Сообщение на тему движение тела переменной массы. Движение тела с переменной массой. Контрольные вопросы и задачи

Для начала сформулируем, что такое переменная масса.

Определение 1

Переменная масса – это масса тела, которая может меняться при медленных движениях из-за частичных приобретений или потерь составляющего вещества.

Чтобы записать уравнение движения для тела с такой массой, возьмем для примера движение ракеты. В основе ее перемещений лежит очень простой принцип: она движется за счет выброса вещества с большой скоростью, а также сильного воздействия, оказываемого на это вещество. В свою очередь выбрасываемые газы также оказывают воздействие на ракету, придавая ей ускорение в противоположном направлении. Кроме того, ракета находится под действием внешних сил, таких, как гравитация Солнца и других планет, земная тяжесть, сопротивление среды, в которой она совершает движение.

Рисунок 1

Обозначим массу ракеты в какой-либо момент времени t как m (t) , а ее скорость как v (t) . То количество движения, которая она при этом совершает, будет равно m v . После того, как пройдет время d t , обе эти величины получат приращение (соответственно d m и d v , причем значение d m будет меньше 0). Тогда количество движения, совершаемого ракетой, станет равно:

(m + d m) (v + d v) .

Нам необходимо учитывать тот момент, что за время d t также происходит движение газов. Это количество тоже нужно добавить в формулу. Оно будет равно d m г а з v г а з. Первый показатель означает массу газов, которые образуются за указанное время, а второй – их скорость.

Теперь нам нужно найти разность между суммарным количеством движения за время t + d t и количеством движения системы во время t . Так мы найдем приращение данной величины за время d t , которое будет равно F d t (буквой F обозначена геометрическая сумма всех тех внешних сил, которые действуют в это время на ракету).

В итоге мы можем записать следующее:

(m + d m) (v + d v) + d m г а з + v г а з - m v = F d t .

Поскольку нам важны именно предельные значения d m d t , d v d t и их производные, приравняем эти показатели к нулю. Значит, после раскрытия скобок произведение d m · d v может быть отброшено. С учетом сохранения массы получим:

d m + d m г а з = 0 .

Теперь исключим массу газов d m г а з и получим скорость, с которой газы будут покидать ракету (скорость струи вещества), выражающаяся разностью v о т н = v г а з - v . Учитывая эти преобразования, можно переписать исходное уравнение в следующем виде:

d m v = v о т н d m + F d t .

Теперь разделим его на d t и получим:

m d v d t = v о т н d m d t + F .

Уравнение Мещерского

Форма полученного уравнения точно такая же, как у уравнения, выражающего второй закон Ньютона. Но, если там мы имеем дело с постоянной массой тела, то здесь из-за потери вещества она постепенно меняется. К тому же помимо внешней силы нужно учитывать так называемую реактивную силу. В примере с ракетой это будет сила выходящей из нее газовой струи.

Определение 2

Уравнение m d v d t = v о т н d m d t + F впервые вывел русский механик И.В. Мещерский, поэтому оно получило его имя. Также его называют уравнением движения тела с переменной массой .

Попробуем исключить из уравнения движения ракеты внешние силы, воздействующие на нее. Предположим, что движение ракеты прямолинейно, а направление противоположно скорости газовой струи v о т н. Будем считать направление полета положительным, тогда проекция вектора v о т н является отрицательной. Она будет равна - v о т н. Переведем предыдущее уравнение в скалярную форму:

m d v = v о т н d m .

Тогда равенство примет вид:

d v d m = - v о т н m .

Газовая струя может выходить во время полета с переменной скоростью. Проще всего, разумеется, принять ее в качестве константы. Такой случай наиболее важен для нас, поскольку так уравнение решить намного проще.

Исходя из начальных условий, определим, какое значение приобретет постоянная интегрирования С. Допустим, что в начале пути скорость ракеты будет равна 0 , а масса m 0 . Следовательно, из предыдущего уравнения можем вывести:

C = v о т н ln m 0 m .

