, продолжительностью кампании, коэффициентом воспроизводства вторичных делящихся материалов, времени выдержки топлива после выгрузки его из реактора, типом реактора.

Выгруженное из реакторов отработавшее ядерное топливо передается на переработку только после определенной выдержки. Это связано с тем, что среди продуктов деления имеется большое количество короткоживущих радионуклидов, которые определяют большую долю активности выгружаемого из реактора топлива. Поэтому свежевыгруженное топливо выдерживают в специальных хранилищах в течение времени, достаточного для распада основного количества короткоживущих радионуклидов. Это значительно облегчает организацию биологической защиты, снижает радиационное воздействие на химические реагенты и растворители в процессе переработки обработавшего ядерного топлива и уменьшает набор элементов, от которых должны быть очищены основные продукты. Так, после двух-трехлетней выдержки активность облученного топлива определяют долгоживущие продукты деления: Zr, Nb, Sr, Ce и другие РЗЭ, Ru и α-активные трансурановые элементы. 96% ОЯТ – это уран-235 и уран-238, 1% - плутоний, 2-3% - радиоактивные осколки деления.

Время выдержки ОЯТ - 3 года для легководных реакторов, 150 суток для реакторов на быстрых нейтронах (155).

Суммарная активность продуктов деления, содержащихся в 1 т ОЯТ ВВЭР-1000 после трех лет выдержки в бассейне выдержки (ББ), составляет 790000 Ки.

При хранении ОЯТ в пристанционном хранилище, его активность монотонно уменьшается (примерно на порядок за 10 лет). Когда активность упадет до норм, определяющих безопасность транспортировки ОЯТ по железной дороге, его извлекают их хранилища и перемещают либо в долговременное хранилище, либо на завод по переработке топлива. На перерабатывающем заводе сборки ТВЭЛов с помощью погрузочно-разгрузочных механизмов перегружается из контейнеров в заводской буферный бассейн-хранилище. Здесь сборки хранят до тех пор, пока их не направляют на переработку. После выдержки в бассейне в течение срока, выбранного на данном заводе, ТВС выгружают из хранилища и направляют в отделение подготовки топлива к экстракции на операции вскрытия отработавших твэлов.

Переработку облученного ядерного топлива проводят с целью извлечения из него делящихся радионуклидов (прежде всего 233U, 235U и 239Pu), очистки урана от нейтрон поглощающих примесей, выделения нептуния и некоторых других трансурановых элементов, получения изотопов для промышленных, научных или медицинских целей. Под переработкой ядерного топлива понимают переработку ТВЭЛов энергетических, научных или транспортных реакторов, так и переработку бланкетов реакторов-размножителей. Радиохимическая переработка ОЯТ – основная стадия закрытого варианта ЯТЦ, и обязательная стадия наработки оружейного плутония (рис.35).

Переработка делящегося материала, облученного нейтронами в ядерном реакторе топлива осуществляется для решения таких задач, как

Получение урана и плутония для производства нового топлива;

Получение делящихся материалов (урана и плутония) для производства ядерных боеприпасов;

Получение разнообразных радиоизотопов, находящих применение в медицине, промышленности и науке;

Рис. 35. Некотрые этапы переботки отработанного ядерного топлива на ПО Маяк. Все операции проводят с помощью манипуляторов и камерах защищенных 6-слойным свинцовым скеклом (155).

Получение доходов от других стран, которые либо заинтересованы в первом и втором, либо не хотят хранить у себя большие объемы ОЯТ;

Решение экологических проблем, связанных с захоронением РАО.

В России перерабатывается облученный уран реакторов-бридеров и ТВЭЛы реакторов ВВЭР-440, БН и некоторых судовых двигателей; ТВЭЛы основных типов энергетических реакторов ВВЭР-1000, РБМК (любых типов) не перерабатываются и в настоящее время накапливаются в специальных хранилищах.

В настоящее время количество ОЯТ постоянно увеличивается и его регенерация - основная задача радиохимической технологии переработки отработавших ТВЭЛов. В процессе переработки проводится выделение урана и плутония и очистка их от радиоактивных продуктов деления, в том числе от нейтронопоглощающих нуклидов (нейтронных ядов), которые при повторном использовании делящихся материалов могут препятствовать развитию в реакторе цепной ядерной реакции.

Среди радиоактивных продуктов деления содержится большое количество ценных радионуклидов, которые можно использовать в области малой ядерной энергетики (радиоизотопные источники тепла для термогенераторов электроэнергии), а также для изготовления источников ионизирующего излучения. Применение находят трансурановые элементы, получающиеся в результате побочных реакций ядер урана с нейтронами. Радиохимическая технология переработки ОЯТ должна обеспечивать извлечение всех нуклидов, полезных с практической точки зрения или представляющих научный интерес(147 43).

