Суточный и годовой ход температуры воздуха. Годовой и суточный ход видимости

Годовой ход температуры воздуха определяется прежде всего годовым ходом температуры деятельной поверхности. Амплитуда годового хода представляет собой разность среднемесячных температур самого теплого и самого холодного месяцев. На амплитуду годового хода температуры воздуха влияют:

    Широта места. Наименьшая амплитуда наблюдается в экваториальной зоне. С увеличением широты места амплитуда увеличивается, достигая наибольших значений в полярных широтах

    Высота места над уровнем моря. С увеличением высоты над уровнем моря амплитуда уменьшается.

    Погодные условия. Туман, дождь и, главным образом, облачность. Отсутствие облачности зимой приводит к понижению средней температуры самого холодного месяца, а летом – к повышению средней температуры самого теплого месяца.

Заморозки

Заморозками называют понижение температуры до 0 °С и ниже при положительных среднесуточных температурах.

При заморозках температура воздуха на высоте 2 м иногда может оставаться положительной, а в самом нижнем слое воздуха, прилегающем к земле, понижаться до 0 °С и ниже.

По условиям образования заморозки делят на:

    радиационные;

    адвективные;

    адвективно-радиационные.

Радиационные заморозки возникают в результате радиационного охлаждения почвы и прилегающих слоев атмосферы. Возникновению таких заморозков благоприятствуют безоблачная погода и слабый ветер. Облачность уменьшает эффективное излучение и тем самым снижает вероятность заморозка. Ветер также препятствует возникновению заморозка, т.к. он усиливает турбулентное перемешивание и в результате этого увеличивается приток тепла от воздуха к почве. На радиационные заморозки влияют тепловые свойства почвы. Чем меньше ее теплоемкость и коэффициент теплопроводности, тем сильнее заморозки.

Адвективные заморозки . Образуются в результате адвекции воздуха, имеющего температуру ниже 0 °С. При вторжении холодного воздуха почва от соприкосновения с ним охлаждается, и поэтому температура воздуха и почвы мало различаются. Адвективные заморозки охватывают большие площади и мало зависят от местных условий.

Адвективно-радиационные заморозки. Связаны с вторжением холодного сухого воздуха, иногда даже имеющего положительную температуру. Ночью, особенно при ясной или малооблачной погоде, происходит дополнительное охлаждение этого воздуха за счет излучения, и возникают заморозки, как на поверхности, так и в воздухе.

Тепловой баланс деятельной поверхности и атмосферы Тепловой баланс деятельной поверхности

Днем деятельная поверхность поглощает некоторую часть приходящей к ней суммарной радиации и встречного излучения атмосферы, но теряет энергию в виде собственного длинноволнового излучения. Тепло, получаемое деятельной поверхностью, частично передается внутрь почвы или водоема, а частично – в атмосферу. Кроме того, часть полученного тепла расходуется на испарение воды с деятельной поверхности. Ночью суммарная радиация отсутствует и деятельная поверхность обычно теряет тепло в виде эффективного излучения. В это время суток тепло из глубины почвы или водоема поступает вверх к деятельной поверхности, а тепло из атмосферы передается вниз, то есть тоже поступает к деятельной поверхности. В результате конденсации водного пара из воздуха на деятельной поверхности выделяется теплота конденсации.

Общий приход-затрата энергии на деятельной поверхности называется ее тепловым балансом.

Уравнение теплового баланса:

В = Р + L + CW,

где В – радиационный баланс;

Р – поток тепла между деятельной поверхностью и ниже лежащими слоями;

L - турбулентный поток тепла в приземном слое атмосферы;

C·W – тепло, затрачиваемое на испарение воды или выделяется при конденсации водного пара на деятельной поверхности;

C – теплота испарения;

W – количество воды, которая испарилась из единицы поверхности за интервал времени, для которого составлен тепловой баланс.

1.2. Годовой ход температуры воздуха

Все воздушные массы зимой холоднее, а летом теплее, поэтому температура воздуха в каждом отдельном месте меняется в годовом ходе: средние месячные температуры в зимние месяцы ниже, в летние - выше. Вычислив для какого-либо места средние месячные температуры по многолетнему ряду наблюдений, увидим, что они плавно меняются от одного месяца к другому, повышаясь от января или февраля к июлю или августу и затем понижаясь.