Тогда мы получим соотношения следующего вида:

Определение 3

Она предназначена для расчета запаса топлива, с помощью которого ракета может набрать необходимую скорость. При этом время сгорания топлива не обусловливает величину максимальной скорости ракеты. Чтобы разогнаться до предела, нужно увеличить скорость истечения газов. Для достижения первой космической скорости следует изменить конструкцию ракеты. Она должна быть многоступенчатой, поскольку необходимо меньшее соотношение между требуемой массой топлива и массой ракеты.

Разберем несколько примеров применения данных построений на практике.

Пример 1

Условие : у нас есть космический корабль, скорость которого постоянна. Для изменения направления полета в ней нужно включить двигатель, который выбрасывает газовую струю со скоростью v о т н. Направление выброса перпендикулярно траектории корабля. Определите угол изменения вектора скорости при начальной массе корабля m 0 и конечной m .

Решение

Ускорение по абсолютной величине будет равно a = ω 2 r = ω v , причем v = c o n s t .

Значит, уравнение движения будет выглядеть так:

m d v d t = v о т н d m d t перейдет в m v ω d t = - v о т н d m .

Поскольку d a = ω d t является углом поворота за время d t , то после интеграции первоначального уравнения получим:

a = v о т н v ln m 0 m .

Ответ: искомый угол будет равен a = v о т н v ln m 0 m .

Пример 2

Условие: масса ракеты перед стартом равна 250 к г. Вычислите высоту, которую она наберет через 20 секунд после начала работы двигателя. Известно, что топливо расходуется со скоростью 4 к г / с, а скорость истечения газов постоянна и равна 1500 м / с. Поле тяготения Земли можно считать однородным.

Решение

Рисунок 2

Начнем с записи уравнения Мещерского. Оно будет иметь следующий вид:

m ∆ v 0 ∆ t = μ v о т н - m g .

Здесь m = m 0 - μ t и v 0 – скорость ракеты в заданный момент времени. Разделим переменные:

∆ v 0 = μ v о т н m 0 - μ t - g ∆ t .

Теперь решим полученное уравнение с учетом первоначальных условий:

v 0 = v о т н ln m 0 m 0 - μ t - g t .

С учетом того, что H 0 = 0 при t = 0 , у нас получится:

H = v о т н t - g t 2 2 + v о т н m 0 μ 1 - μ t m 0 ln 1 - μ t m 0 .

Добавим заданные значения и найдем ответ:

H = v о т н t - g t 2 2 + v о т н m 0 μ 1 - μ t m 0 ln 1 - μ t m 0 = 3177 , 5 м.

Ответ: через 20 секунд высота ракеты будет составлять 3177 , 5 м.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение движения центра масс

Понятие центра масс позволяет придать уравнению , выражающему второй закон Ньютона для системы тел, иную форму. Для этого достаточно представить импульс системы как произведение массы системы на скорость ее центра масс:

Получили уравнение движения центра масс, согласно которому центр масс любой системы тел движется так, как если бы вся масса системы была сосредоточена в нем, и к нему были бы приложены все внешние силы. Если сумма внешних сил равна нулю, то, а, значит, т. е. центр масс (инерции) замкнутой системы покоится или перемещается равномерно и прямолинейно. Другими словами, внутренние силы взаимодействия тел не могут придать какое-либо ускорение центру масс системы тел и изменить скорость его движения .

Скорость центра масс определяется полным импульсом механической системы, поэтому перемещение центра масс характеризует движение этой системы как единого целого.

Рис.1.19.

Движение некоторых тел происходит благодаря изменению их массы. Рассмотрим движение тела переменной массы на примере ракеты, движущейся благодаря выбросу потока газов, образовавшихся при сгорании топлива. Пусть в некоторый момент отсчета времени t скорость ракеты относительно Земли равна. Выберем для этого момента времени такую систему отсчета, которая движется относительно Земли равномерно и прямолинейно со скоростью равной. В этой системе отсчета ракета в момент времени t покоится. Переменная масса ракеты в этот момент времени равна m . Скорость потока газов относительно ракеты примем постоянной и равной (рис. 1.19). Пусть на ракету действует постоянная сила, например, сила сопротивления атмосферного воздуха.

