Что называется магнитными силовыми линиями. Силовые линии магнитного поля

> Линии магнитного поля

Как определить силовые линии магнитного поля : схема силы и направлений линий магнитного поля, использование компаса для определения магнитных полюсов, рисунок.

Линии магнитного поля полезны для визуального отображения силы и направления магнитного поля.

Задача обучения

  • Соотнести силы магнитного поля с плотностью линий магнитного поля.

Основные пункты

  • Направление магнитного поля отображает стрелки компаса, касающиеся линий магнитного поля в любой указанной точке.
  • Сила В-поля выступает обратно пропорциональной дистанции между линиями. Она также точно пропорциональна числу линий на единицу площади. Одна линия никогда не пересекает другую.
  • Магнитное поле уникально в каждой точке пространства.
  • Линии не прерываются и создают замкнутые петли.
  • Линии тянутся с северного к южному полюсу.

Термины

  • Линии магнитного поля – графическое изображение величины и направления магнитного поля.
  • В-поле – синоним для магнитного поля.

Линии магнитного поля

Говорят, что в детстве Альберт Эйнштейн обожал разглядывать компас, размышляя о том, как игла ощущает силу без прямого физического контакт. Глубокое мышление и серьезный интерес, привели к тому, что ребенок вырос и создал свою революционную теорию относительности.

Так как магнитные силы влияют на удаленности, мы вычисляем магнитное поля для отображения этих сил. Графическая передача линий полезна для визуализации силы и направления магнитного поля. Вытянутость линий указывает на северную ориентацию стрелки компаса. Магнитное именуют В-полем.

(а) – Если для сопоставления магнитного поля вокруг стержневого магнита используют небольшой компас, то он покажет нужное направление от северного полюса к южному. (b) – Добавление стрелок создает непрерывные линии магнитного поля. Сила выступает пропорциональной близости линий. (с) – Если можно изучить внутренность магнита, то линии отобразятся в виде замкнутых петель

Нет ничего сложного в сопоставлении магнитного поля объекта. Для начала вычислите силу и направление магнитного поля в нескольких местах. Отметьте эти точки векторами, указывающими в направлении локального магнитного поля с величиной, пропорциональной его силе. Можно объединить стрелки, и сформировать линии магнитного поля. Направление в любой точке выступит параллельным направлению ближайших линий поля, а локальная плотность способна быть пропорциональной прочности.

Силовые линии магнитного поля напоминают контурные на топографических картах, так как показывают нечто непрерывное. Многие законы магнетизма можно сформулировать при помощи простых понятий, вроде количества полевых линий сквозь поверхность.

Направление линий магнитного поля, представленных выравниванием железных опилок на бумаге, расположенной над стержневым магнитом

На отображение линий влияют различные явления. Например, железные опилки на линии магнитного поля создают линии, которые соответствуют магнитным. Также они визуально отображаются в полярных сияниях.

Отправленный в поле небольшой компас выравнивается параллельно линии поля, а северный полюс укажет на В.

Миниатюрные компасы можно использовать для демонстрации полей. (а) – Магнитное поле круглого токового контура напоминает магнитное. (b) – Длинный и прямой провод формирует поле с линиями магнитного поля, создающего круговые петли. (с) – Когда провод оказывается в плоскости бумаги, то поле выступает перпендикулярным бумаге. Отметьте, какие именно символы используют для поля, указывающего внутрь и наружу

Детальное изучение магнитных полей помогло вывести ряд важных правил:

  • Направление магнитного поля касается линии поля в любой точке пространства.
  • Сила поля выступает пропорциональной близости линии. Она также точно пропорциональна количеству линий на единицу площади.
  • Линии магнитного поля никогда не сталкиваются, а значит в любой точке пространства магнитное поле будет уникальным.
  • Линии остаются непрерывными и следуют с северного к южному полюсу.

Последнее правило основывается на том, что полюса нельзя разделить. И это отличается от линий электрического поля, в которых конец и начало знаменуется положительными и отрицательными зарядами.

