При какой температуре кипит вода? При какой температуре закипает вода в чайнике При какой температуре вскипает вода

Процесс закипания воды достаточно интересный и в то же время очень сложный процесс. Кипение - это процесс, при котором вещество (в данном случае вода) переходит из жидкого состояния в газообразное. Чтобы вода закипела, нужна подходящая температура, иначе процесс не запустится. В обычных условиях температура закипания воды равняется 100 градусам по Цельсию. Именно при такой температуре вода примется превращаться в газ.

Как закипает вода

Как только вода достигнет отметки в 100 градусов, жидкость начнет превращаться в пар. Чтобы легче было представить весь процесс преобразования, наберите в небольшую металлическую кастрюлю воды и поставьте на огонь. Вот что будет происходить:

  • вода в кастрюле начнет нагреваться;
  • при достижении температуры воды в 100 градусов, на самом дне кастрюли начнут образовываться пузырьки с паром;
  • дойдя на поверхности, эти пузырьки лопаются, выпуская пар на свободу;
  • количество воды в кастрюле будет постепенно уменьшаться.

Таким образом, через какое-то определенное время, вода в кастрюле полностью исчезнет, превратившись в пар. Кстати, не стоит путать кипение и испарение, эти процессы различаются между собой. Испарение может происходить при любой температуре, в то время как кипение лишь при определенной. Также процесс кипения происходит по всей жидкости, а при испарение вода превращаться в пар, начиная с поверхности воды. При испарении жидкость постепенно будет охлаждаться.

Какие еще условия влияют на процесс кипения

На самом деле кипение может происходить и при более низких или высоких температурах, чем 100 градусов. По мимо температуры, не менее важное место занимает давление. Так к примеру если мы начнем подниматься в горы, давление будет уменьшаться, следовательно и температура кипения будет уменьшаться. Если же мы будем спускаться в глубокую шахту, давление будет расти, следовательно температура кипения тоже будет расти. По мимо давления так же важно, чтобы вода постоянно подогревалась, иначе температура упадет и процесс остановится.

Кипение — это процесс преобразования жидкости в состояние газа (пара). В жидкости появляются пузырьки пара или паровые полости. Пузырьки становятся больше, в тот момент, когда в них испаряется жидкость. Пар, находящийся в пузырьках превращается в газообразное состояние над жидкостью.

Под кипением понимается интенсивный переход жидкого состояния воды в пар. Переход состоит из преобразования пузырьков пара по всему объему жидкости при некоторой температуре.

В отличие от испарения, которое может протекать при любой температуре воды, такое парообразование как кипение, возможно только при соответствующей температуре. Такая температура называется температурой кипения.

Если нагревать воду в открытом стеклянном сосуде, можно заметить, что при увеличении температуры, вода начинает покрываться маленькими пузырьками. Такие пузырьки образуются вследствие расширения маленьких пузырьков воздуха, которые существуют в микротрещинах сосуда.


Пар, находящийся внутри пузырьков является насыщенным. При повышении температуры, давление насыщенных паров увеличивается. Вследствие этого пузырьки изменяются в размере. После увеличения объема пузырьков, возрастает и действующая на них архимедова сила. При воздействии такой силы пузырьки начинают стремиться к поверхности воды. Если верхний слой не успел прогреться до температуры кипения, то есть до ста градусов Цельсия, часть водяного пара охлаждается и спускается вниз. Пузырьки изменяются в размере, а сила тяжести заставляет их спуститься ниже. Спустившись ниже в более горячие слои воды, они начинают снова подниматься к поверхности. Так как пузырьки увеличиваются и уменьшаются в размерах, внутри воды появляются звуковые волны. Поэтому вода, которая начинает закипать издает характерный шум.

После того когда вся вода достигает температуры 100 градусов, пузырьки достигшие поверхности перестают уменьшаться в размерах. Они начинают лопаться после того как достигают поверхности воды. Из воды начинает выступать водяной пар. Вода издает специфический звук.

В момент кипения, температура жидкости и пара не изменяется. Она остается в одном состоянии, пока вся жидкость не испарится. Это происходит по той причине, что вся энергия расходуется на превращение воды в пар.

Температура, при которой вода начинает кипеть, называется температурой кипения.

Температура кипения напрямую зависит от давления, которое оказывается на поверхность жидкости. Это объясняет зависимостью давления насыщенного пара от температуры. Пузырьки пара постоянно растут. Рост продолжается до тех пор, пока давление насыщенного пара внутри него не будет превосходить давление жидкости. Такое давление складывается из внешнего давления и гидростатического давления жидкости.


Если внешнее давление увеличивается, значит, температура кипения также будет увеличиваться!

Каждый взрослый человек знает, что вода начинает кипеть при температуре равной сто градусов Цельсия. Необходимо помнить, что такая температура кипения будет при нормальном атмосферном давлении, которое равно 101 кПа. Если давление будет увеличиваться, температура кипения изменится.