Запишем изменение импульса системы для бесконечно малого промежутка времени dt . В момент отсчета времени t+dt масса ракеты равна m+dm. Так как dm < 0, то отделяемая масса равна – dm . Скорость ракеты за время dt получит приращение. Изменение импульса ракеты равно

Изменение импульса отделяемой массы:

Здесь – скорость отделяемой массы в выбранной нами системе отсчета. Согласно закону изменения импульса неизолированной системы тел

откуда следует, что

Разделив на dt , приходим к уравнению динамики переменной массы , впервые полученному российским физиком Мещерским:



Величину называют реактивной силой . Эта сила тем больше, чем быстрее изменяется масса тела со временем. Для тела постоянной массы реактивная сила равна нулю. Если масса тела уменьшается, то реактивная сила направлена в сторону, противоположную скорости отделяемой массы Если масса тела увеличивается, то реактивная сила сонаправлена скорости отделяемой массы

Теперь рассмотрим случай, когда внешних сил нет. В проекции направление движения ракеты уравнение Мещерского примет вид:

Интегрируя это выражение, получим:

Константу интегрирования C определим из начальных условий. Если в начальный момент отсчета времени t = 0 скорость ракеты равна нулю, а масса, то и Тогда

Это соотношение носит имя российского ученого К.Э. Циолковского и лежит в основе ракетостроения.

Движение точки переменной массы

Роль ракетной техники на современном этапе цивилизации и развития механики оказалась настолько заметной, что теория движения тел с переменной массой в последние десятилетия фак­тически стала синонимом прикладных задач, связанных с полетом ракеты. В действительности задач о движении тела с переменной массой можно предложить очень много. Это, например, движение клети в шахте при увеличении или уменьшении дли­ны и соответственно массы удерживающего троса; это - каче­ние снежного кома по склону горы; это - движение падающей в воздухе дождевой капли, на поверхности которой конден­сируется атмосферная влага; это - движение кометы, теряющей вблизи Солнца часть испаряющегося вещества, и многие другие задачи. Все они и им подобные уже решались в начале прош­лого века, а несколько позже некоторые из них, в частности про­стейшие задачи о полете ракеты, вошли в учебную литературу по механике.

При решении задач о поступательном движении тела мы пользуемся теоремой об изменении количества движения, которую пишем в форме закона Ньютона:

где М - масса тела, - ускорение, а в правую часть вынесена сумма проекций внешних сил. В такой же форме принято писать и уравнение для движения ра­кеты.

Но только в число действующих сил включается сила, создаваемая двигателем, - тяга двигателя.

Пока, однако, забудем о ракете и подойдем к уравнению (1.1) с общих позиций. Посмотрим, что в нем изменится, если масса тела в про­цессе движения не остается постоянной.

Положим, масса непрерывно увеличивается. Пусть за время Δt к массе М присоединяется масса ΔМ , имеющая абсолютную скорость V 1 (рис. 1.1). По теореме об изме­нении количества движения имеем:

до соединения масс количество движения

,

а после того как массы объединились -

изменение количества движения равно импульсу внешних сил -

Раскрывая скобки и разделив обе части равенства на Δt , а затем, переходя к пределу, получим уравнение движения для точки переменной массы:

(1.2)

Характерной особенностью этого уравнения является то, что в него вошло слагаемое, содержащее производную от массы по времени. Значение этого слагаемого, имеющего размерность силы, зависит от относительной скорости присоединения частиц V 1 -V и может быть как положительным, так и отрицательным, смотря по тому, какой знак имеет относительная скорость и про­изводная массы по времени.