Годовой ход температуры воздуха определяется, прежде всего, годовым ходом температуры деятельной поверхности. Амплитуда годового хода представляет собой разность среднемесячных темпе­ратур самого теплого и самого холодного месяцев.

В северном полушарии на континентах максимальная средне­месячная температура воздуха наблюдается в июле, минималь­ная - в январе. На океанах и побережьях материков экстремаль­ные температуры наступают несколько позднее: максимум - в августе, минимум - в феврале-марте. На суше амплитуды го­дового хода температуры воздуха значительно больше, чем над водной поверхностью. Даже над сравнительно небольшими материковыми массивами Южного полушария они превышают 15°С, а под широтой 60° на материке Азии (в Якутии) они достигают 60°С .

Не только моря, но и большие озера уменьшают годовую амплитуду температуры воздуха и смягчают климат. Посредине озера Байкал годовая амплитуда температуры воздуха 30-31°С, на его берегах около 36°С, а под той же широтой на р. Енисей 42°С. Аналогичное влияние на температуру воздуха наблюдается на озерах Иссык-Куль, Ладожском, Севан и других .

Годовая амплитуда температу­ры воздуха растет, с географической широтой. На экваторе при­ток солнечной радиации меняется в течение года очень мало. По направлению к полюсу различия в поступлении солнечной радиа­ции между зимой и летом возрастают, а вместе с ними возрастают и годовые амплитуды температуры воздуха. Над океаном вдали от берегов широтное изменение годовой амплитуды невелико. Если бы Земля была сплошь покрыта океаном, свободным ото льда, то годовая амплитуда температуры воздуха менялась бы от нуля на экваторе до 5 - 6° С на полюсе. В действительности над южной частью Тихого океана вдали от материков годовая амплитуда между 20 и 60° ю. ш. увеличивается приблизительно с 3 до 5° С. Над более узкой северной частью Тихого океана, где больше влияние соседних материков, амплитуда между 20 и 60° с. ш. растет уже с 3 до 15° С.

Большое влияние оказывают на годовой ход температуры воздуха погодные условия: туман, дождь и глав­ным образом облачность. Отсутствие облачности зимой приводит к понижению средней температуры самого холодного месяца, а ле­том - к повышению средней температуры самого теплого месяца.

Малые амплитуды наблюдаются и во многих областях над сушей и даже вдали от береговой линии, если в эти области часто приходят воздушные массы с моря (Западная Европа). Повы­шенные амплитуды наблюдаются и над океаном, если в эти районы часто попадают воздушные массы с материка, например в западных частях океанов Северного полушария. Следовательно, величина годовой амплитуды температуры зависит не просто от характера подстилающей поверхности или от близости данного места к береговой линии, а от повторяемости в данном месте воздушных масс морского и континентального происхождения, т. е. от условий общей циркуляции атмосферы .

С высотой годовая амплитуда температуры убывает. В горах внетропического пояса температура убывает в среднем на 2° С на каждый километр высоты, в свободной атмосфере больше. На рис. 1 видно, что над океаном к югу от Японии годовая амплитуда даже в пределах нижних 100 м. убывает вдвое. Во внетропических широтах значительный годовой ход температу­ры остается даже в верхней тропосфере и стратосфере. Он определяется сезонным изменением условий поглощения и отдачи радиации не только земной поверхностью, но и воздухом .

Рис. 1 Годовой ход температуры воздуха над океаном к югу Японии непосредственно над водой (1) и на высоте 100 м. (2)

Годовой ход температуры воздуха в разных географических зо­нах разнообразен. По величине амплитуды и по времени наступле­ния экстремальных температур выделяют четыре типа годового хода температуры воздуха.

1. Экваториальный тип. В экваториальной зоне в году наблю­даются два максимума температуры - после весеннего и осеннего равноденствия, когда солнце над экватором в полдень находится в зените, и два минимума - после зимнего и летнего солнцестоя­ния, когда солнце находится на наименьшей высоте. Амплитуды годового хода здесь малы, что объясняется малым изменением притока тепла в течение года. Над океанами амплитуды состав­ляют около 1 °С, а над континентами 5-10 °С.