При уменьшении внешнего атмосферного давления, температура кипения уменьшится. В горной местности вода закипает при температуре равной девяносто градусов. Поэтому людям, которые проживают на данной территории необходимо больше времени, чтобы приготовить пищу. Жители равнины смогут приготовить еду значительно быстрее. При низкой температуре кипения невозможно сварить обычное яйцо, так как белок не может свернуться, если температура ниже 100 градусов.

Каждая жидкость имеет собственную температуру кипения, которая зависит от давления насыщения пара. При повышении давления насыщения пара, температура кипения уменьшается.

Закипание воды это достаточно сложный процесс, который состоит из четырех различных стадий, который отличаются друг от друга:

  • На первой стадии, маленькие пузырьки воздуха поднимаются со дна емкости, а также появляется группа пузырьков на стенках емкости.
  • На второй стадии кипения происходит увеличение объема пузырьков. Со временем, количество пузырьков, возникающих в воде и стремящихся к поверхности, начинает возрастать. На данной стадии вода начинает издавать мало заметный шум.
  • На третьей стадии начинается массовый подъем пузырьков, которые вызывают легкое помутнение воды, а через некоторый промежуток времени «побеление» воды. Такое действие напоминает родник, в котором протекает быстрый поток воды. Такое кипение называется «белым ключом». Такая стадия достаточно короткая. Что касается звука, то он становится похож на звук издаваемый роем пчел.
  • На четвертой стадии происходит интенсивное бурление жидкости. На поверхности воды появляется большое количество крупных пузырей, которые начинаю лопаться. Через несколько минут вода начинает брызгаться. Появление брызг характеризует сильно перекипевшую воду. Звук становится резким, равномерность прекращается. Шум напоминает взбесившихся пчел, которые летят друг на друга.
  • Как происходит процесс кипения воды?
  • Температура пара при кипении воды
  • Температура кипения соленой воды
  • Температура кипения воды в вакууме при различном давлении
  • Температура кипения воды в вакууме
  • Температура кипения воды в чайнике
  • Температура кипения воды в горах
  • Температуры кипения воды на разных высотах
  • Температура кипения дистиллированной воды
  • Удельная теплота кипения воды

Как происходит процесс кипения воды? ^

Кипение воды является сложным процессом, который происходит в четыре стадии . Рассмотрим пример кипения воды в открытом стеклянном сосуде.

На первой стадии кипения воды на дне сосуда появляются небольшие пузырьки воздуха, которые также можно заметить и на поверхности воды по бокам.

Эти пузырьки образуются в результате расширения небольших пузырей воздуха, которые находятся в мелких трещинах сосуда.

На второй стадии наблюдается увеличение объема пузырьков: все больше пузырьков воздуха рвется на поверхность. Внутри пузырьков находится насыщенный пар.

Как только повышается температура, возрастает давление насыщенных пузырьков, в результате чего они увеличиваются в размере. Как следствие, повышается действующая на пузыри архимедова сила.

Именно благодаря этой силе пузырьки стремятся к поверхности воды. Если верхний слой воды не успел прогреться до 100 градусов С (а это и есть температура кипения чистой воды без примесей), то пузырьки опускаются вниз в более горячие слои, после чего они снова устремляются назад на поверхность.

На третьей стадии на поверхность воды поднимается огромное количество пузырьков, что вначале вызывает небольшое помутнение воды, которая затем «бледнеет». Данный процесс продолжается недолго и имеет название «кипение белым ключом».


Наконец, на четвертой стадии кипения вода начинает интенсивно бурлить, появляются большие лопающиеся пузыри и брызги (как правило, брызги означают, что вода сильно перекипела).

Из воды начинает образовываться водяной пар, при этом вода издает специфические звуки.

Температура пара при кипении воды ^

Пар – это газообразное состояние воды. Когда пар поступает в воздух, то он, как и другие газы, оказывает на него определенное давление.

В процессе парообразования величина температуры пара и воды будет оставаться постоянной до тех пор, пока не испарится вся вода. Такое явление объясняется тем, что вся энергия (температура) направлена на превращение воды в пар.

В данном случае образуется сухой насыщенный пар. Высокодисперсные частицы жидкой фазы в таком паре отсутствуют. Также пар может быть насыщенным влажным и перегретым .

Насыщенный пар с содержанием взвешенных высокодисперсных частиц жидкой фазы , которые равномерно распределены по всей массе пара, называется влажным насыщенным паром .

В начале закипания воды образуется именно такой пар, который затем переходит в сухой насыщенный. Пар, температура которого больше температуры кипящей воды, а точнее перегретый пар, можно получить только с использованием специального оборудования. При этом такой пар будет близок по своим характеристикам к газу .

Температура кипения соленой воды ^

Температура кипения соленой воды превышает температуру кипения пресной воды . Как следствие соленая вода закипает позднее пресной . В соленой воде присутствуют ионы Na+ и Cl-, которые занимают определенную область между молекулами воды.