Процесс химической переработки отработавшего топлива связан с решением проблемы изоляции от биосферы большого количества радионуклидов образующихся в результате деления ядер урана. Эта проблема - одна из наиболее серьезных и трудно решаемых проблем развития ядерной энергетики.

Первая стадия радиохимического производства включает подготовку топлива, т.е. в освобождение его от конструкционных деталей сборок и разрушение защитных оболочек ТВЭЛов. Следующая стадия связана с переводом ядерного топлива в ту фазу, из которой будет производиться химическая обработка: в раствор, в расплав, в газовую фазу. Перевод в раствор чаще всего производят растворением в азотной кислоте. При этом уран переходит в шестивалентное состояние и образует ион уранила, UO 2 2+ , а плутоний - частично в шести и в четырехвалентное состояние, PuO 2 2+ и Pu 4+ соответственно. Перевод в газовую фазу связан с образованием летучих галогенидов урана и плутония. После перевода ядерных материалов соответствующую фазу проводят ряд операций, непосредственно связанных с выделением и очисткой ценных компонентов и выдачей каждого из них в форме товарного продукта(рис.36).

Рис.36. Общая схема обращения урана и плутония в замкнутом цикле (156).

Переработка (репроцессинг) ОЯТ заключается в извлечении урана, накопленного плутония и фракций осколочных элементов. В 1 т ОЯТ на момент извлечения из реактора содержится 950-980 кг 235U и 238U, 5,5-9,6 кг Pu, а также небольшое количество α- излучателей (нептуний, америций, кюрий и др.), активность которых может достигать 26 тыс. Ки на 1 кг ОЯТ. Именно эти элементы в ходе замкнутого ЯТЦ необходимо выделить, сконцентрировать, очистить и перевести в необходимую химическую форму.

Технологический процесс переработки ОЯТ включает:

Механическую фрагментацию (рубку) ТВС и ТВЭЛов с целью вскрытия топливного материала;

Растворение;

Очистку растворов балластных примесей;

Экстракционное выделение и очистку урана, плутония и других товарных нуклидов;

Выделение диоксида плутония, диоксида нептуния, гексагидрата нитрата уранила и закиси-окиси урана;

Переработку растворов, содержащих другие радионуклиды, и их выделение.

В основе технологии выделения урана и плутония, их разделения и очистки от продуктов деления лежит процесс экстракции урана и плутония трибутилфосфатом. Он осуществляется на многоступенчатых экстракторах непрерывного действия. В результате уран и плутоний очищаются от продуктов деления в миллионы раз. Переработка ОЯТ связана с образованием небольшого объема твердых и газообразных РАО активностью около 0,22 Ки/год (предельно допустимый выброс 0,9 Ки/год) и большим количеством жидких радиоактивных отходов.

Все конструкционные материалы ТВЕЛов отличаются химической стойкостью, и растворение их представляет серьезную проблему. Кроме делящихся материалов, ТВЭЛы содержат различные накопители и покрытия, состоящие из нержавеющей стали, циркония, молибдена, кремния, графита, хрома и др. При растворении ядерного топлива эти вещества не растворяются в азотной кислоте и создают в полученном растворе большое количество взвесей и коллоидов.

Перечисленные особенности ТВЭЛов обусловили необходимость разработки новых методов вскрытия или растворения оболочек, а также осветления растворов ядерного топлива перед экстракционной переработкой.

Глубина выгорания топлива реакторов для получения плутония существенно отличается от глубины выгорания топлива энергетических реакторов. Поэтому на переработку поступает материалы с гораздо более высоким содержанием радиоактивных осколочных элементов и плутония на 1 т U. Это приводит к повышению требований к процессам очистки получаемых продуктов и к обеспечению ядерной безопасности в процессе переработки. Трудности возникают из-за необходимости переработки и захоронения большого количества жидких высокоактивных отходов.

Далее проводят выделение, разделение и очистку урана, плутония и нептуния тремя экстракционными циклами. В первом цикле осуществляют совместную очистку урана и плутония от основной массы продуктов деления, а затем проводят разделение урана и плутония. На втором и третьем циклах уран и плутоний подвергают дальнейшей раздельной очистке и концентрированию. Полученные продукты - уранилнитрат и нитрат плутония - помещают в буферные ёмкости до передачи их в конверсионные установки. В раствор нитрата плутония добавляют щавелевую кислоту, образующуюся суспензию оксалата фильтруют, осадок кальцинируют.

Порошкообразную окись плутония просеивают через сито и помещают в контейнеры. В таком виде плутоний хранят до того, как он поступит на завод по изготовлению новых ТВЭЛов.