2. Тропический тип. В тропических широтах наблюдается про­стой годовой ход температуры воздуха с максимумом после лет­него и минимумом после зимнего солнцестояния. Амплитуды годо­вого хода по мере удаления от экватора увеличиваются зимой. Средняя амплитуда годового хода над материками составляет 10 - 20° С, над океанами 5 - 10° С.

3. Тип умеренного пояса. В умеренных широтах также отмечается годовой ход температуры с максимумом после летнего и минимумом после зимнего солнцестояния. Над материками северного полушария максимальная среднемесячная температура наблюдается в июле, над морями и побережьями - в августе. Годо­вые амплитуды увеличиваются с широтой. Над океанами и побе­режьями они в среднем составляют 10-15° С, а на широте 60° достигают 60° С.

4. Полярный тип. Полярные районы характеризуются продол­жительной холодной зимой и сравнительно коротким прохладным летом. Годовые амплитуды над океаном и побережьями полярных морей составляют 25-40° С, а на суше превышают 65° С. Макси­мум температуры наблюдается в августе, минимум - в январе.

Рассмотренные типы годового хода температуры воздуха выяв­ляются из многолетних данных и представляют собой правильные периодические колебания. В отдельные годы под влиянием втор­жений теплых и холодных масс возникают отклонения от приве­денных типов .

2. РАСПРЕДЕЛЕНИЕ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА В
РАЗНЫХ ЧАСТЯХ ЗЕМЛИ

Годовой ход температуры. Годовой ход температуры имеет два периода: летний - период нагревания почвы с потоком тепла от верхних горизонтов к нижним и зимний - период охлаждения почвы с потоком тепла от нижних слоев профиля к верхним. Амплитуды колебаний температуры почвы между этими периодами определяются условиями атмосферного климата и свойствами почв. В умеренных широтах максимум среднесуточной температуры почвы наблюдается обычно в июле - августе, а минимум - в январе - феврале. Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается. Зимой нижние слои профиля имеют более высокие температуры.[ ...]

Температура воздуха на Земле колеблется в диапазоне от -88,3 (ст. «Восток», Антарктида) до +58,7°С (Гарьян, Ливия). Температура поверхности песка или камня в пустыне может достигать 70°. Средняя годовая температура приземного слоя воздуха над континентами и океаном (исключая Антарктиду) - +15,7°С. Средняя расчетная температура самой биомассы суши принимается равной 17,5°. Большие колебания относятся к отдельным поясам и сезонам. Но если в области восточно-сибирского антициклона амплитуда сезонных изменений температуры достигает 100°С, то в зоне экваториальных дождевых лесов - всего 2-4°. Для повышения средней температуры атмосферы на 1° (без оттока тепла) достаточно было бы 0,2% годового бюджета солнечной радиации. Следовательно, термическое равновесие атмосферы поддерживается с большой точностью. В почве температурные колебания заметно сглажены: на глубине 25 см суточный ход температуры уже отсутствует. Еще более стабильна средняя температура гидросферы: 3,3°.[ ...]

КЛИМАТ ПОЧВЫ. Совокупность внутрипочвенных физических явлений с суточным и годовым их ходом, развивающаяся во взаимосвязи с (атмосферным) климатом, почвой, растительностью и производственной деятельностью человека. Основными элементами, определяющими характер К. П., являются температура и влажность почвы. Почвенная климатология изучает закономерности формирования и изменения К. П., влияние его на жизнь растений, почвы и сельскохозяйственное производство, пути его регулирования.[ ...]

Изменение температуры почвы в течение года называется годовым ходом. Обычно график годового хода строится по средним месячным температурам почвы. Годовой ход температуры поверхности почвы определяется в основном различным приходом солнечной радиации в течение года. Максимальные средние месячные температуры поверхности почвы в умеренных широтах северного полушария наблюдаются обычно в июле, когда приток тепла к почве наибольший, а минимальные - в январе - феврале.[ ...]

Суточные и годовые колебания температуры почвы вследствие теплопроводности передаются в более глубокие ее слои. Слой почвы, в котором наблюдается суточный и годовой ход температуры, называется активным слоем.[ ...]