Без сомнения, силовые линии магнитного поля сейчас известны всем. По крайней мере, еще в школе их проявление демонстрируют на уроках физики. Помните, как учитель под листом бумаги размещал постоянный магнит (или даже два, комбинируя ориентированность их полюсов), а сверху него насыпал металлические опилки, взятые в кабинете трудового обучения? Вполне понятно, что металл должен был удерживаться на листе, однако наблюдалось нечто странное - четко прослеживались линии, вдоль которых выстраивались опилки. Заметьте - не равномерно, а полосами. Это и есть силовые линии магнитного поля. Вернее, их проявление. Что же происходило тогда и как можно объяснить?

Начнем издалека. Вместе с нами в физическом мире видимом сосуществует особый вид материи - магнитное поле. Оно обеспечивает взаимодействие движущихся элементарных частиц или более крупных тел, обладающих электрическим зарядом или естественным Электрические и не только взаимосвязаны друг с другом, но и часто порождают сами себя. К примеру, провод, по которому протекает электрический ток, создает вокруг себя линии магнитного поля. Верно и обратное: воздействие переменных магнитных полей на замкнутый проводящий контур создает в нем движение носителей заряда. Последнее свойство применяется в генераторах, поставляющих электрическую энергию всем потребителям. Яркий пример электромагнитных полей - свет.

Силовые линии магнитного поля вокруг проводника вращаются или, что также верно, характеризуются направленным вектором магнитной индукции. Направление вращения определяют по правилу буравчика. Указываемые линии - условность, так как поле распространяется равномерно во все стороны. Все дело в том, что оно может быть представлено в виде бесконечного количества линий, некоторые из которых обладают более ярко выраженной напряженностью. Именно поэтому в и опилками четко прослеживаются некие «линии». Что интересно, силовые линии магнитного поля никогда не прерываются, поэтому нельзя однозначно сказать, где начало, а где конец.

В случае постоянного магнита (или подобного ему электромагнита), всегда есть два полюса, получившие условные названия Северного и Южного. Упомянутые линии в этом случае - это кольца и овалы, соединяющие оба полюса. Иногда это описывается с точки зрения взаимодействующих монополей, однако тогда возникает противоречие, согласно которому нельзя разделить монополя. То есть любая попытка деления магнита приведет к появлению нескольких двухполюсных частей.

Огромный интерес представляют свойства силовых линий. О непрерывности мы уже говорили, однако практический интерес представляет способность создавать в проводнике следствием которой является электрический ток. Смысл этого заключается в следующем: если проводящий контур пересекают линии (или сам проводник движется в магнитном поле), то электронам на внешних орбитах атомов материала сообщается дополнительная энергия, позволяющая им начинать самостоятельное направленное движение. Можно сказать, что магнитное поле словно «выбивает» заряженные частицы из кристаллической решетки. Данное явление получило название электромагнитной индукции и в настоящий момент является основным способом получения первичной электрической энергии. Оно было открыто опытным путем в 1831 году английским физиком Майклом Фарадеем.

Изучение магнитных полей началось еще в 1269 году, когда П. Перегрин обнаружил взаимодействие шарообразного магнита со стальными иглами. Почти через 300 лет У. Г. Колчестер предположил, что сам является огромным магнитом, обладающим двумя полюсами. Далее магнитные явления изучали такие известные ученые, как Лоренц, Максвелл, Ампер, Эйнштейн и пр.

Примерно две с половиной тысячи лет назад люди обнаружили, что некоторые природные камни обладают способностью притягивать к себе железо. Объясняли такое свойство присутствием у этих камней живой души, и некой «любовью» к железу.

Сегодня мы уже знаем, что эти камни являются природным магнитами, и магнитное поле, а вовсе не особое расположение к железу, создает эти эффекты. Магнитное поле - это особый вид материи, который отличается от вещества и существует вокруг намагниченных тел.

