Электрический ток в газе. Электрический ток в газах: определение, особенности и интересные факты

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 2 1

Ток в газах

1. Общие положения

Определение: Явление прохождения электрического тока в газах называется газовым разрядом .

Поведение газов сильно зависит от его параметров, таких как температура и давление, причем эти параметры достаточно легко меняются. Поэтому, протекание электрического тока в газах является более сложным, чем в металлах или в вакууме.

Газы не подчиняются закону Ома.

2. Ионизация и рекомбинация

Газ, находящийся при нормальных условиях, состоит практически из нейтральных молекул, поэтому, крайне плохо проводит электрический ток. Однако при внешних воздействиях от атома может оторваться электрон и появляется положительно заряженный ион. Кроме того, электрон может присоединиться к нейтральному атому и образовать отрицательно заряженный ион. Таким образом, можно получить ионизованный газ, т.е. плазму.

К внешним воздействиям относятся нагрев, облучение энергичным фотонам, бомбардировка другими частицами и сильные поля, т.е. те же условия, которые необходимы для элементарной эмиссии.

Электрон в атоме находится в потенциальной яме, и чтобы вырваться оттуда, необходимо атому сообщить дополнительную энергию, которая называется энергией ионизации.

Вещество

Энергия ионизации, эВ

Атом водорода

13,59

Молекула водорода

15,43

Гелий

24,58

Атом кислорода

13,614

Молекула кислорода

12,06

Наряду с явлением ионизации наблюдается и явление рекомбинации, т.е. объединение электрона и положительного иона в нейтральный атом. Данный процесс происходит с выделением энергии, равной энергии ио низации. Эта энергия может пойти на излучение или на нагрев. Локальный нагрев газа приводит к локальному изменению давления. Что в свою очередь приводит к появлению звуковых волн. Таким образом, газовый разряд сопровождается световыми, тепловыми и шумовыми эффектами.

3. ВАХ газового разряда.

На начальных стадиях необходимо действие внешнего ионизатора.

На участке ОАВ ток существует под действием внешнего ионизатора и быстро выходит на насыщение, когда все ионизованные частицы участвуют в образовании тока. Если убрать внешний ионизатор, то ток прекращается.

Данный вид разряда называется несамостоятельным газовым разрядом. При попытке увеличить напряжение в газе появляются лавины электронов, и ток растет практически при постоянном напряжении, которое называется напряжением зажигания (ВС ).

С этого момента разряд становится самостоятельным и отпадает необходимость внешнего ионизатора. Число ионов может стать столь большим, что сопротивление межэлектродного промежутка уменьшится и соответственно упадет напряжение (СД).

Затем в межэлектродном промежутке область прохождения тока начинает сужаться, и сопротивление растет, а следовательно, растет напряжение (ДЕ).

При попытке увеличить напряжение газ становится полностью ионизованным. Сопротивление и напряжение падает до нуля, и ток вырастает во много раз. Получается дуговой разряд (Е F ).

ВАХ показывает, что газ совершенно не подчиняется закону Ома.

4. Процессы в газе

Процессы, которые могут привести к образованию лавин электронов показаны на рисунке.

Это элементы качественной теории Таунсенда .

5. Тлеющий разряд.

При низких давлениях и небольших напряжениях можно наблюдать этот разряд.

К – 1 (темное астоново пространство).

1 – 2 (светящаяся катодная пленка).

2 – 3 (темное круксово пространство).

3 – 4 (первое катодное свечение).

4 – 5 (темное фарадеево пространство)

5 – 6 (положительный анодный столб).

6 – 7 (анодное темное пространство).

7 – А (анодное свечение).

Если сделать анод подвижным, то длину положительного столба можно регулировать, практически не меняя размеры области К – 5.

В темных областях происходит разгон частиц и набор энергии, в светлых происходят процессы ионизации и рекомбинации.

Реферат по физике

на тему:

«Электрический ток в газах».

Электрический ток в газах.

1. Электрический разряд в газах.

Все газы в естественном состоянии не проводят электрического тока. В чем можно убедиться из следующего опыта:

Возьмем электрометр с присоединенными к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается – положение стрелки электрометра не изменяется. Чтобы заметить уменьшение угла отклонения стрелки электрометра, требуется длительное время. Это показывает, что электрический ток в воздухе между дисками очень мал. Данный опыт показывает, что воздух является плохим проводником электрического тока.