В соленой воде молекулы воды присоединяются к ионам соли – данные процесс имеет название «гидратация». Связь между молекулами воды значительно слабее связи, образовавшейся в процессе гидратации.

На закипание воды с растворенной солью потребуется больше энергии, в качестве которой в данном случае выступает температура.

По мере увеличения температуры молекулы в соленой воде начинаются двигаться быстрее, но при этом их становится меньше, ввиду чего они сталкиваются реже. В результате образуется меньше пара, давление которого ниже, нежели у пара пресной воды.

Для того чтобы в соленой воде давление стало выше атмосферного и начался процесс кипения, необходима более высокая температура. При добавлении 60 граммов соли в воду объемом 1 литр температура кипения увеличится на 10 С.

Температура кипения воды в вакууме при различном давлении ^

Давление (P) — кПа

Температура (t) — °С

Температура кипения воды в вакууме ^

Известно, что при нормальном атмосферном давлении вода закивает при температуре 100 градусах C. Нормальное атмосферное давление составляет 101,325 кПа.

При снижении окружающего давления вода закипает и испаряется быстрее. Вакуум – свободное от вещества пространство. Технический вакуум – среда, содержащая газ под давлением, которое значительно ниже атмосферного.

В вакууме остаточное давление составляет примерно 4 кПа. При таком показателе давления точкой кипения воды будет 300 С . Чем выше давление в вакууме, тем больше величина температуры кипения воды.

Температура кипения воды в чайнике ^

Кипяток – вода, доведенная до температуры кипения. Как правило, для получения кипятка используются чайники. Остывшая вода, прежде доведенная до кипения, называется кипяченой.

В процессе кипения воды обильно выделяется пар. Процесс парообразования сопровождается выделением из состава жидкости свободных молекул кислорода. Чистая пресная вода закипает в чайнике при температуре 100 градусов С.

В кипятке погибает большинство болезнетворных бактерий за счет длительного воздействия высокой температуры на воду. При кипении из солей, содержащихся в жесткой воде, образуется осадок, который известен нам как накипь .

Обычно кипяченую воду применяют для заваривания кофе и чая, а также для дезинфекции овощей и фруктов и т.д.

Кстати, а вы знаете, какой состав у морской воды? Об этом можно прочитать в статье:
http://pro8odu.ru/vidy-vody/seawater/pochemu-nelzya-pit-morskuyu-vodu.html, это очень интересно!

Температура кипения воды в горах ^

Как уже упоминалось выше, величина температуры кипения воды напрямую зависит от внешнего давления. Чем ниже будет атмосферное давление, тем меньше станет показатель температуры кипения.

Известно, что атмосферное давление значительно падает над уровнем моря. Поэтому в горах давление будет намного ниже, чем на уровне моря.

Любой альпинист знает, что в горах сложно заварить чай, поскольку вода недостаточно нагревается. Также в горах требуется больше времени, чтобы сварить пищу .

Поэтому была составлена специальная таблица, отражающая температуру закипания воды в зависимости от высоты.

Температуры кипения воды на разных высотах ^


Высота над уровнем моря (метры)

Температура закипания воды (0 С)

Данные показатели могут меняться, если в состав воды входят примеси. При наличии нелетучих примесей температура кипения воды будет увеличиваться.

Температура кипения дистиллированной воды ^

Дистиллированная вода – это очищенная вода H2O, в которой практически не содержится каких-либо примесей. Обычно ее используют в медицинских, технических или исследовательских целях.

Дистиллированная вода не предназначена для питья или приготовления пищи. Такую воду производят в специальном оборудовании – дистилляторах, где происходит выпаривание пресной воды и последующая конденсация пара.

Данный процесс называется «дистилляция ». После дистилляции все присутствовавшие в воде примеси остаются в выпаренном остатке.

Температура кипения дистиллированной воды будет такой же, как и у обычной водопроводной воды — 100 градусов Цельсия. Разница же заключается в том, что дистиллированная вода будет закипать быстрее по времени, нежели пресная .

Однако этот показатель практически не отличается от времени закипания обычной воды: разница состоит в считанных долях секунды .

Удельная теплота кипения воды ^

Удельная теплота кипения воды или парообразования – это физическая величина, отражающая количество теплоты, необходимое для превращения 1 л кипящей воды в пар.

Процесс кипения воды, как и любого другого вещества, происходит с поглощением теплоты. Значительная часть проводимой теплоты необходима для разрыва связей между молекулами воды.

Другая часть теплоты расходуется на процессы, происходящие при расширении пара. В результате поглощения теплоты увеличивается энергия взаимодействия между частицами пара.

Эта энергия становится больше энергии взаимодействия молекул воды. Таким образом, при одинаковой температуре внутренняя энергия пара становится выше внутренней энергии жидкости.

Единица удельной теплоты парообразования в системе СИ: [ L] = 1 Дж/кг.

Удельная теплота испарения воды равна 2260 кДж/кг.