Отделение материала оболочки ТВЭЛов от топливной оболочки - одна из наиболее сложных задач процесса регенерации ядерного топлива. Существующие методы можно разделить на две группы: методы вскрытия с разделением материалов оболочки и сердечника ТВЭЛов и методы вскрытия без отделения материалов оболочки от материала сердечника. Первая группа предусматривает снятие оболочки ТВЭЛов и удаление конструкционных материалов до растворения ядерного топлива. Водно-химические методы заключаются в растворении материалов оболочки в растворителях, не затрагивающих материалы сердечника.

Использование этих методов характерно для переработки ТВЭЛов из металлического урана в оболочках из алюминия или магния и его сплавов. Алюминий легко растворяется в едком натре или азотной кислоте, а магний - в разбавленных растворах серной кислоты при нагревании. После растворения оболочки сердечник растворяют в азотной кислоте.

Однако ТВЭЛы современных энергетических реакторов имеют оболочки из коррозионностойких, труднорастворимых материалов: циркония, сплавов циркония с оловом (циркалой) или с ниобием, нержавеющей стали. Селективное растворение этих материалов возможно только в сильно агрессивных средах. Цирконий растворяют в плавиковой кислоте, в смесях её со щавелевой или азотной кислотами или растворе NH4F. Оболочку из нержавеющей стали - в кипящей 4-6 М H 2 SO 4 . Основной недостаток химического способа снятия оболочек - образование большого количества сильно засолённых жидких радиоактивных отходов.

Чтобы уменьшить объем отходов от разрушения оболочек и получить эти отходы сразу в твёрдом состоянии, более пригодном для длительного хранения, разрабатывают процессы разрушения оболочек под воздействием неводных реагентов при повышенной температуре (пирохимические методы). Оболочку из циркония снимают безводным хлористым водородом в псевдоожиженном слое Аl 2 О 3 при 350-800 о С. Цирконий превращается при этом в летучий ZrC l4 и отделяется от материала сердечника сублимацией, а затем гидролизуется, образуя твердую двуокись циркония. Пирометаллургические методы основаны на прямом оплавлении оболочек или растворения их в расплавах других металлов. Эти методы используют различие в температурах плавления материалов оболочки и сердечника или различие их растворимости в других расплавленных металлах или солях.

Механические методы снятия оболочек включают несколько стадий. Сначала отрезают концевые детали тепловыделяющей сборки и разбирают ее на пучки ТВЭЛов и на отдельные ТВЭЛы. Затем механически снимают оболочки отдельно с каждого ТВЭЛа.

Вскрытие ТВЭЛов может проводиться без отделения материалов оболочки от материала сердечника.

При реализации водно-химических методов оболочку и сердечник растворяют в одном и том же растворителе с получением общего раствора. Совместное растворение целесообразно при переработке топлива с высоким содержанием ценных компонентов (235U и Pu) или когда на одном заводе перерабатывают разные виды ТВЭЛов, различающихся размером и конфигурацией. В случае пирохимических методов ТВЭЛ обрабатывают газообразными реагентами, которые разрушают не только оболочку, но и сердечник.

Удачной альтернативой методам вскрытия с одновременным удалением оболочки и методам совместного разрушения оболочки и сердечников оказался метод «рубка-выщелачивание». Метод пригоден для переработки ТВЭЛов в оболочках, нерастворимых в азотной кислоте. Сборки ТВЭЛов разрезают на мелкие куски, обнаружившийся сердечник ТВЭЛа становится доступным действию химических реагентов и растворяется в азотной кислоте. Нерастворившиеся оболочки отмывают от остатков задержавшегося в них раствора и удаляют в виде скрапа. Рубка ТВЭЛов имеет определенные преимущества. Образующиеся отходы - остатки оболочек - находятся в твердом состоянии, т.е. не происходит образования жидких радиоактивных отходов, как при химическом растворении оболочки; не происходит и значительных потерь ценных компонентов, как при механическом снятии оболочек, так как отрезки оболочек могут быть отмыты с большой степенью полноты; конструкция разделочных машин упрощается в сравнении с конструкцией машин для механического снятия оболочек. Недостаток метода рубки-выщелачивания - сложность оборудования для рубки ТВЭЛов и необходимость его дистанционного обслуживания. В настоящее время исследуют возможность замены механических способов рубки на электролитический и лазерный методы.