Выведенное уравнение обладает достаточной общностью. Его можно трактовать и как векторное, и оно может быть положено в основу решения многих задач. Например, с его помощью можно подсчи­тать тормозящую силу, которую испы­тывает автомашина от действия ка­пель при движении в потоке дождя. Для этого достаточно принять горизонтальную составляющую скорости капель V 1 равной нулю, за величину V принять скорость машины, а произ­водную от массы по времени рассма­тривать как суммарную массу капель, захватываемых машиной в единицу времени. С помощью уравнения (1.2) решается, на­пример, классическая задача о сползании со стола цепи (рис. 1.2). Уравнение движения для цепи, полученное из уравнения (1.2), оказывается нелинейным, но его можно решить. При нулевой начальной скорости путь, проходимый цепью за время t , оказы­вается ровно в три раза меньшим, чем для свободно падающего тела.

С помощью уравнения (1.2) описывается, естественно, и дви­жение ракеты.

Масса ракеты во времени уменьшается, и производная М меньше нуля. Это - секундный расход массы, который обозна­чим через :

(1.3)

Часто вместо массового рассматривается секундный весовой расход рабочего тела

МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ

На рубеже XIX-XX вв. в России была создана новая область механики, первые стимулы к разработке которой возникли в теоретическом естествознании и которая приобрела исключительно важное значение в технике середины XX в. Это динамика тел переменной массы И.В. Мещерского.

Иван Всеволодович Мещерский (1859-1935) родился в Архангельске. Учился он сначала в приходском училище, затем в уездном. В 1871 г. поступил в Архангельскую гимназию, курс которой окончил в 1878 г. с золотой медалью, причем в аттестате была отмечена «любознательность весьма похвальная, и особенно к древним языкам и математике». В той: же году И.В. Мещерский поступил на математическое отделение физико-математического факультета Петербургского университета. Это было время расцвета Петербургской математической школы, созданной П.Л. Чебышевым. Здесь он с восторгом слушал лекции как самого П.Л. Чебышева, так и известных в то время профессоров А.Н. Коркина (1837- 1908), К.П. Поссе (1847-1928) и многих других.

В студенческие годы Мещерский с особым интересом занимался механикой, которую читали Д.К. Бобылев и Н.С. Будаев. Влияние их сказалось на всей дальнейшей научной деятельности И.В. Мещерского. Особенно значительную роль в его жизни сыграл Д.К. Бобылев, автор крупных работ по гидродинамике и замечательный педагог. По окончании университета в 1882 г. Мещерский был оставлен при университете для подготовки к профессорскому званию.

ИВАН ВСЕВОЛОДОВИЧ МЕЩЕРСКИЙ (1859-1935)

Советский ученый в области механики, основоположник механики тел переменной массы. Работы И.В. Мещерского явились основой для решения многих проблем реактивной техники

В 1889 г. И.В. Мещерский выдержал при Петербургском университете экзамены на ученую степень магистра прикладной математики и получил право на чтение лекций. В ноябре 1890 г. И.В. Мещерский начал преподавание в Петербургском университете в качестве приват-доцента. В 1891 г. он получил кафедру механики на Петербургских высших женских курсах, которую занимал до 1919 г., т. е. времени слияния этих курсов с университетом. В 1897 г. Мещерский успешно защитил в Петербургском университете диссертацию на тему «Динамика точки переменной массы», представленную им для получения степени магистра прикладной математики.

В 1902 г. он был приглашен заведовать кафедрой в незадолго перед тем основанный Петербургский политехнический институт. Здесь и протекала до конца жизни его основная научно-педагогическая работа. И.В. Мещерский 25 лет вел педагогическую работу в Петербургском университете и 33 года в Политехническом институте. Многие слушатели Мещерского стали крупными учеными. Так, например, среди слушателей курса «Интегрирование уравнений механики», прочитанного Мещерским, были такие выдающиеся русские ученые, как академик А.Н. Крылов, профессор Г.В. Колосов и др. В архиве АН СССР хранится тетрадь А.Н. Крылова с записями лекций Мещерского, прочитанных последним в 1890/1891 учебном году в Петербургском университете. Широко известен его курс теоретической механики и особенно прекрасный задачник по механике, выдержавший более двух десятков изданий и принятый в качестве учебного пособия для высших учебных заведений не только в СССР, но и в ряде зарубежных стран.