Постоянные магниты

Природные магниты, или магнетиты, обладают не очень сильными магнитными свойствами. Но человек научился создавать искусственные магниты, обладающие значительно большей силой магнитного поля. Делаются они из специальных сплавов и намагничиваются внешним магнитным полем. А после этого их можно использовать самостоятельно.

Силовые линии магнитного поля

Любой магнит имеет два полюса, их назвали северным и южным полюсами. На полюсах концентрация магнитного поля максимальна. Но между полюсами магнитное поле располагается тоже не произвольно, а в виде полос или линий. Они называются силовыми линиями магнитного поля. Обнаружить их довольно просто - достаточно поместить в магнитное поле рассыпанные железные опилки и слегка встряхнуть их. Они расположатся не как угодно, а образуют как бы узор из линий, начинающихся у одного полюса и заканчивающихся у другого. Эти линии как бы выходят из одного полюса и входят в другой.

Железные опилки в поле магнита сами намагничиваются и размещаются вдоль силовых магнитных линий. Именно подобным образом функционирует компас. Наша планета - это большой магнит. Стрелка компаса улавливает магнитное поле Земли и, поворачиваясь, располагается вдоль силовых линий, одним своим концом указывая на северный магнитный полюс, другим - на южный. Магнитные полюса Земли немного не совпадают с географическими, но при путешествиях вдали от полюсов, это не имеет большого значения, и можно считать их совпадающими.

Переменные магниты

Область применения магнитов в наше время чрезвычайно широка. Их можно обнаружить внутри электродвигателей, телефонов, динамиков, радиоприборов. Даже в медицине, например, при проглатывании человеком иглы или другого железного предмета, его можно достать без операции магнитным зондом.

Магнитное поле, что это? - особый вид материи;
Где существует? - вокруг движущихся электрических зарядов (в том числе вокруг проводника с током)
Как обнаружить? - с помощью магнитной стрелки (или железных опилок) или по его действию на проводник с током.


Опыт Эрстеда:

Магнитная стрелка поворачивается, если по проводнику начинает протекать эл. ток, т.к. вокруг проводника с током образуется магнитное поле.


Взаимодействие двух проводников с током:

Каждый проводник с током имеет вокруг себя собственное магнитное поле, которое с некоторой силой действует на соседний проводник.

В зависимости от направления токов проводники могут притягиваться или отталкиваться друг от друга.

Вспомни прошлый учебный год:


МАГНИТНЫЕ ЛИНИИ (или иначе линии магнитной индукции)

Как изобразить магнитное поле? - с помощью магнитных линий;
Магнитные линии, что это?

Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты.

Вспомни прошлый учебный год:


НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика неоднородного магнитного поля: магнитные линии искривлены;густота магнитных линий различна;сила, с которой магнитное поле действует на магнитную стрелку, ична в разных точках этого поля по величине и направлению.

Где существует неоднородное магнитное поле?

Вокруг прямого проводника с током;

Вокруг полосового магнита;

Вокруг соленоида (катушки с током).

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика однородного магнитного поля: магнитные линии параллельные прямые;густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, динакова во всех точках этого поля по величине направлению.

Где существует однородное магнитное поле?
- внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр.



ИНТЕРЕСНО

Способность железа и его сплавов сильно намагничиваться исчезает при нагревании до высокой температуры. Чистое железо теряет такую способность при нагревании до 767 °С.

Мощные магниты, используемые во многих современных товарах, способны влиять на работу электронных стимуляторов сердца и вживленных сердечных устройств у кардиологических пациентов. Обычные железные или ферритовые магниты, которые легко отличить по тускло-серой окраске, обладают небольшой силой и практически не вызывают беспокойств.
Однако недавно появились очень сильные магниты - блестяще-серебристые по цвету и представляющие собой сплав неодима, железа и бора. Создаваемое ими магнитное поле очень сильно, благодаря чему они широко применяются в компьютерных дисках, наушниках и динамиках, а также в игрушках, украшениях и даже одежде.