В отработанных ТВЭЛах энергетических реакторов высокой и средней глубины выгорания накапливается большое количество газообразных радиоактивных продуктов, которые представляют серьезную биологическую опасность: тритий, иод и криптон. В процессе растворения ядерного топлива они в основном выделяются и уходят с газовыми потоками, но частично остаются в растворе, а затем распределяются в большом количестве продуктов по всей цепочки переработки. Особенно опасен тритий, образующий тритированную воду НТО, которую затем трудно отделить от обычной воды Н2О. Поэтому на стадии подготовки топлива к растворению вводят дополнительные операции, позволяющие освободить топливо от основной массы радиоактивных газов, сосредоточив их в небольших объемах сбросных продуктов. Куски оксидного топлива подвергают окислительной обработке кислородом при температуре 450-470 о С. При перестройке структуры решетки топлива в связи с переходом UO 2 -U 3 O 8 происходит выделение газообразных продуктов деления - тритий,йод, благородных газов. Разрыхление топливного материала при выделении газообразных продуктов, а также при переходе диоксида урана в закись-окись способствует ускорению последующего растворения материалов в азотной кислоте.

Выбор метода переведения ядерного топлива в раствор зависит от химической формы топлива, способа предварительной подготовки топлива, необходимости обеспечения определенной производительности. Металлический уран растворяют в 8-11М HNO 3 , а диоксид урана - в 6-8М HNO 3 при температуре 80-100 о С.

Разрушение топливной композиции при растворении приводит к освобождению всех радиоактивных продуктов деления. При этом газообразные продукты деления попадают в систему сброса отходящих газов. Перед выбросом в атмосферу сбросные газы очищают.

Выделение и очистка целевых продуктов

Уран и плутоний, разделенные после первого цикла экстракции, подвергают дальнейшей очистке от продуктов деления, нептуния и друг от друга до уровня, отвечающего техническим условиям ЯТЦ и затем превращают в товарную форму.

Наилучших результатов по дальнейшей очистке урана достигают комбинированием разных методов, например экстракции и ионного обмена. Однако в промышленном масштабе экономичнее и технически проще использовать повторение циклов экстракции с одним и тем же растворителем - трибутилфосфатом.

Число циклов экстракции и глубина очистки урана определяются типом и выгоранием ядерного топлива, поступающего на переработку, и задачей отделения нептуния. Для удовлетворения технических условий по содержанию примесных α-излучателей в уране общий коэффициент очистки от нептуния должен быть ≥500. Уран после сорбционной очистки реэкстрагируют в водный раствор, который анализируют на чистоту, содержание урана и степень обогащения по 235U.

Завершающая стадия аффинажа урана предназначена для перевода его в оксиды урана - либо осаждением в виде перекиси уранила, оксалата уранила, уранилкарбоната аммония или ураната аммония с последующим их прокаливанием, либо прямым термическим разложением гексагидрата уранилнитрата.

Плутоний после отделения от основной массы урана подвергают дальнейшей очистке от продуктов деления, урана и других актиноидов до собственного фона по γ- и β-активности. В качестве конечного продукта на заводах стремятся получать диоксид плутония, а в дальнейшем в комплексе с химической переработкой осуществлять и производство ТВЭЛов, что позволяет избежать дорогостоящих перевозок плутония, требующих особых предосторожностей особенно при перевозке растворов нитрата плутония. Все стадии технологического процесса очистки и концентрирования плутония требуют особой надежности систем обеспечения ядерной безопасности, а также защиты персонала и предотвращения возможности загрязнения окружающей среды ввиду токсичности плутония и высокого уровня α-излучения. При разработке оборудования учитывают все факторы, которые могут вызвать возникновение критичности: массу делящегося материала, гомогенность, геометрию, отражение нейтронов, замедление и поглощение нейтронов, а также концентрацию делящегося вещества в данном процессе и др. Минимальная критическая масса водного раствора нитрата плутония равна 510 г (при наличии водяного отражателя). Ядерная безопасность при осуществлении операций в плутониевой ветви обеспечивается специальной геометрией аппаратов (их диаметр и объем) и ограничением концентрации плутония в растворе, которая постоянно контролируется в определенных точках непрерывного процесса.

Технология окончательной очистки и концентрирования плутония основывается на проведении последовательных циклов экстракции или ионного обмена и дополнительной аффинажной операции осаждения плутония с последующим термическим превращением его в двуокись.

Диоксид плутония поступает в установку кондиционирования, где её подвергают прокаливанию, дроблению, просеиванию, комплектованию партий и упаковке.

Для изготовления смешанного уран-плутониевого топлива целесообразен метод химического соосаждения урана и плутония, позволяющий достичь полной гомогенности топлива. Такой процесс не требует разделения урана и плутония при переработке отработавшего топлива. В этом случае смешанные растворы получают при частичном разделении урана и плутония вытеснительной реэкстракций. Таким способом можно получать (U, Pu)O2 для легководных ядерных реакторов на тепловых нейтронах с содержанием PuO2 3%, а также для реакторов на быстрых нейтронах с содержанием PuO2 20%.