Основным предметом научных исследований И.В. Мещерского явилась проблема движения тел с переменной массой. Всю свою творческую жизнь он посвятил созданию основ механики переменных масс и достиг в этом выдающихся результатов. Классический закон движения Ньютона, выражаемый дифференциальным уравнением

где m - масса точки, V - скорость, F - равнодействующая приложенных сил, перестает, вообще говоря, быть верным, если масса меняется со временем. Между тем в ряде важных случаев приходится иметь дело с движущимися телами переменной массы. Сам Мещерский в своей работе «Динамика точки переменной массы» писал: «Такие случаи нам представляет сама природа: масса Земли возрастает вследствие падения на нее метеоритов; масса метеорита, движущегося в атмосфере, убывает вследствие того, что некоторые частицы его или отрываются, или сгорают; масса падающей градины или снежинки возрастает в тех частях пути, где на нее оседают пары из окружающей атмосферы, и убывает вследствие испарения там, где она проходит через слои воздуха, более теплые и более сухие; плавающая льдина представляет пример, где масса возрастает вследствие намерзания и убывает вследствие таяния и т. д.

В некоторых случаях изменение массы вызывается искусственно: убывает масса летящей ракеты вследствие сгорания; убывает масса аэростата при выбрасывании балласта; возрастает масса привязного аэростата, когда он, поднимаясь, вытягивает за собой канат; возрастает масса корабля при нагрузке и убывает при разгрузке и т. д. Вообще, если тело находится в воздухе, масса его может возрастать вследствие оседания пыли и паров, вследствие присоединения частиц других тел, с которыми оно приходит в соприкосновение; масса может убывать вследствие сгорания, испарения, распыления.

Если тело находится в жидкости, его масса может возрастать вследствие оседания на поверхности некоторых частиц из этой жидкости, вследствие намерзания и может убывать вследствие размывания тела жидкостью, вследствие растворения или таяния» {217} .

До Мещерского были разобраны лишь немногие частные задачи такого рода, и к тому же решения их иногда были ошибочными. Можно утверждать, что на рубеже XIX и XX вв. трудами И.В. Мещерского были заложены основы динамики точки переменной массы и создан новый большой раздел теоретической механики - механика переменных масс. И.В. Мещерский начал заниматься вопросами движения тел переменной массы в 1893 г. 27 января этого года на заседании Петербургского математического общества он доложил о первых своих результатах в этом направлении.

В магистерской диссертации «Динамика точки переменной массы» Мещерский установил, что если масса точки изменяется во время движения, то основное дифференциальное уравнение движения Ньютона заменяется следующим фундаментальным уравнением движения точки переменной массы:

где F и R = dm/dt?U r - заданная и реактивная силы.

Это уравнение называют уравнением Мещерского. В диссертации Мещерский дал общую теорию движения точки переменной массы для случая отделения (или присоединения) частиц. В 1904 г. в «Известиях Петербургского политехнического института» был напечатан второй труд И.В. Мещерского «Уравнения движения точки переменной массы в общем случае». В этой работе теория Мещерского получила окончательное и в высшей степени изящное выражение. Здесь он устанавливает и исследует общее уравнение движения точки, масса которой изменяется от одновременного процесса присоединения и излучения материальных частиц. И.В. Мещерский не только разработал теоретические основы динамики переменной массы, но и рассмотрел большое количество частных задач о движении точки переменной массы, например восходящее движение ракеты и вертикальное движение аэростата. Он подверг весьма обстоятельному исследованию движение точки переменной массы под действием центральной силы, заложив тем самым основания небесной механики тел переменной массы. Он исследовал также и некоторые проблемы комет. И.В. Мещерский впервые сформулировал и так называемые обратные задачи, когда по заданным внешним силам и траектории определяется закон изменения массы.

Заслуги И.В. Мещерского в науке чрезвычайно велики. Однако лишь в последнее время с достаточной полнотой выяснилось огромное практическое значение его исследований по механике переменных масс. После второй мировой войны стало появляться большое число глубоких теоретических исследований, посвященных как специальным проблемам ракетодинамики и динамики тел переменной массы, так и обобщению результатов исследований И.В. Мещерского. Опираясь на труды И.В. Мещерского, советские ученые разработали основные вопросы динамики твердого тела и произвольных изменяемых систем переменной массы.