На амплитуду годового хода температуры поверхности почвы влияют те же факторы, что и на амплитуду суточного хода, за исключением времени года. Амплитуда годового хода, в отличие от суточного, возрастает с увеличением широты.[ ...]

Законы Фурье достаточно хорошо подтверждаются наблюдениями. С различиями в годовом ходе температуры на разных глубинах связано распределение температуры в почве по вертикали в разные сезоны. Летом температура от поверхности почвы в глубину падает; зимой растет; весной она сначала растет, а потом убывает; осенью сначала убывает, а затем растет.[ ...]

И на этой «пылинке» - Земле существует особый, земной ритм прихода и расхода тепла, прихода света, слагающийся из годового (сезонного) и суточного (дневного и ночного) ритмов. Последние имеют, четкую и многообразную выраженность. С суточными и сезонными ритмами изменений тепла и света находятся в прямой зависимости изменения температуры грунтов, почв, водных бассейнов, воздуха и всех предметов на 1 , поверхности Земли, а также изменения абсолютной и относительной влажности, ход развития растительности и [ ...]

Покажем, как возникает зависимость слоя испарения от уровня водоема и от влагозапасов речного бассейна. Для этого рассмотрим задачу о годовом и суточном ходе температуры воздуха в пограничном слое атмосферы с учетом тепловых процессов в подстилающей поверхности (суша и вода). Подчеркнем, что первые работы по теории суточного хода температуры воздуха были выполнены В. Шмидтом и Дж. Тейлором свыше 70 лет тому назад. Большую роль в исследовании аналогичных задач сыграли работы академика A.A. Дородницына, который впервые наряду с уравнением теплового баланса атмосферы учел известную зависимость коэффициента турбулентности от высоты приземного слоя атмосферы. Характерно, что на конкретном примере (данные наблюдения в г. Павловске) удалось добиться хорошего согласия между рассчитанным и наблюденным суточным ходом температуры воздуха и поверхности почвы. Упомянутые результаты стали классическими и вошли в учебники по физике атмосферы [Матвеев, 1976].[ ...]

Несовпадение фазы периодических с характером непериодических изменений обуславливает наиболее резкие изменения погоды. Например, весной постепенно увеличивается приход солнечной радиации, с каждым днем все больше прогреваются почва и воздух - происходит периодическое изменение погоды, обусловленное годовым вращением Земли. Но если с утра в данный район вторгается арктический воздух, то температура начинает резко снижаться и в полдень может стать даже холоднее, чем было в прошлую ночь. Следовательно, нормальный суточный ход температуры воздуха нарушится. В последующие дни может стать еще холоднее - нарушится и ее годовой ход. Подобные похолодания весной и летом, а также оттепели зимой - нередкое явление в умеренном климате. Следовательно, погода зависит не только от времени суток и года, но в значительной степени также от свойств воздушных масс, движущихся или удерживающихся над данным районом.

В суточном ходе на суше обнаруживается два максимума – ранним утром и после полудня. Утром понижение температуры увеличивает относительную влажность, появляются слоистые облака. После полудня в связи с развитием конвекции появляются кучевые облака. Летний дневной максимум сильнее утреннего. Зимой преобладают слоистые облака, максимум облачности приходится на утренние и ночные часы. Над океаном суточный ход облачности обратен её ходу над сушей: максимум облачности приходится на ночь, минимум – на день (над водной поверхностью конвекция сильнее развивается ночью).

Годовой ход облачности очень разнообразен. В низких широтах облачность в течение года существенно не изменяется. Над континентами максимальное развитие облаков приходится на лето. Летний максимум облачности отмечается в области развития муссонов, а также над океаном в высоких широтах. Зональность в распределении облаков лучше выражена над океанами и в меньшей мере на суше. Минимумы облачности к 30º с. и ю.ш., и на полюсах, они связаны с областями опускания воздуха.

31 Дымка, туман, мгла. Условия образования туманов

Ды́мка (также возду́шная или атмосфе́рная ды́мка ) - равномерная световая вуаль, возрастающая по мере удаления от наблюдателя и заволакивающая части ландшафта.