Дискуссия о целесообразности регенерации отработавшего топлива носит не только научно-технический и экономический, но и политический характер, так как развертывание строительства заводов регенерации представляет потенциальную угрозу распространения ядерного оружия. Центральная проблема - обеспечение полной безопасности производства, т.е. обеспечение гарантий контролируемого использования плутония и экологической безопасности. Поэтому сейчас создаются эффективные системы контроля технологического процесса химической переработки ядерного топлива, обеспечивающие возможность определения количества делящихся материалов на любой стадии процесса. Обеспечению гарантий нераспространения ядерного оружия служат так же предложения так называемых альтернативных технологических процессов, например CIVEX-процесс, в котором плутоний ни на одной из стадий процесса не отделяется полностью от урана и продуктов деления, что значительно затрудняет возможность его использования во взрывных устройствах.

Civex - воспроизводство ядерного топлива без выделения плутония.

Для повышения экологичности переработки ОЯТ разрабатываются неводные технологические процессы, в основе которых лежат различия летучести компонентов перерабатываемой системы. Преимущества неводных процессов заключаются в их компактности, в отсутствии сильных разбавлений и образовании больших объемов жидких радиоактивных отходов, в меньшем влиянии процессов радиационного разложения. Образующиеся отходы находятся в твердой фазе и занимают значительно меньший объем.

В настоящее время прорабатывается вариант организации АЭС, при котором на станции строятся не одинаковые блоки (например, три однотипных блока на тепловых нейтронах), а разнотипные (например, два тепловых и один быстрый реактор). Сначала обогащенное по 235U топливо сжигается на тепловом реакторе (с образованием плутония), затем ОТЯ топливо перемещается в быстрый реактор, в котором за счет возникшего плутония перерабатывается 238U. После окончания цикла использования, ОЯТ подается на радиохимический завод, который расположен прямо на территории АЭС. Завод не занимается полной переработкой топлива - он ограничивается выделением из ОЯТ только урана и плутония (путем отгонки шестифтористых фторидовэтих элементов). Выделенные уран и плутоний поступают на изготовление нового смешанного топлива, а оставшееся ОЯТ идёт или на завод по выделению полезных радионуклидов, или на захоронение.

Атомная энергетика состоит из большого количества предприятий разного назначения. Сырье для этой индустрии добывается на урановых рудниках. После оно доставляется на предприятия по изготовлению топлива.

Далее топливо транспортируют на атомные станции, где оно попадает в активную зону реактора. Когда ядерное топливо отрабатывает свой срок, его подлежат захоронению. Стоит отметить, что опасные отходы появляются не только после переработки топлива, но и на любом этапе - от добычи урана до работы в реакторе.

Ядерное топливо

Топливо бывает двух видов. Первое - это уран, добытый в шахтах, соответственно, природного происхождения. Он содержит сырье, которое способно образовать плутоний. Второе - это топливо, которое создано искусственно (вторичное).

Также ядерное топливо делится по химическому составу: металлическое, оксидное, карбидное, нитридное и смешанное.

Добыча урана и производство топлива

Большая доля добычи урана приходится всего лишь на несколько стран: Россию, Францию, Австралию, США, Канаду и ЮАР.

Уран - это основной элемент для топлива на атомных электростанциях. Чтобы попасть в реактор, он проходит несколько стадий обработки. Чаще всего залежи урана находятся рядом с золотом и медью, поэтому его добычу осуществляют с добычей драгоценных металлов.

На разработках здоровье людей подвергается большой опасности, потому что уран - токсичный материал, и газы, которые появляются в процессе его добычи, вызывают разнообразные формы рака. Хотя в самой руде содержится очень малое количество урана - от 0,1 до 1 процента. Также большому риску подвергается население, которое проживает рядом с урановыми шахтами.

Обогащенный уран - главное топливо для атомных станций, но после его использования остается огромное количество радиоактивных отходов. Несмотря на всю его опасность, обогащение урана является неотъемлемым процессом создания ядерного топлива.

В природном виде уран практически нельзя нигде применить. Для того чтобы использовать, его нужно обогатить. Для обогащения используются газовые центрифуги.

Обогащенный уран используют не только в атомной энергетике, но и в производстве оружия.

Транспортировка

На любом этапе топливного цикла есть транспортировка. Она осуществляется всеми доступными способами: по земле, морем, воздухом. Это большой риск и большая опасность не только для экологии, но и для человека.

Во время перевозки ядерного топлива или его элементов происходит немало аварий, следствием которых является выброс радиоактивных элементов. Это одна из многих причин, по которой считают небезопасной.