Видоизменим опыт: нагреем воздух между дисками пламенем спиртовки. Тогда угол отклонения стрелки электрометра быстро уменьшается, т.е. уменьшается разность потенциалов между дисками конденсатора – конденсатор разряжается. Следовательно, нагретый воздух между дисками стал проводником, и в нем устанавливается электрический ток.

Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов: атомы и молекулы газов в естественном состоянии являются нейтральными.

2. Ионизация газов.

Вышеописанный опыт показывает, что в газах под влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a-, b- и g-лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ионизация атома требует затраты определенной энергии – энергии ионизации. Для ионизации атома (или молекулы) необходимо совершить работу против сил взаимодействия между вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации A i . Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения действия ионизатора количество ионов в газе с течением времени уменьшается и в конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они могут воссоединиться в нейтральный атом. Точно также при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Этот процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны (об этом будет рассмотрено позднее).

В таблице ниже даны значения энергии ионизации некоторых атомов.

3. Механизм электропроводности газов.

Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.

Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду . Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.

На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов. Однако в газах отсутствует выделение веществ на электродах, как это имеет место в растворах электролитов. Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.

Еще одно различие в электропроводности ионизованных газов и растворов (расплавов) электролитов состоит в том, что отрицательный заряд при прохождении тока через газы переносится в основном не отрицательными ионами, а электронами, хотя проводимость за счет отрицательных ионов также может играть определенную роль.

Таким образом в газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов и расплавов электролитов.

4. Несамостоятельный газовый разряд.

Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.

Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке ниже.


При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения (горизонтальный участок графика 1).

5. Самостоятельный газовый разряд.

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом . Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

Каковы же причины резкого увеличения силы тока при больших напряжениях? Рассмотрим какую либо пару заряженных частиц (положительный ион и электрон), образовавшуюся благодаря действию внешнего ионизатора. Появившийся таким образом свободный электрон начинает двигаться к положительному электроду – аноду, а положительный ион – к катоду. На своем пути электрон встречает ионы и нейтральные атомы. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля.


Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля. Кинетическая энергия электрона перед очередным столкновением пропорциональна напряженности поля и длине свободного пробега электрона: MV 2 /2=eEl. Если кинетическая энергия электрона превосходит работу A i , которую нужно совершить, чтобы ионизировать нейтральный атом (или молекулу), т.е. MV 2 >A i , то при столкновении электрона с атомом (или молекулой) происходит его ионизация. В результате вместо одного электрона возникают два (налетающий на атом и вырванный из атома). Они, в свою очередь, получают энергию в поле и ионизуют встречные атомы и т.д.. Вследствие этого число заряженных частиц быстро нарастает, возникает электронная лавина. Описанный процесс называют ионизацией электронным ударом.

В газах существуют несамостоятельные и самостояг тельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой .

Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны. Вольт-амперная характеристика представлена на рис. 54. В области ОАВ - несамостоятельный разряд. В области ВС разряд становится самостоятельным.

При самостоятельном разряде одним из способов ионизации атомов является ионизация электронным ударом. Ионизация электронным ударом становится возможна тогда, когда электрон на длине свободного пробега А приобретает кинетическую энергию W k , достаточную для совершения работы по отрыву электрона от атома. Виды самостоятельных разрядов в газах - искровой, коронный, дуговой и тлеющий разряды.

Искровой разряд возникает между двумя электродами заряженными разными зарядами и имеющие большую разность потенциалов. Напряжение между разноименно заряженными телами достигает до 40 000 В. Искровой разряд кратковременный, его механизм - электронный удар. Молния - вид искрового разряда.

В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом линии электропередачи и поверхностью Земли, возникает особая форма самостоятельного разряда в газах, называемая коронным разрядом .

Электрический дуговой разряд был открыт русским ученым В. В. Петровым в 1802 г. При соприкосновении двух электродов из углей при напряжении 40-50 В в некоторых местах возникают участки малого сечения с большим электрическим сопротивлением. Эти участки сильно разогреваются, испускают электроны, которые ионизируют атомы и молекулы между электродами. Носителями электрического тока в дуге являются положительно заряженные ионы и электроны.