В историю отечественной науки Мещерский вошел как основоположник механики тел переменной массы. Его исследования в этой области явились теоретической основой современной ракетодинамики. Имя И.В. Мещерского неразрывно связано с именем создателя научных основ космонавтики К.Э. Циолковского.

Константин Эдуардович Циолковский является пионером ракетодинамики, теории реактивных двигателей и учения о межпланетных сообщениях. Он один из основателей экспериментальной аэродинамики в России, создатель первого проекта конструкции и теории цельнометаллического дирижабля, автор многих ценных изобретений в технике летания.

Жизнь Циолковского полна подлинного драматизма. Его трагическая судьба в дореволюционной России и затем великий триумф в Советском Союзе отразили исторический перелом в судьбах отечественной научно-технической мысли.

Напряженная, наполненная непрестанными поисками, до предела насыщенная внутренним содержанием, жизнь Циолковского небогата внешними событиями. Его биография резко отличается от обычных жизнеописаний ученых. Здесь нет студенческих лет, непосредственного общения с представителями предшествующего поколения ученых, разрабатывавшими такие же или сходные проблемы, нет кафедры, научных рангов и т. д.

Константин Эдуардович Циолковский родился 17 сентября 1857 г. в с. Ижевском Спасского уезда Рязанской губернии в семье ученого-лесовода. Девяти лет Циолковский в результате осложнения, полученного после скарлатины, почти полностью потерял слух. Глухота не позволила продолжать учебу в школе. Чтобы восполнить пробел в своем образовании, он, занимаясь самостоятельно, прошел полный курс средней школы и значительную часть университетского курса.

В своей автобиографии К.Э. Циолковский писал: «…Учителей, кроме ограниченного количества и сомнительного качества книг, у меня не было, и меня можно считать самоучкой чистой крови. Я так привык к самостоятельной работе, что, читая учебники, считал более легким для себя доказать теорему без книги, чем вычитывать из нее доказательства».

В 1879 г. Константин Эдуардович сдал экстерном экзамен на звание учителя средней школы и начал преподавать математику в Боровском уездном училище Калужской губернии. Все свободное от школьных занятий время он посвящал научным исследованиям.

Творчество Циолковского отличают разносторонность и широта научных интересов. Его интересовали самые разнообразные области знания - естествознание, техника, философия. Однако основные его работы связаны с решением трех крупнейших технических проблем: воздухоплавание, авиация и межпланетные сообщения.

В середине 80-х годов Циблковский начал проводить серьезные исследования по проблеме создания управляемого аэростата. В результате он пришел к выводу, что целесообразно создавать аэростаты только металлические и больших размеров. Кроме того, Циолковский показал, что возможно осуществить управление аэростатами. Он разработал проект цельнометаллического дирижабля с гофрированной оболочкой, у которого в полете мог изменяться объем и производиться подогрев газа.

Изменение объема аэростата давало возможность сохранить неизменной подъемную силу при изменении температуры и давления окружающего воздуха. Подогрев газа внутри корпуса аэростата Циолковский предполагал производить за счет тепла отработанных продуктов сгорания. Идея подогрева газа преследовала цель регулировать изменение подъемной силы дирижабля при перемене метеорологических условий, при подъеме и спуске, сохраняя газ и балласт.

КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ (1857-1935)

Советский ученый и изобретатель, основоположник современной ракет о динамики, теории реактивных двигателей и учения о межпланетных сообщениях

Другой важной технической проблемой, которой Циолковский уделял большое внимание, является разработка вопросов аэродинамики и авиации. Уже в работе по теоруии аэростата, законченной в 1886 г., он затрагивает вопросы аэродинамики в связи с определением, формы аэростата наименьшего сопротивления. Непосредственно аэродинамическим исследованиям посвящена его работа «Давление жидкости на равномерно движущуюся плоскость» (опубликована в 1891 г.).