Небольшое видео — измерение температуры кипения воды:

При какой температуре вода закипает?

    При кипячении воды в кастрюле в первую очередь нагревается е дно и стенки, здесь образуются пузырьки с водяным паром. В них температура заметно выше, нежели в остальной жидкости. Только до некоторого момента давление воды на эти пузырьки не позволяет им вырваться наружу и пар сжимается. Так продолжается пока не сравняется температура пара и основной массы жидкости. Только тогда пузырьки могут всплывать, начинается бурление воды. Это так называемый белый ключ , первая фаза кипения.

    Обычно воде достаточно нагреться до 100 градусов Цельсия, чтобы закипеть.

    Если подниматься вверх, то на каждые триста метров подъма температура закипания воды уменьшается на 1 градус.

    Альпинисты даже жалуются, что высоко в горах у них чай толком не заваривается. На высоте 6 километров вода кипит уже при 80 градусах.

    Если атмосфера давления нормальная, то вода закипит при 100 градусов Цельсия. Ну а если атмосферная давления большая то и градус кипения тоже будет большим. Например в Ереване вода кипит около при 96 градусов.

    Температура кипения или точка кипения — температура, при которой происходит кипение жидкости,которая находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости. Что из себя представляет кипение мы разобрались,а при какой температуре закипает вода? Казалось очевиден -вода кипит при 100С,но это правило работает лишь при нормальном атмосферном давлении то есть 760 мм ртутного столба.А например высоко в горах, где давление не достигает до 760мм ртутного столба вода закипает не достигнув 100 С.И вода может не кипеть достигнув 100 С,но при условии что эта вода необыкновенно чистая, лишенная каких бы то ни было примесей.

    Более или менее чистая вода при нормальном атмосферном давлении закипает при температуре 100 градусов Цельсия (212 градусов по Фаренгейту). Именно эта температура является температурной границей между жидким и газообразным состояниями воды.

    Вода закипает при температуре, при которой давление насыщенных паров воды равно внешнему давлению. Поэтому при нормальном атмосферном давлении она закипает при 100 град. Цельсия, и по фигу сколько снаружи градусов. Важно именно давление, а не температура внешней среды. И при нуле градусов вода кипит не в вакууме, а при двлении выше вакуума — несколько мм рт. ст.

    Чем выше внешнее давление, тем при большей температуре вода кипит. Но при температуре выше 374 град. уже никакого давления не хватит, чтоб предотвратить е кипение: эта температура называется критической. При такой температуре (и выше) вода уже не может находиться в жидком состоянии.

    Вода закипает при нормальных условиях (температура окружающей среды 20 градусов цельсия, давление около 745-760 миллиметров ртутного столба)при достижении температуры 100 градусов цельсия. Температуры кипения воды зависит от давления, так например высоко в горах температура кипения воды гораздо ниже, а в скороварке составляет 120 градусов цельсия. Это все из за разницы в давлении.

    При нормальном атмосферном давлении, которым считается давление, равное 760 мм. ртутного столба (Р = 760 мм. рт. ст.), то в этом случае вода должна закипать и закипает при температуре, равной сто градусов по Цельсию.

    Общеизвестно и то, что цифры эти (температура кипения воды) уменьшаются, соотвественно, при снижении атмосферного давления. На вершинах гор (наприер, того же Эвереста) вода закипает уже при температуре 70 градусов. И наоборот — чем выше давление, тем выше/больше температура кипения воды.

Вода, нагретая на уровне моря до 100°С (212°F), начинает кипеть. Это означает, что внутри объема жидкости происходит образование пузырьков водяного пара и подъем их к поверхности. Вода закипает, потому что при данной температуре давление насыщения водяного пара слегка превышает атмосферное давление.

На больших высотах над уровнем моря атмосферное давление существенно уменьшается и вода кипит при более низких температурах. И наоборот, если давление над жидкостью увеличивается, например, когда вода находится ниже уровня моря или в скороварке, кипение происходит при более высокой температуре. Иллюстрация под текстом показывает температуры кипения на различных высотах над уровнем моря.

Фактор тепла и высоты

Ближний график справа показывает взаимосвязь между давлением насыщенного пара и температурой. При высоких температурах давление насыщенного пара быстро растет. Вода закипает, когда давление насыщенного пара начинает слегка превышать атмосферное давление. Именно поэтому при падении атмосферного давления уменьшается и температура кипения. На дальнем графике справа приведена зависимость температуры кипения воды от высоты над уровнем моря. Чем больше высота, тем ниже температура, при которой вода начинает кипеть.

Кинетическая энергия

В процессе перехода воды в газообразное состояние важную роль играет кинетическая энергия (энергия движения) молекул. Когда энергетический уровень высок, многие молекулы испаряются, разрывая связи, удерживающие их в жидком состоянии. При низком давлении (верхний рисунок под текстом) молекулы приобретают достаточно энергии для формирования газовых пузырьков кипения без добавления большого количества тепла. Ближе к уровню моря необходимо больше тепла (красная стрелка на нижнем рисунке под текстом), чтобы парообразование имело место.