Однажды на рейде главного города Майорки, появилось французское военное судно "Ля-Ролейн". Состояние его было настолько жалким, что корабль едва дошел своим ходом до причала.. Когда на борт судна взошли французские ученые, в том числе двадцати двухлетний Араго, выяснилось, что корабль был разрушен молнией. Пока комиссия осматривала судно, покачивая головами при виде обгоревших мачт и надстроек, Араго поспешил к компасам и увидел то, что ожидал: стрелки компасов указывали в разные стороны...

Через год, копаясь в останках разбившегося вблизи Алжира генуэзского судна, Араго обнаружил, что стрелки компасов ыли размагничены В кромешной тьме туманной ночи капитан, направив по компасу судно к северу, подальше опасных мест, на самом деле неудержимо гался к тому, чего так старался избежать. Корабль шел к югу, о к скалам, обманутый пораженным молнией магнитным компасом.

В. Карцев. Магнит за три тысячелетия.

Магнитный компас был изобретен в Китае.
Уже 4000 лет тому назад караванщики брали с собой глиняный горшок и "берегли его в пути пуще всех своих дорогих грузов". В нем на поверхности жидкости на деревянном поплавке лежал камень, любящий железо. Он мог поворачиваться и, все время указывал путникам в сторону юга, что при отсутствии Солнца помогало им выходить к колодцам.
В начале нашей эры китайцы научились изготавливать искусственные магниты, намагничивая железную иглу.
И только через тысячу лет намагниченную иглу для компаса стали применять европейцы.


МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Земля - это большой постоянный магнит.
Южный магнитный полюс, хоть и расположен, по земным меркам, вблизи Северного географического полюса, их, тем не менее, разделяют около 2000 км.
На поверхности Земли имеются территории, где ее собственное магнитное поле сильно искажено магнитным полем железных руд, залегающих на небольшой глубине. Одна из таких территорий – Курская магнитная аномалия, расположенная в Курской области.

Магнитная индукция магнитного поля Земли составляет всего около 0,0004Теслы.
___

На магнитное поле Земли оказывает влияние повышенная солнечная активность. Примерно один раз в каждые 11.5 лет она возрастает настолько, что нарушается радиосвязь, ухудшается самочувствие людей и животных, а стрелки компасов начинают непредсказуемо "плясать" из стороны в сторону. В таком случае говорят, что наступает магнитная буря. Обычно она длится от нескольких часов до нескольких суток.

Магнитное поле Земли время от времени изменяет свою ориентацию, совершая и вековые колебания (длительностью 5–10 тыс. лет), и полностью переориентируясь, т.е. меняя местами магнитные полюсы (2–3 раза за миллион лет). На это указывают «вмороженное» в осадочные и вулканические породы магнитное поле отдаленных эпох. Поведение геомагнитного поля нельзя назвать хаотичным, оно подчиняется своеобразному «расписанию».

Направление и величина геомагнитного поля задаются процессами, происходящими в ядре Земли. Характерное время переполюсовки, определяемое внутренним твердым ядром, составляет от 3 до 5 тыс. лет, а определяемое внешним жидким ядром – около 500 лет. Этими временами и может обьясняться наблюдаемая динамика геомагнитного поля. Компьютерное моделирование с учетом различных внутриземных процессов ьпоказало возможность переполюсовки магнитного поля примерно за 5 тыс. лет.

ФОКУСЫ С МАГНИТАМИ

"Храм очарований, или механический, оптический и физический кабинет г. Гамулецкого де Колла" известного русского иллюзиониста Гамулецкого, просуществовавший до 1842 года, прославился помимо всего прочего тем, что посетители, поднимавшиеся по украшенной канделябрами и устланной коврами лестнице, еще издали могли заметить на верхней площадке лестницы золоченую фигуру ангела, выполненную в натуральный человеческий рост, которая парила в горизонтальном положении над дверью кабинета не будучи подвешена, ни оперта. В том, что фигура не имела никаких подпорок, мог убедиться каждый желающий. Когда посетители вступали на площадку, ангел поднимал руку, подносил ко рту валторну и играл на ней, шевеля пальцами самым естественным образом. Десять лет - говорил Гамулецкий, - я трудился, чтобы найти точку и вес магнита и железа, дабы удержать ангела в воздухе. Помимо трудов немало и средств употребил я на это чудо".