В 1894 г. появляется его работа по теории самолета «Аэроплан или птицеподобная (авиационная) летательная машина».

Анализируя возможные схемы летательных аппаратов (с машущими и с неподвижными крыльями), Циолковский приходит к идее создания летательной машины, близкой по схеме к современному самолету-моноплану. Циолковский разработал схему самолета, представлявшего собой моноплан со свободнонесущими крыльями, обтекаемой формы фюзеляжем, горизонтальным и вертикальным оперениями, винтомоторной группой (с двигателем внутреннего сгорания), колесным шасси. Крыло самолета имело вогнутый профиль (с острой задней кромкой), толщина которого уменьшалась при приближении к задней кромке.

В 1897 г. Циолковский сконструировал аэродинамическую трубу - первую в России трубу, примененную для исследований в области авиации и воздухоплавания. Опыты в аэродинамической трубе позволили Циолковскому установить важнейшие законы сопротивления среды, провести систематическое исследование лобового сопротивления и подъемной силы тел различной формы, в том числе пяти моделей крыльев (плоских и вогнутых пластинок различного удлинения) и оболочек дирижаблей. Результаты своих первых исследований в аэродинамической трубе Циолковский изложил в работе «Давление воздуха на поверхности, введенные в искусственный воздушный поток», напечатанной в «Вестнике опытной физики и элементарной математики» в 1898 г.

В этой работе Циолковский дал анализ влияния удлинения крыла и тела вращения на их аэродинамические характеристики, нашел формулу для сопротивления трению и установил зависимость его от величины скорости и характерного размера тела (причем эти величины входят в формулу в одной и той же степени), дал сравнительную оценку сопротивления тел различной формы, указал на важное влияние формы кормовой части тела на величину его сопротивления.

Третьим крупнейшим циклом работ Циолковского являются его исследования в области реактивного движения и межпланетных сообщений. В 1883 г. он написал книгу «Свободное пространство», в которой рассматривает явления, происходящие в среде при отсутствии силы тяжести. В этой работе он высказывает мысль о возможности использования реактивного движения для полетов в безвоздушном пространстве.

В 1898 г. Циолковский вывел формулу, связывающую скорость ракеты, скорость истечения продуктов горения, массу ракеты и массу израсходованного горючего.

Результаты своих исследований по теории движения ракет, проводившихся в 1896-1898 гг., Циолковский опубликовал лишь в 1903 г. в знаменитом труде «Исследование мировых пространств реактивными приборами». Циолковский впервые обосновал возможность осуществления межпланетных сообщений с помощью ракетных аппаратов и установил законы движения ракет.

В основе теории движения ракет лежит гипотеза о постоянстве относительной скорости истечения газа из сопла. Эта гипотеза называется в современной литературе гипотезой Циолковского и составляет основу всех расчетов, связанных с изучением движения ракет. Вначале Циолковский решает задачу о движении ракеты в среде, где отсутствуют внешние силы. С качественной стороны эта задача была проанализирована Циолковским еще в 1883 г. в работе «Свободное пространство». Дав научное обоснование теории полета ракет, разработав теорию прямолинейного реактивного движения тел переменной массы, Циолковский стал основоположником ракетодинамики.

В литературу по ракетодинамике вошли теоремы, доказанные Циолковским. Первая теорема представляет собой формулу

V max = c?ln(1+z)

где V max - скорость полета ракеты в среде без атмосферы и сил тяготения, с - относительная скорость истечения газов, z = т/М (т - масса топлива, М - масса ракеты без топлива). Отношение т/М = z называется числом Циолковского.

Вторая теорема утверждает, что

u = 1 / 2 ? 2 ,

u = T/T’ = 1 / 2 ? V max 2 ?M: 1 / 2 ?c 2 ?m

Утилизация по Циолковскому, собственно коэффициент полезного действия ракеты - работа, производимая при движении ракеты, Т - работа взрывчатых веществ, т. е. работа, обусловленная истечением газов).