Тума́н - атмосферное явление, скопление воды в воздухе, образованное мельчайшими частичками водяного пара (при температуре воздуха выше −10° - капельки воды, при −10..−15° - смесь капелек воды и кристалликов льда, при температуре ниже −15° - кристаллики льда, сверкающие в солнечных лучах или в свете луны и фонарей).

Мгла - атмосферное явление, помутнение воздуха в виде сероватой, белёсой или желтоватой пелены вследствие скопления в воздухе большого количества мелких или твёрдых частиц пыли или дыма.

Туман возникает в том случае, когда у земной поверхности создаются благоприятные условия для конденсации водяного пара. Нужные для этого ядра конденсации существуют в воздухе всегда.

Охлаждение воздуха у земной поверхности происходит при разных условиях. Во-первых, при перемещении воздуха с более теплой подстилающей поверхности на более холодную. Туманы, которые при этом возникают, называются адвективными. Во-вторых, при радиационном охлаждении подстилающей поверхности. Воздух в этом случае охлаждается главным образом от земной поверхности. Возникающие при этом туманы называют радиационными. В-третьих, при влиянии обоих факторов. Туманы, возникающие в этом случае, называют адвективно-радиационными.



Адвективные туманы возникают в теплых воздушных массах, перемещающихся над более холодной поверхностью, т. е. при перемещении воздушных масс из низких широт в высокие или зимой с теплого моря на холодную сушу, летом с теплой суши на холодное море, а также с теплых участков морской поверхности на холодные (например, у Ньюфаундленда при переносе воздуха из области Гольфстрима в область Лабрадорского течения).

32 Осадки. Образование осадков, конденсация и коагуляция

Атмосферная влага, падающая на землю в виде дождя, снега.

Коагуляция (от лат. coagulatio - свертывание, сгущение), также флокуляция (от лат. flocculi - клочья, хлопья) - физико-химический процесс слипания мелких частиц дисперсных систем в более крупные под влиянием сил сцепления с образованием коагуляционных структур.

33 Виды осадков

Атмосферные осадки – это содержащаяся влага в облаках, которая выпадает на Землю в разных видах: снег, дождь, град и т. д.

34 Суточный и годовой ход осадков

В зависимости от характера облачности и режима выпадения осадков различают два типа их суточного хода: континентальный и морской. Континентальному типу свойственны два максимума: основной – в послеполуденные часы из конвективных кучево-дождевых, а на экваторе и из кучевых облаков и незначительный – рано утром из слоистых облаков, между ними минимумы: ночью и перед полуднем. В морском (береговом) типе один максимум осадков ночью (вследствие неустойчивой стратификации воздуха и конвекции) и один минимум – днем. Эти типы суточного хода осадков весь год наблюдаются в жарком поясе, а в умеренных поясах возможны лишь летом.

Годовой ход осадков, т. е. изменение их по месяцам в течение года, в разных местах Земли весьма различен. Это зависит от многих факторов: радиационного режима, общей циркуляции атмосферы, конкретной физико-географической обстановки и др. Можно наметить несколько основных типов годового хода осадков и выразить их в виде столбиковых диаграмм (рис. 47).



35 Географическое распределение осадков

Распределение осадков по земной поверх­ности зависит от совокупного действия ряда причин: температуры воздуха, испарения, аб­солютной и относительной влажности возду­ха, облачности, водности облаков, атмосфер­ного давления, господствующих ветров и др. Наряду с этими зональными факторами в распределении осадков весьма существенны и незональные условия", распределение суши и моря, их размеры и орографические особен­ности материков.

36 Снежный покров, его изменение и климатическое значение. Метель

Снежный покров - продукт атмосферных процессов и, следовательно, климата, но в то же время он сам влияет на климат, как и на другие составляющие географического ландшафта. Температура на поверхности снежного покрова ниже, чем на поверхности почвы, не покрытой снегом, так как снег обладает исключительно высоким альбедо (80–90%). В то же время шероховатая поверхность снега сильно излучает. Малая теплопроводность снега приводит к тому, что потеря тепла с поверхности снежного покрова не покрывается притоком тепла из более глубоких его слоев и из почвы. Поэтому почва, покрытая снегом, сохраняет зимой достаточно высокую температуру. На этом основано и озимое земледелие: снежный покров предохраняет всходы от вымерзания.
По наблюдениям в Павловске, поверхность почвы под снегом в январе в среднем на 15° теплее, а за зиму на 5–7° теплее, чем поверхность почвы, искусственно обнаженная от снега. Даже на глубине в несколько десятков сантиметров почва под снегом теплее, чем обнаженная почва.