Уменьшение времени приготовления пищи

В скороварках, как, например, той, что показана на рисунке справа, создается постоянное повышенное давление. На уровне моря эти герметичные кастрюли увеличивают температуру кипения воды до 121 °С (250°F). Более высокая температура кипения означает, что продукты будут готовиться быстрее, экономя время.

На продольных разрезах вверху показаны механизмы скороварки, предупреждающие чрезмерное повышение давления. Все они - предохранительный клапан (левый рисунок), регулятор давления (средний рисунок) и уплотнение ободка (правый рисунок) - помогают контролировать давление путем выпуска пара в атмосферу.

Онечно, при 100° по Цельсию, ответит каждый из нас. Отвечая так на этот вопрос, мы часто забываем, что наш ответ верен только для воды, находящейся под давлением воздуха на поверхности земли.

Кипение жидкости наступает тогда, когда давление пара над ней становится равным давлению воздуха или другого газа, находящегося над поверхностью жидкости. Темпера­тура кипения, следовательно,-переменная величина и зави­сит она от давления, под которым находится жидкость. Сто­ит поместить жидкость в разреженное пространство, как температура ее кипения понизится.

Поднимемся на вершину горы Казбек (5043 м выше уров­ня моря), где давление воздуха равно 405 мм ртутного стол­ба, и попробуем измерить температуру «кипятка» - термо­метр покажет только 83°. В разреженном пространстве можно получить и совсем «холодный» кипяток. Например, при давлении в 17,5 мм ртутного столба вода будет кипеть при 20°. Это будет действительно «холодный» кипяток.

В химической, пищевой и других отраслях промышлен­ности иногда приходится выпаривать огромные количества жидкостей. Такое выпаривание особенно эффективно в вакууме. В некоторых случаях возможность быстро выпари­вать воду при низкой температуре имеет решающее значение: предохраняется от разложения растворенный продукт. При выпаривании в вакууме молока, фруктовых и ягодных соков, дрожжей, органических красителей сохраняются их важ­нейшие свойства.

На молочном заводе вакуум применяется не только для выпаривания молока и его сушки, но и для того, чтобы в моло­ко и продукты его переработки не попали загрязнения при перекачке. Чтобы из одного чана подать молоко в другой или в автоцистерну, создается вакуум и молоко само устрем­ляется в нужном направлении.

Используется вакуум и на консервном заводе. Чтобы убить бактерии, попавшие при упаковке в консервную бан­ку, ее нагревают и выдерживают при повышенной темпера­туре. Если в банке перед укупоркой останется воздух, при прогреве он расширится и может разорвать банку. Чтобы этого не случилось, перед укупоркой банку вакуумируют.

Наиболее совершенный способ сохранения продуктов в свежем состоянии состоит в быстром их замораживании и затем высушивании - вымораживании влаги под вакуумом. Это наиболее прогрессивный способ консервирования пище­вых продуктов.

Можно ли создать вакуум без насоса? Да, можно. Чтобы получить вакуум без насоса, нужно часть газа путем силь­ного охлаждения превратить в жидкость.

Такой прием используется при выпаривании в вакууме. На рис. 30 изображена выпарная установка сахарного заво­да, которая состоит из нескольких, обычно трех, последова­тельно соединенных аппаратов. Первый из них обогревает­ся паром, поступающим из котельной, второй - паром пер­вого, третий - паром второго. В первый аппарат поступает предварительно упаренный сироп, прошедший второй и тре­тий аппараты. Сироп кипит, часть воды из него испаряется,

И, когда концентрация станет достаточной, сироп выпускают для кристаллизации сахара или проводят процесс кристал­лизации в самом аппарате. Полученную смесь патоки и кристаллов выпускают для дальнейшей обработки. Пар из третьего аппарата поступает в конденсатор, где охлаж­дается водой и конденсируется. При конденсации пара соз­дается вакуум, под которым и находится сироп в третьем корпусе выпарки. От величины вакуума зависит температу­ра кипения сиропа в корпусах выпарки. Так как в аппараты выпарки может проникать воздух, для поддержания вакуу­ма к конденсатору присоединен вакуум-насос. Образовавшая­ся в конденсаторе вода по мере ее накопления стекает по ба­рометрической трубке, степень заполнения которой водой определяется величиной вакуума. В каждом из выпарных ап­паратов раствор кипит при пониженной температуре, так как давление в них ниже атмосферного. Это позволяет лучше использовать тепло греющего пара.

В химической промышленности в вакууме производится не только выпаривание, но сушка и кристаллизация многих продуктов.