Вывод из строя реакторов

Ни один из реакторов не демонтирован. Даже печально известная Чернобыльская Все дело в том, что по подсчетам экспертов цена демонтажа равняется, а то и превосходит цену постройки нового реактора. Но точно никто не может сказать, сколько понадобится средств: стоимость рассчитывалась на опыте демонтажа небольших станций для исследования. Специалисты предлагают два варианта:

  1. Помещать реакторы и отработанное ядерное топливо в могильники.
  2. Строить над вышедшими из эксплуатации реакторами саркофаги.

В ближайшие десять лет около 350 реакторов по всему миру выработают свой ресурс и должны быть выведены из строя. Но так как наиболее подходящего по безопасности и цене способа не придумали, это вопрос еще решается.

Сейчас по всему миру работают 436 реакторов. Безусловно, это большой вклад в энергосистему, но он очень небезопасен. Исследования показывают, что через 15-20 лет АЭС смогут заменить станциями, которые работают на энергии ветра и солнечных батареях.

Ядерные отходы

Огромное количество ядерных отходов образуется в результате деятельности АЭС. Переработка ядерного топлива также оставляет после себя опасные отходы. При этом ни одна из стран не нашла решения проблемы.

Сегодня ядерные отходы содержатся во временных хранилищах, в бассейнах с водой или захороняются неглубоко под землей.

Наиболее безопасный способ - это хранение в специальных хранилищах, но тут тоже возможна утечка радиации, как и при других способах.

На самом деле ядерные отходы имеют некоторую ценность, но требуют строго соблюдения правил их хранения. И это наиболее острая проблема.

Важным фактором является время, в течение которого отходы опасны. У каждого свой срок распада, в течение которого оно токсично.

Виды ядерных отходов

При эксплуатации любой атомной электростанции ее отходы попадают в окружающую среду. Это вода для охлаждения турбин и газообразные отходы.

Ядерные отходы делят на три категории:

  1. Низкого уровня - одежда сотрудников АЭС, лабораторное оборудование. Такие отходы могут поступать и из медицинских учреждений, научных лабораторий. Они не представляют большой опасности, но требуют соблюдения мер безопасности.
  2. Промежуточного уровня - металлические емкости, в которых перевозят топливо. Уровень радиации их достаточно высок, и те, кто находится от них недалеко, должны быть защищены.
  3. Высокого уровня - это отработанное ядерное топливо и продукты его переработки. Уровень радиоактивности быстро уменьшается. Отходов высокого уровня очень мало, около 3 процентов, но они содержат 95 процентов всей радиоактивности.

Хранение облученного ядерного топлива - сложный процесс, требующий повышенных мер безопасности. На Горно-химическом комбинате в г. Железногорск (Красноярский край) действуют водоохлаждаемое и сухое хранилища ОЯТ. Комбинат развивает технологии переработки отработавшего топлива, что поможет Росатому двигаться в сторону замыкания ядерного топливного цикла.

Отходы или ценное сырье?

Судьба ОЯТ может складываться по-разному. В большинстве стран ядерное топливо, отработавшее положенный срок в реакторе АЭС, считают радиоактивными отходами и отправляют в могильники или вывозят за рубеж. Сторонники такого подхода (среди них, например, США, Канада, Финляндия) придерживаются мнения, что на планете достаточно запасов урановой руды, чтобы осваивать дорогостоящий, сложный и потенциально опасный процесс переработки ОЯТ. Россия и еще несколько ядерных держав (в том числе Франция, Англия, Индия) развивают технологии переработки облученного топлива и стремятся к тому, чтобы в перспективе полностью замкнуть топливный цикл.

Замкнутый цикл предполагает, что полученное из урановой руды и отработавшее в реакторе топливо будет снова и снова перерабатываться и использоваться на АЭС. В результате ядерная энергетика фактически превратиться в возобновляемый ресурс, снизится количество радиоактивных отходов, а человечество будет обеспечено относительно дешевой энергией на тысячи лет.

Привлекательность переработки ОЯТ объясняется малой глубиной выгорания ядерного топлива в ходе одной кампании: на наиболее распространенных водо-водяных реакторах (ВВЭР) она не превышает 3-5%, на устаревших канальных реакторах большой мощности (РБМК) - всего 2 %, и только на реакторах на быстрых нейтронах (БН) может достигать 20 %, но таких реакторов промышленного масштаба пока всего два в мире (оба в России, на Белоярской АЭС). Таким образом, ОЯТ представляет собой источник ценных компонентов, в том числе изотопов урана и плутония.

Путь ОЯТ: от реактора до места хранения

Напомним, что на АЭС ядерное топливо поступает в виде тепловыделяющих сборок (ТВС), состоящих из герметичных стержней (тепловыделяющих элементов - ТВЭЛов), наполненных таблетками гексафторида урана.