Разряд, возникающий при пониженном давлении, называется тлеющим разрядом . При понижении давления увеличивается длина свободного пробега электрона, и за время между столкновениями он успевает приобрести достаточную для ионизации энергию в электрическом поле с меньшей напряженностью. Разряд осуществляется электронно-ионной лавиной.

Электрический ток в газах в нормальных условиях невозможен. То есть при атмосферной влажности давлении и температуре в газе отсутствуют носители зарядов. Это свойство газа, в частности воздуха, используется в воздушных линиях передач выключателях реле для обеспечения электрической изоляции.

Но при определенных условиях в газах может наблюдутся ток. Проведем опыт. Для него нам понадобится воздушный конденсатор электрометр и соединительные провода. Для начала соединим электрометр с конденсатором. Потом сообщим заряд пластинам конденсатора. Электрометр при этом покажет наличие этого самого заряда. Воздушный конденсатор некоторое время будет хранить заряд. То есть тока между его пластинами не будет. Это говорит о том что воздух между обкладками конденсатора обладает диэлектрическими свойствами.

Рисунок 1 — Заряженный конденсатор подключенный к электрометру

Далее внесем в промежуток между пластинами пламя свечи. При этом увидим, что электрометр покажет уменьшение заряда на пластинах конденсатора. То есть в зазоре между пластинами протекает ток. Почему же это происходит.

Рисунок 2 — Внесение свечи в зазор между обкладками заряженного конденсатора

В нормальных условиях молекулы газа электрически нейтральны. И не способны обеспечивать ток. Но при повышении температуры наступает так называемая ионизация газа, и он становится проводником. В газе появляются положительные и отрицательные ионы.

Чтобы от атома газа оторвался электрон необходимо совершить работу против Кулоновских сил. Для этого необходима энергия. Эту энергию атом получает с увеличением температуры. Так как кинетическая энергия теплового движения прямо пропорционально температуре газа. То с ее увеличение молекулы и атомы получают достаточно энергии, чтобы при соударении от атомов отрывались электроны. Такой атом становится положительным ионом. Оторванный электрон может прицепиться к другому атому тогда он станет отрицательным ионом.

В итоге в зазоре между пластинами появляются положительные и отрицательные ионы, а также электроны. Все они начинают двигаться под действием поля созданного зарядами на обкладках конденсатора. Положительные ионы движутся к катоду. Отрицательные ионы и электроны стремятся к аноду. Таким образом, в воздушном зазоре обеспечивается ток.

Зависимость тока от напряжения не на всех участках подчиняется закону Ома. На первом участке это так с увеличением напряжения увеличивается количество ионов а, следовательно, и ток. Далее на втором участке наступает насыщение, то есть с увеличением напряжения ток не увеличивается. Потому что концентрация ионов максимальна и новым появляется просто неоткуда.

Рисунок3 — вольтамперная характеристика воздушного зазора

На третьем участке вновь наблюдается рост тока с увеличением напряжения. Этот участок называется самостоятельным разрядом. То есть для поддержания тока в газе уже не нужны сторонние ионизаторы. Происходит это из за того что, электроны при высоком напряжении, получают достаточную энергию для того чтобы выбивать другие электроны из атомов самостоятельно. Эти электроны в свою очередь выбивают другие и так далее. Процесс идет лавинообразно. И основную проводимость в газе обеспечивают уже электроны.

Темы кодификатора ЕГЭ : носители свободных электрических зарядов в газах.

При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками - электрический ток через них не проходит.

Мы сказали «почти нет», потому что на самом деле газах и, в частности, в воздухе всегда присутствует некоторое количество свободных заряженных частиц. Они появляются в результате ионизирующего воздействия излучений радиоактивных веществ, входящих в состав земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также космических лучей - потоков частиц высокой энергии, проникающих в атмосферу Земли из космического пространства. Впоследствии мы вернёмся к этому факту и обсудим его важность, а сейчас заметим лишь, что в обычных условиях проводимость газов, вызванная «естественным» количеством свободных зарядов, пренебрежимо мала, и её можно не принимать во внимание.

На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1 ). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.

Рис. 1. Ключ

Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.