В любой отрасли промышленности мы увидим использо­вание вакуума. Многие читатели, наверное, не слышали, что даже при производстве кирпича вакуум может сыграть важную роль. В кирпичном производстве есть вид брака, который образно называется «драконов зуб». При этом кир­пич выходит из пресса с рваной кромкой. Зависит это от свойств глины, и избавиться от такого вида брака трудно. И здесь помогает вакуум! Стоит создать вакуум в камере кир­пичного пресса, как брак прекращается. Это происходит потому, что из глины удаляются пузырьки воздуха, глиня­ная масса делается более плотной и связной и лучше формуется.

Вакуум-прессы широко применяются в керамической промышленности, где требования к обработке пластичной массы особенно высоки.

металлургии также начали широко использовать вакуум, что сулит значительное повышение качества металлов. Из доменной печи выпускается огненная струя рас­плавленного чугуна. Заполняется огромный ковш, вмещаю­щий десятки тонн металла, ковш подается к разливочной ма­шине. Искры, шипение воды, шум механизмов, и вот уже бесконечная цепь тянет формы-изложницы с еще огненно - красным, но постепенно тускнеющим, застывающим чугу­ном. На другом конце машины из форм извлекается чугун­ный брусок - чушка. Та же картина у мощной мартеновской печи. Здесь сталь, сверкая всеми оттенками - от осле­пительно белого и до оранжево-красного, разливается в огромные изложницы, застывает в слиток, который пойдет на мощный прокатный стан, будет обжат, вытя­нут, прокатан и превратится в сотни метров балок или рельсов.

Но что это? После того как на получение стали затрати­ли столько сил - плавили, разливали, охлаждали, вновь разогревали, прокатывали,- готовые рельсы отбрасывают в сторону и отправляют обратно в мартен для переплавки вместе с ржавым ломом.

Это брак! Тонкие - размером тоньше волоса - трещи­ны, пузырьки, каверны оказались в отливке в недопустимом количестве, и готовое изделие забраковано, оно не может надежно работать.

В чем дело, где причина брака? Оказывается, основной причиной самых различных пороков стали являются раство­ренные в металле газы. Когда металл плавят, в печи проис­ходит ряд сложных процессов, которые в некоторых случа­ях сопровождаются выделением больших количеств газов. Некоторое количество газов остается в расплавленном метал­ле. При охлаждении, когда расплавленный металл застыва­ет в прочный и плотный слиток, газы остаются в нем, созда­вая дефекты. В стали могут быть растворены водород, азот, кислород. Их количество по весу невелико. Водород, напри­мер, содержится в количестве около 0,001%; но по объему это составляет 4-10 куб. см при обычном давлении на каж­дые 100 граммов стали. Водород заполняет небольшие пус­тоты в стальном слитке. В процессе охлаждения металл сжимается и в пространстве, заполненном газом, может раз­виться высокое давление, достигающее нескольких тысяч

Атмосфер. Такое давление образует в металле мелкие тре­щины - флокены. Металлурги давно борются со своим вра­гом - газами, растворенными в чугуне, стали и других металлах. Чтобы уменьшить их количество, в металл при плавке вводятся различные вещества, которые могли бы связать газы химически. В сталь добавляют с этой целью алюминий, кремний, титан и другие вещества, но это не проходит даром. Образуются неметаллические соединения, которые понижают качество металла, даже если содержатся в сотых долях процента.

И здесь при помощи вакуума металлургам удалось повы­сить качество металла. Если ковш с расплавленной сталью поместить в вакуум, из нее бурно начнут выходить газы. В вакууме резко уменьшается растворимость газов в металле. Качество отливок возрастает.

Разработанные советскими учеными способы краткосроч­ной дегазации стали непосредственно в ковшах и изложни­цах уменьшают содержание в ней газов в несколь­ко раз.

В вакууме не только удаляются примеси газов, но и во время отливки и остывания металл предохраняется от дей­ствия активных газов, прежде всего кислорода.

Высококачественные хромомолибденовые сплавы для лопаток турбин и никелевые сплавы для радиоаппаратуры плавят в вакууме, чтобы избежать окисления.

Особенно велико значение дегазации под вакуумом для специальных сталей. Подшипники из вакуумированной стали служат в три-четыре раза дольше, чем из обычной. Уменьшаются потери электроэнергии в магнитных сталях для сердечников трансформаторов. Уменьшается основной дефект жаропрочных сталей - хрупкость. Увеличивается химическая стойкость нержавеющих сталей. Одно перечис­ление преимуществ, которые дает применение вакуумирова - ния при плавке металлов, говорит о высокой эффективности этого процесса.

Для вакуумной плавки качественных сталей созданы ин­дукционные печи, в которых весь процесс, включая разлив­ку, идет в вакууме. Печь целиком помещена в герметически закрывающийся кожух, соединенный с мощными вакуум-насосами.

Большой практический интерес представляет не только плавка в вакууме, но и перегонка металлов в ваку­уме.

Ы ежедневно наблюдаем, как испаряются жидкости. Вы наливаете на ладонь несколько капель эфира, взмах рукой - появляется ощущение холода, и жидкость исчезает, испаряется, в воздухе распространяется запах эфира. Молекулы эфира распределились между молекулами газов воздуха.