Тепловыделяющая сборка для ВВЭР состоит из 312 ТВЭЛов, закрепленных на шестигранном каркасе (фото ПАО «НЗХК»)

Отработавшее ядерное топливо (ОЯТ) атомных электростанций требует особого обращения. Находясь в реакторе, ТВЭЛы накапливают большое количество продуктов деления, и даже спустя годы после извлечения из активной зоны выделяют тепло: на воздухе стержни разогревается до нескольких сотен градусов. Поэтому по окончании топливной кампании облученные сборки помещают в пристанционные бассейны выдержки. Вода отводит избыточное тепло и защищает персонал АЭС от повышенного уровня радиации.

Спустя три-пять лет ТВС все еще выделяют тепло, но временное отсутствие охлаждения уже не опасно. Атомщики пользуются этим, чтобы вывезти ОЯТ с электростанции в специализированные хранилища. В России отработавшее топливо отправляют на ПО «Маяк» (Челябинская область) и Изотопно-химический завод Горно-химического комбината (Красноярский край). ГХК специализируется на хранении топлива реакторов ВВЭР-1000 и РБМК-1000. На предприятии действуют «мокрое» (водоохлаждаемое) хранилище, построенное в 1985 году, и сухое, поэтапно запущенное в 2011-2015 гг.

«Для транспортировки ОЯТ ВВЭР по железной дороге топливные сборки помещают в ТУК (транспортный упаковочный комплект), сертифицированный по стандартам МАГАТЭ, - рассказывает Игорь Сеелев, директор Изотопно-химического завода ГХК. - Каждый ТУК вмещает 12 сборок. Такой контейнер из нержавеющей стали обеспечивает полную защиту персонала и населения от излучения. Целостность упаковки не нарушится даже в случае тяжелой железнодорожной аварии. Состав с ОЯТ сопровождает сотрудник нашего комбината и вооруженная охрана».

В пути ОЯТ успевает разогреться до 50-80 °С, поэтому прибывший на комбинат ТУК отправляют в узел расхолаживания, где к нему по трубопроводам подается вода со скоростью 1 см/мин - резко менять температуру топлива нельзя. Через 3-5 часов контейнер охлаждается до 30°С. Воду сливают, и переносят ТУК в бассейн глубиной 8 м - для перегрузки. Крышку контейнера открывают прямо под водой. И под водой же переносят каждый ТВС в 20-местный чехол для хранения. Конечно, никаких водолазов на ГХК нет, все операции выполняют с помощью особого крана. Этот же кран перемещает чехол со сборками в отсек хранения.

Освободившийся ТУК отправляют на дезактивацию, после которой его можно без дополнительных предосторожностей перевозить по железной дороге. В год ГХК выполняет более 20 рейсов на атомные станции, по несколько контейнеров в каждом эшелоне.

«Мокрое» хранилище

«Мокрое» хранилище можно было бы принять за гигантский школьный спортзал, если бы не металлические листы на полу. Если приглядеться, можно заметить, что желтые разделительные полосы - это узкие люки. Когда нужно поставить чехол в тот или иной отсек, кран движется по этим полосам как по направляющим, перемещая груз под водой.
Над сборками надежный барьер для излучения - двухметровый слой обессоленной воды. В зале хранилища нормальная радиационная обстановка. Гости даже могут пройтись по крышкам люков и заглянуть в них.

Хранилище спроектировано с учетом проектных и запроектных аварий, то есть устойчиво к невероятным по силе землетрясениям и другим малореальным происшествиям. Для безопасности бассейн хранилища разделен на 20 отсеков. В случае гипотетической течи каждый из этих бетонных модулей можно изолировать от остальных и перенести сборки в неповрежденный отсек. Продуманы пассивные средства поддержания уровня воды для надежного отвода тепла.

В 2011 году, еще до событий на Фукусиме, хранилище расширили и усилили меры безопасности. По итогам реконструкции в 2015 году было получено разрешение на эксплуатацию до 2045 года. Сегодня «мокрое» хранилище принимает тепловыделяющие сборки типа ВВЭР-1000 российского и зарубежного производства. Бассейны позволяют разместить более 15 тысяч ТВС. Вся информация о размещенном ОЯТ фиксируется в электронной базе данных.

Сухое хранилище

«Мы стремимся к тому, чтобы водоохлаждаемое хранилище было лишь промежуточным этапом перед сухим хранением или переработкой. В этом смысле стратегия ГХК и Росатома соответствует общемировому вектору развития, - поясняет Игорь Сеелев. - В 2011 году мы сдали в эксплуатацию первую очередь сухого хранилища ОЯТ РБМК-1000, а в декабре 2015 - завершили строительство всего комплекса. В том же 2015-м на ГХК было запущено производство МОКС-топлива из переработанного ОЯТ. В декабре 2016 года была выполнена первая перегрузка топлива ВВЭР-1000 из «мокрого» хранилища в сухое».