В средние века весьма распространенным иллюзионным номером были так называемые "послушные рыбы", изготовлявшиеся из дерева. Они плавали в бассейне и повиновались малейшему мановению руки фокусника, который заставлял их двигаться во всевозможных направлениях. Секрет фокуса был чрезвычайно прост: в рукаве у фокусника был спрятан магнит, а в головы рыб вставлены кусочки железа.
Более близкими к нам по времени были манипуляции англичанина Джонаса. Его коронный номер: Джонас предлагал некоторым зрителям положить часы на стол, после чего он, не прикасаясь к часам, произвольно менял положение стрелок.
Современным воплощением такой идеи является хорошо известные электрикам электромагнитные муфты, с помощью которых можно вращать устройства, отделенные от двигателя какой-нибудь преградой, например, стеной.

В середине 80-х годов 19 века пронеслась молва об ученом слоне, который умел не только складывать и вычитать, но даже умножать, делить и извлекать корни. Делалось это следующим образом. Дрессировщик, например, спрашивал слона: "Сколько будет семью восемь?" Перед слоном стояла доска с цифрами. После вопроса слон брал указку и уверенно показывал цифру 56. Точно так же производилось деление и извлечение квадратного корня. Фокус был достаточно прост: под каждой цифрой на доске был спрятан небольшой электромагнит. Когда слону задавался вопрос, в обмотку магнита, расположенного означающей правильный ответ, подавался ток. Железная указка в хоботе слона сама притягивалась к правильной цифре. Ответ получался автоматически. Несмотря на всю простоту этой дрессировки, секрет фокуса долгое время не могли разгадать, и "ученый слон" пользовался громадным успехом.

Что мы знаем о силовых линиях магнитного поля, кроме того, что в локальном пространстве около постоянных магнитов или проводников с током, существует магнитное поле, которое проявляет себя в виде силовых линий, или в более привычном сочетании – в виде магнитно-силовых линий?

Существует очень удобный способ получить наглядную картину силовых линий магнитного поля с помощью железных опилок. Для этого нужно насыпать на лист бумаги или картона немного железных опилок и поднести снизу один из полюсов магнита. Опилки намагничиваются и располагаются по силовым линиям магнитного поля в виде цепочек микро магнитов. В классической физике магнитно-силовые линии определяют как линии магнитного поля, касательные к которым в каждой их точке указывают направление поля в этой точке.

На примере нескольких рисунков с разным расположением магнитно-силовых линий рассмотрим характер магнитного поля вокруг проводников с током и постоянных магнитов.

На рис.1 приведен вид магнитно-силовых линий кругового витка с током, а на рис.2 приведена картина магнитно-силовых линий вокруг прямолинейного провода с током. На рис.2 вместо опилок используют маленькие магнитные стрелки. На этом рисунке показано, как при изменении направления тока, меняется и направление магнитно-силовых линий. Связь между направлением тока и направлением магнитно-силовых линий обычно определяют с помощью «правила буравчика», вращение рукоятки которого покажет направление магнитно-силовых линий, если ввинчивать буравчик по направлению тока.

На рис.3 приведена картина магнитно-силовых линий полосового магнита, а на рис.4 картина магнитно-силовых линий длинного соленоида с током. Обращает на себя внимание сходство внешнего расположения магнитно-силовых линий на обоих рисунках (рис.3 и рис.4). Силовые линии от одного конца соленоида с током тянутся к другому так же, как у полосового магнита. Сама форма магнитно-силовых линий снаружи соленоида с током идентична с формой линий полосового магнита. У соленоида с током также имеются полюса северный и южный, а также нейтральная зона. Два соленоида с током или соленоид и магнит взаимодействуют как два магнита.