Трудно себе представить, что подобно эфиру может ис­паряться сталь или другие прочные и устойчивые металлы. И действительно, сколько бы при обычной температуре мы ни держали на воздухе стальную пластинку, ее вес не умень­шится, если, конечно, воздух будет сухим и будет исклю­чена возможность ржавления. Однако можно создать та­кие условия, при которых даже наиболее тугоплавкие метал­лы будут постепенно испаряться. Обратите внимание на ста­рую перегоревшую электролампу. Поверхность ее стеклян­ного баллона изнутри покрыта темным металлическим нале­том. Откуда он мог взяться? Ведь в лампе есть только нить из весьма тугоплавкого и стойкого металла вольфрама. Ана­лиз показывает, что этот налет и состоит из вольфрама, испа­рившегося при накаливании нити и осевшего на холодной поверхности стеклянного баллона, совсем так же, как водя­ной пар, попадая на холодную поверхность, конденсируется и поверхность запотевает.

При высокой температуре металлы испаряются так же, как вода или эфир при комнатной температуре. Конечно, нужна весьма высокая температура, чтобы испарение было заметным.

Сравнительно легко летучими металлами являются цинк, магний, хром и некоторые другие. Так, давление пара

1 10""2 мм ртутного столба достигается для цинка при 350°, магния при 439°, хрома при 917°. В то же время железо при 750° имеет давление паров только 1 10~8 мм ртутного столба, а вольфрам имеет такое же давление пара при температуре свыше 2100°.

Возможность испарения металлов в вакууме широко при­меняется в современной технике. Это свойство используется для нанесения на поверхность металлов защитных покрытий из металлического хрома. Кто из вас не любовался серебри­стым блеском покрытия деталей автомашин, не тускнеющих на дожде и на солнце, прочных и красивых. Это покры­тие- тонкая пленка металлического хрома.

Пленка хрома может наноситься при помощи электро­лиза, однако использование вакуума способствовало рас­ширению применения так называемого термохромирования. При этом способе детали и измельченный хром с определен­ными добавками помещаются в печь. Печь наполняют газо­образным хлором, затем начинают нагрев. Хлор поглощает­ся добавками, и в печи образуется вакуум. Хром начинает испаряться и откладываться тончайшим слоем на поверх­ности деталей.

Вакуумный метод термохромирования упрощает подго­товку деталей к покрытию, сокращает расход хрома, упро­щает оборудование. Когда нужен металл высокой чистоты, вакуум помогает удалить следы примесей различных ве­ществ, например, в магнитных, жароупорных, нержавею­щих сталях. Высокий вакуум необходим для удаления лег­колетучих примесей (свинца, кадмия, висмута) из меди.

Для получения чистых легколетучих металлов приме­няется плавка и дистилляция в высоком вакууме. Так же как перегоняют спирт, чтобы увеличить его крепость и отделить от примесей, перегоняют, например, ртуть, цинк, кадмий, а иногда и магний.

Даже кремнекислота, составляющая такой, казалось бы, стойкий материал, как кварцевый песок, заметно испаряется в высоком вакууме. А хром настолько летуч в высоком ва­кууме, что интенсивно испаряется, еще не расплавившись.

Перегонка в вакууме позволяет получить чрезвычайно чистые металлы. Удается получить алюминий, более чистый, чем при электролизе, с содержанием железа менее одной тысячной процента. Известно, что алюминий легко окисляет­ся на воздухе, тем более активна пленка алюминия, получен­ная при перегонке, и только высокий вакуум предохраняет металл от окисления. Такова же роль вакуума и при плавке молибдена. Только в печи с высоким вакуумом удалось рас­плавить без окисления этот тугоплавкий металл, плавя­щийся при температуре свыше 2600° С.

Применение вакуума в металлургии привело к развитию техники получения вакуума в больших объемах и с большой скоростью. Увеличение производительности насосов позво­ляет размещать в вакуумируемом пространстве все более крупное оборудование.

В настоящее время уже созданы печи для единовремен­ного расплавления 1 тонны стали при вакууме 1-10"2-

1 1СГ3 мм ртутного столба.

Формовка и литье под вакуумом дают весьма точные от­ливки.

Для применения вакуума в металлургии построены мас­ляные диффузионные насосы с диаметром входного отверстия 80 см и скоростью откачки 14 000 л! сек, при теоретической скорости до 60 000 л! сек.

Даже беглый обзор применения вакуума в металлургии показывает, что эта важнейшая отрасль техники широко ис­пользует возможности регулировать свойства газовой сре­ды, окружающей металл на всех этапах его «жизни» от плав­ки до обработки. Перспективы здесь еще более широки. Мощ­ные вакуум-установки скоро станут такой же неотъемле­мой принадлежностью металлургического завода, какой являются воздуходувные станции для подачи воздуха в печи.