Зарядим пластины воздушного конденсатора и подсоединим их к чувствительному гальванометру (рис. 2 , слева). При комнатной температуре и не слишком влажном воздухе гальванометр не покажет заметного тока: наш воздушный промежуток, как мы и говорили, не является проводником электричества.

Рис. 2. Возникновение тока в воздухе

Теперь внесём в зазор между пластинами конденсатора пламя горелки или свечи (рис. 2 , справа). Ток появляется! Почему?

Свободные заряды в газе

Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды . Какие именно?

Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов . Это электроны , положительные ионы и отрицательные ионы .

Давайте разберёмся, каким образом эти заряды могут появляться в газе.

При увеличении температуры газа тепловые колебания его частиц - молекул или атомов - становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация - распад нейтральных частиц на электроны и положительные ионы (рис. 3 ).

Рис. 3. Ионизация

Степенью ионизации называется отношение числа распавшихся частиц газа к общему исходному числу частиц. Например, если степень ионизации равна , то это означает, что исходных частиц газа распалось на положительные ионы и электроны.

Степень ионизации газа зависит от температуры и резко возрастает с её увеличением. У водорода, например, при температуре ниже степень ионизации не превосходит , а при температуре выше степень ионизации близка к (то есть водород почти полностью ионизирован (частично или полностью ионизированный газ называется плазмой )).

Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.

Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором .

Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.

Одновременно идёт и обратный процесс - рекомбинация , то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4 ).

Рис. 4. Рекомбинация

Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу - в зависимости от сорта газа).

При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт. Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.

Итак, положительные ионы и электроны появляются в газе в результате ионизации. Откуда же берётся третий сорт зарядов - отрицательные ионы? Очень просто: электрон может налететь на нейтральный атом и присоединиться к нему! Этот процесс показан на рис. 5 .

Рис. 5. Появление отрицательного иона

Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.

Несамостоятельный разряд

Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц - электрический ток в газе .

Рис. 6. Несамостоятельный разряд

На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов - к отрицательному электроду (катоду), электронов и отрицательных ионов - к положительному электроду (аноду) .

Электроны, попадая на положительный анод, направляются по цепи к «плюсу» источника тока. Отрицательные ионы отдают аноду лишний электрон и, став нейтральными частицами, возвращаются в обратно газ; отданный же аноду электрон также устремляется к «плюсу» источника. Положительные ионы, приходя на катод, забирают оттуда электроны; возникший дефицит электронов на катоде немедленно компенсируется их доставкой туда с «минуса» источника. В результате этих процессов возникает упорядоченное движение электронов во внешней цепи. Это и есть электрический ток, регистрируемый гальванометром.

Описанный процесс, изображённый на рис. 6 , называется несамостоятельным разрядом в газе. Почему несамостоятельным? Потому для его поддержания необходимо постоянное действие ионизатора. Уберём ионизатор - и ток прекратится, поскольку исчезнет механизм, обеспечивающий появление свободных зарядов в газовом промежутке. Пространство между анодом и катодом снова станет изолятором.

Вольт-амперная характеристика газового разряда

Зависимость силы тока через газовый промежуток от напряжения между анодом и катодом (так называемая вольт-амперная характеристика газового разряда ) показана на рис. 7 .

Рис. 7. Вольт-амперная характеристика газового разряда

При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.

При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.

С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).

При определённой величине напряжения (точка ) скорость движения зарядов становится настолько большой, что рекомбинация вообще не успевает происходить. С этого момента все заряженные частицы, образованные под действием ионизатора, достигают электродов, и ток достигает насыщения - а именно, сила тока перестаёт меняться с увеличением напряжения. Так будет происходить вплоть до некоторой точки .

Самостоятельный разряд

После прохождения точки сила тока при увеличении напряжения резко возрастает - начинается самостоятельный разряд . Сейчас мы разберёмся, что это такое.

Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)

Начинается так называемая ионизация электронным ударом . Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.

Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате внутренних процессов, происходящих в газе - вот почему разряд называется самостоятельным.

Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!

Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами. Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь - при высоком напряжении - они-то и породят лавину новых частиц, дав начало самостоятельному разряду. Произойдёт, как говорят, пробой газового промежутка.

Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы - это прекрасно известные вам молнии.