Первая теорема, или формула Циолковского (так она называется в современной технической литературе), применяется в некоторых случаях при расчете параметров космических аппаратов.

Заслуги Циолковского признаны и в других странах, где имя его пользуется большим уважением. Известный немецкий ученый и исследователь реактивного движения в космическом пространстве профессор Герман Оберт писал в 1929 г. К.Э. Циолковскому: «Я, разумеется, самый последний, кто стал бы оспаривать Ваше первенство и Ваши заслуги в области ракет, и я только сожалею, что не услышал о Вас раньше 1925 г. Я был бы, наверное, в моих собственных работах сегодня гораздо дальше и обошелся бы без многих напрасных трудов, зная Ваши превосходные работы» {218} .

Французский аэроклуб, одна из старейших воздухоплавательных организаций, желая посмертно отметить выдающиеся заслуги Циолковского как патриарха звездоплавания и основоположника теории реактивных летательных аппаратов, в 1952 г. изготовил в его честь большую золотую медаль.

За шесть дней до своей смерти, 13 сентября 1935 г., К.Э. Циолковский писал, что его мечта не могла осуществиться до революции. После Октября, говорит Циолковский, «я почувствовал любовь народных масс, и это давало мне силы продолжать работу, уже будучи больным… Все свои труды по авиации, ракетоплаванию и межпланетным сообщениям передаю партии большевиков и Советской власти - подлинным руководителям прогресса человеческой культуры. Уверен, что они успешно закончат мои труды». И он не ошибся. Идеи Циолковского успешно претворяются в жизнь.

Труды К.Э. Циолковского по аэродинамике, авиации, ракетной технике и астронавтике вошли в золотой фонд мировой науки.

Из книги Революция в физике автора де Бройль Луи

4. Аналитическая механика и теория Якоби Аналитическая механика, тесно связанная с именем великого Лагранжа, представляет собой совокупность методов, позволяющих быстро написать уравнения движения какой-либо системы, если известен набор параметров, знания которых

Из книги Теория Вселенной автора Этэрнус

2. Кинетическая теория газов. Статистическая механика Если все материальные тела состоят из атомов, то естественно допустить, что в телах, находящихся в газообразном состоянии, частицы в среднем находятся достаточно далеко друг от друга и большую часть времени двигаются

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Из книги Что такое теория относительности автора Ландау Лев Давидович

Из книги Эволюция физики автора Эйнштейн Альберт

Сохранение момента количества движения Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Сохранение массы При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но справедливы ли законы сохранения в

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Принцип относительности движения кажется поколебленным Колоссальная, но все же не бесконечная скорость света в пустоте и привела к конфликту с принципом относительности движения.Представим себе поезд, движущийся с огромной скоростью - 240 000 километров в секунду. Пусть

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Загадка движения До тех пор пока мы имеем дело с прямолинейным движением, мы далеки от понимания движений, наблюдаемых в природе. Мы должны рассмотреть криволинейные движения. Наш следующий шаг - определить законы, управляющие такими движениями. Это нелегкая задача.В

Из книги Механика от античности до наших дней автора Григорьян Ашот Тигранович

II. Законы движения Разные точки зрения на движение Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут

Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

3.4. Неустойчивость движения АСЗ Движение АААА-астероидов совершается в такой области околосолнечного пространства, где оно не может быть устойчивым на длительных интервалах времени, если только какие-либо особые механизмы не поддерживают эту устойчивость. Долготы

Из книги автора

Из книги автора

Законы эллиптического движения Кеплера Вторым человеком, сыгравшим решающую роль в утверждении гелиоцентрической системы, был немецкий ученый Иоганн Кеплер (1571–1630), рис. 2.7. Иоганн родился в бедной семье. Поступил в Тюбингенский университет, где с увлечением занимался

Из книги автора

ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными

Из книги автора

МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ В ДОВОЕННЫЙ ПЕРИОД В советское время идеи Мещерского и Циолковского получили широкое развитие. В работах Мещерского дальнейшее развитие получила его идея «отображения» движения, высказанная им еще в 1897 г. В 1918