В зале хранения размещаются бетонные модули, а в них - герметичные пеналы с ОЯТ, заполненные азотно-гелиевой смесью. Охлаждает сборки наружный воздух, который самотеком поступает по воздуховодам. При этом не требуется принудительной вентиляции: воздух движется из-за определенного расположение каналов, а отвод тепла происходит за счет конвективного теплообмена. Принцип тот же, что у тяги в камине.

Хранить ОЯТ сухим способом значительно безопаснее и дешевле. В отличие от «мокрого» хранилища здесь нет расходов на водоснабжение и водоподготовку, не нужно организовывать циркуляцию воды. Объект не пострадает при потере электропитания, да и от персонала не требуется никаких действий, кроме собственно загрузки топлива. В этом смысле создание сухой технологии - огромный шаг вперед. Однако полностью отказаться от водоохлаждаемого хранилища нельзя. Из-за повышенного тепловыделения сборки ВВЭР-1000 должны находиться в воде первые 10-15 лет. Только после этого их можно перемещать в сухой зал или отправлять на переработку.
«Принцип организации сухого хранилища очень прост, - говорит Игорь Сеелев, - однако его никто не предложил раньше. Сейчас патент на технологию принадлежит группе российских ученых. И это подходящая тема для экспансии Росатома на международный рынок, потому что технологией сухого хранения интересуются во многих странах. К нам уже приезжали японцы, французы и американцы. Ведутся переговоры о том, чтобы на ГХК привозили ОЯТ с тех АЭС, которые российские атомщики строят за рубежом».

Запуск сухого хранилища был особенно важным для станций с реакторами РБМК. До его создания был риск остановки мощностей Ленинградской, Курской и Смоленской АЭС из-за переполнения пристанционных хранилищ. Нынешней емкости сухого хранилища ГХК достаточно, чтобы разместить отработанные сборки РБМК всех российских станций. Благодаря меньшему тепловыделению, их сразу направляют в сухом хранилище, минуя «мокрое». Здесь ОЯТ могут находиться на протяжении 100 лет. Возможно, за это время будут созданы экономически привлекательные технологии для его переработки.

Переработка ОЯТ

Планируется, что строящийся в Железногорске Опытно-демонстрационный центр (ОДЦ) по переработке отработавшего ядерного топлива будет сдан к 2020 году. Первый пусковой комплекс по производству МОКС-топлива (смешанное оксидное уран-плутониевое) выпускает всего 10 сборок в год, поскольку технологии пока отрабатываются и совершенствуются. В будущем мощность завода существенно вырастет. Сегодня на переработку можно отправлять сборки из обоих хранилищ Изотопно-химического завода, но очевидно, что с экономической точки зрения выгоднее начинать с переработки ОЯТ, накопившегося в «мокром» хранилище. Планируется, что в дальнейшем помимо сборок ВВЭР-1000 предприятие сможет перерабатывать ТВС реакторов на быстрых нейтронах, ТВС высокообогащенного урана (ВОУ) и ТВС зарубежного дизайна. На производстве будут получать порошок закиси-окиси урана, смесь оксидов урана, плутония, актинидов и отверждённые продукты деления.

ОДЦ позиционируется как самый современный в мире радиохимический завод поколения 3+ (заводы французской компании Areva имеют поколение 2+). Главная особенность внедряемых на ГХК технологий - отсутствие жидких и меньшее количество твердых радиоактивных отходов при переработке ОЯТ.

МОКС-топливо поставляется на реакторы типа БН Белоярской АЭС. Также Росатом работает над созданием РЕМИКС-топлива, которое после 2030 года, возможно, будет использоваться на реакторах типа ВВЭР. В отличие от МОКС-топлива, где плутоний смешивается с обедненным ураном, РЕМИКС-топливо планируется изготавливать из смеси плутония с обогащенным ураном.

При условии, что в стране будет достаточное количество АЭС с разными типами реакторов, работающих на смешанном топливе, Росатому удастся приблизиться к замыканию ядерного топливного цикла.

Горно-химический комбинат , Федеральное государственное унитарное предприятие, Федеральная ядерная организация (ФГУП ФЯО «ГХК»), предприятие Государственной корпорации по атомной энергии «Росатом», дивизион ЗСЖЦ. Расположено в ЗАТО Железногорск Красноярского края. ФГУП ФЯО «ГХК» является ключевым предприятием Росатома по созданию технологического комплекса замкнутого ядерного топливного цикла (ЗЯТЦ) на основе инновационных технологий нового поколения.