Обычная вода закипает при 100 градусах - в справедливости этого утверждения мы не сомневаемся, а градусник легко это подтвер­ждает. Однако есть люди, которые могут скептически улыбнуть­ся, так как знают - вода не всегда и не везде кипит ровно при 100 градусах .

А разве такое возможно? Да, возможно, но только при определенных условиях.

Сразу нужно сказать, что вода может закипать при темпера­турах как ниже, так и выше +100 °С. Так что не стоит удивляться выражению «Вода вскипела при + 73 °С» или «Кипение воды на­чалось при +130 °С» - обе эти ситуации не просто возможны, но и относительно легко осуществимы.

Но, чтобы понять, как достичь только что описанных эффек­тов, необходимо разобраться в механизме кипения воды и любых других жидкостей.

При нагреве жидкости у дна и на стенках со­суда начинают образовываться пузырьки, наполненные паром и воздухом. Однако температура окружающей воды слишком мала, отчего пар в пузырьках конденсируется и сжимается, а под давлением воды эти пузырьки лопаются. Данный процесс происходит до тех пор, пока весь объем жидкости не прогреется до температуры кипения - в этот момент давление пара и воздуха внутри пузырей сравнивается с давлением воды. Такие пузырьки уже способны подняться к поверхности жидкости, выпустив там пар в атмосферу - это и есть кипение. Во время кипения темпера­тура жидкости больше не поднимается, так как наступает термо­динамическое равновесие: сколько тепла потрачено на нагрев, столько же тепла и отводится паром с поверхности жидкости.

Ключевой момент в закипании воды и любой другой жидко­сти - равенство давления пара в пузырях и давления воды в со­суде. Из этого правила можно сделать простой вывод - жидкость может закипать при совершенно разных температурах, а добить­ся этого можно изменением давления жидкости. Как известно, давление в жидкостях складывается из двух составляющих - ее собственного веса и давления воздуха над ней. Получается, что снизить или повысить температуру кипения воды можно изме­нением атмосферного давления либо давления внутри сосуда с подогреваемой жидкостью.

В действительности так и происходит. Например, в горах кипяток вовсе не так горяч, как на равнинах, - на высоте 3 км, где давление воздуха падает до 0,7 атмосферы, вода закипает уже при +89,5 градусов. А на Эвересте (высота - 8,8 км, давление - 0,3 атмосферы) вода закипает при температуре чуть больше +68 градусов. Да, приготовление пищи при таких температурах - дело весьма трудное, и если бы не специальные средства, то на таких высотах это было бы и вовсе невозможно.

Чтобы повысить температуру кипения, необходимо поднять давление атмосферы или хотя бы плотно закрыть сосуд с водой. Этот эффект используется в так называемых скороварках - плотно закрытая крышка не дает выходить пару, из-за чего давле­ние в ней повышается, а значит, растет и температура кипения. В частности, при давлении в 2 атмосферы вода закипает только при +120 градусах. А в паровых турбинах, где поддерживается давле­ние в десятки атмосфер, вода не закипает и при +300-400 °С!

Однако существует еще одна возможность нагрева воды до больших температур без кипения. Замечено, что образова­ние первых пузырьков начинается на шероховатостях сосуда, а также вокруг более или менее крупных частиц присутствую­щих в жидкости загрязнителей. Поэтому если нагревать абсо­лютно чистую жидкость в идеально отполированном сосуде , то при нормальном атмосферном давлении можно заставить эту жидкость не вскипать при очень высоких температурах. Образуется так называемая перегретая жидкость , отличающаяся крайней нестабильностью - достаточно минимального толчка или попадания пылинки, чтобы жидкость мгновенно вскипела (а на деле - буквально взорвалась) сразу во всем объеме.

Обычную воду при некоторых усилиях можно нагреть до +130 °С и она не вскипит. Для получения больших температур уже необходимо применение особого оборудования, но предел наступает при +300 °С - перегретая вода при такой темпера­туре может существовать доли секунды, после чего происходит взрывоподобное вскипание .

Интересно, что перегретую жидкость можно получить и иным способом - подогреть ее до относительно низких температур (чуть ниже +100 °С) и резко понизить давление в сосуде (на­пример, поршнем). В этом случае также образуется перегретая жидкость, способная вскипеть при минимальном воздействии. Данный метод используется в пузырьковых камерах , регистри­рующих заряженные элементарные частицы. При пролете сквозь перегретую жидкость частица вызывает ее локальное вскипа­ние, а внешне это отображается как возникновение трека (сле­да, тонкой черточки) из микроскопических пузырьков. Однако в пузырьковых камерах применяется отнюдь не вода, а различ­ные сжиженные газы.

Итак, вода далеко не всегда закипает при +100 °С - все зависит от давления внешней среды или внутри сосуда. Поэтому в горах без специальных средств нельзя получить «нормальный» кипяток, а в котлах тепловых электростанций вода не кипит даже при +300 °С.