Что же можно увидеть, глядя на картинки магнитных полей постоянных магнитов, прямолинейных проводников с током или витков с током с использованием железных опилок? Главная особенность магнитно-силовых линий, как показывают картинки расположения опилок, это их замкнутость. Другая особенность магнитно-силовых линий – это их направленность. Маленькая магнитная стрелка, помещенная в какой-либо точке магнитного поля, своим северным полюсом укажет направление магнитно-силовых линий. Для определенности условились считать, что магнитно-силовые линии исходят из северного магнитного полюса полосового магнита и входят в его южный полюс. Локальное магнитное пространство вблизи магнитов или проводников с током представляет собой сплошную упругую среду. Упругость этой среды подтверждают многочисленные опыты, например, при отталкивании одноименных полюсов постоянных магнитов.

Еще ранее я высказал гипотезу о том, что магнитное поле вокруг магнитов или проводников с током представляет собой сплошную упругую среду, обладающую магнитными свойствами, в которой образуются интерференционные волны. Часть этих волн замкнута. Именно в этой сплошной упругой среде образуется интерференционная картина магнитно-силовых линий, которая проявляется с использованием железных опилок. Сплошная среда создается излучением источников в микроструктуре вещества.

Вспомним опыты по интерференции волн из учебника по физике, в котором колеблющаяся пластинка с двумя остриями ударяет по воде. В этом опыте видно, что взаимное пересечение под разными углами двух волн никакого влияния не оказывает на их дальнейшее перемещение. Другими словами волны проходят друг через друга без дальнейшего влияния на распространение каждой из них. Для световых (электромагнитных) волн справедлива та же закономерность.

Что же происходит в тех областях пространства, в которых две волны пересекаются (Рис. 5) – налагаются одна на другую? Каждая частица среды находящаяся на пути двух волн одновременно участвует в колебаниях этих волн, т.е. ее движение есть сумма колебаний двух волн. Эти колебания представляют собой картину интерференционных волн с их максимумами и минимумами в результате наложения двух или большего числа волн, т.е. сложения их колебаний в каждой точке среды, через которую эти волны проходят. Опытами установлено, что явление интерференции наблюдается как у волн, распространяющихся в средах, так и у электромагнитных волн, то есть интерференция является исключительно свойством волн и не зависит, ни от свойств среды, ни от ее наличия. Следует помнить, что интерференция волн возникает при условии, если колебания когерентны (согласованы), т.е. колебания должны иметь постоянную во времени разность фаз и одинаковую частоту.

В нашем случае с железными опилками магнитно-силовыми линиями являются линии с наибольшим количеством опилок, расположенных в максимумах интерференционных волн, а линии с меньшим количеством опилок расположены между максимумами (в минимумах) интерференционных волн.

На основании выше приведенной гипотезы, можно сделать следующие выводы.

1.Магнитное поле — это среда, которая образуется вблизи постоянного магнита или проводника с током в результате излучения источниками в микроструктуре магнита или проводника отдельных микромагнитных волн.

2.Эти микромагнитные волны взаимодействуют в каждой точке магнитного поля, образуя интерференционную картину в виде магнитно-силовых линий.

3.Микромагнитные волны это замкнутые микро энергетические вихри с микро полюсами способные притягиваться между собой, образуя упругие замкнутые линии.

4.Микро источники в микро структуре вещества, излучающие микромагнитные волны, которые образуют интерференционную картину магнитного поля, имеют одинаковую частоту колебаний, а их излучение постоянную во времени разность фаз.

Каким же образом происходит процесс намагничивания тел, который приводит к образованию вокруг них магнитного поля, т.е. какие процессы происходят в микроструктуре магнитов и проводников с током? Чтобы ответить на этот и другие вопросы необходимо вспомнить некоторые особенности строения атома.