Чем тоньше снежный покров зимой, тем сильнее промерзание почвы при прочих равных условиях. В Восточной Сибири и Забайкалье снежный покров очень невелик (в Забайкалье менее 20 см) вследствие господствующего там зимой режима высокого атмосферного давления, и темпе-ратура на поверхности снега зимой очень низкая. Поэтому в г. Иркутске, например, почва промерзает под снегом в среднем до глубины 177 см. В то же время в лесах московской области почва под снегом обычно не промерзает вовсе.

Снежный покров охлаждает воздух. Над ним образуются значительные приземные радиационные инверсии температуры. Весной при таянии снежного покрова приток тепла идет на таяние снега, и температура воздуха остается близкой к нулю до тех пор, пока снег не стает. В теплом воздухе, перемещающемся над тающим снежным покровом, могут возникать так называемые весенние инверсии температуры.

Запасы воды, накапливаемые за зиму в снежном покрове, примерно на 50% обеспечивают питание рек России. С весенним таянием снега связаны половодья на ее равнинных реках.

Высота половодья зависит не только от накопленных за зиму запасов снега, но и от быстроты его таяния и от свойств поверхности почвы. Особенно высоки половодья, если снег осенью выпадает на замерзшую почву: весной талые воды вследствие этого не впитываются в почву, а стекают.

37 Электричество облаков и осадков. Гроза

4. Электричество облаков и осадков.

Капли облаков и туманов, как и твердые элементы в них, чаще бывают электрически заряженными, чем нейтральными. В основном в туманах капли несут заряды одного знака, но примерно в 25% случаев они заряжены разноименно. Средний заряд капель в туманах имеет порядок от десятков до тысяч элементарных зарядов (элементарным зарядом называют заряд электрона). К условиям в туманах, по-видимому, близки и условия в мелкокапельных облаках, не дающих осадков.

Причины электризации элементов облаков и осадков, а также разделения зарядов обоих знаков в облаках недостаточно ясны. Существует много различных теорий. Указывают такие причины, как захват ионов каплями и кристаллами, особенно при выпадении осадков; столкновение крупных и мелких капель; дробление (разбрызгивание) капель; сублимация, дробление и испарение кристаллов; замерзание переохлажденных капель на кристаллах и др.

Типичное развитие кучево-дождевых облаков и выпадение из них осадков связано с мощными проявлениями атмосферного электричества, а именно с многократными электрическими разрядами в облаках или между облаками и землей. Такие разряды искрового характера называют молниями, асопровождающие их звуки – громом. Весь процесс, часто сопровождаемый еще и кратковременными усилениями ветра – шквалами , называется грозой.

По происхождению грозы делятся на внутримассовые и фронтальные.

Внутримассовые грозы наблюдаются в холодных воздушных массах, перемещающихся на теплую земную поверхность, и над прогретой сушей летом (местные, или тепловые грозы). В обоих случаях развитие грозы связано с мощным развитием облаков конвекции, а следовательно, с сильной неустойчивостью стратификации атмосферы и с сильными вертикальными перемещениями воздуха.

Фронтальные грозы связаны главным образом с холодными фронтами, где теплый воздух вытесняется вверх продвигающимся вперед холодным воздухом. Но летом над сушей они нередко связаны и с теплыми фронтами. Континентальный теплый воздух, поднимающийся летом над поверхностью теплого фронта, может оказаться очень неустойчиво стратифицированным, а потому над поверхностью фронта может возникнуть сильная конвекция.

38 Наземные гидрометеоры (роса иней изморозь жидкий и твердый налет гололед)

Это осадки в виде капелек, кристаллов или аморфных на вид атмосферных отложений льда, возникающие на земной поверхности и на поверхности наземных предметов путем конденсации или кристаллизации на них водяного пара. Это роса, жидкий налет, иней, твердый налет, изморось. Сюда же относят гололед.

Росой называются мельчайшие капли воды, образовавшиеся в процессе конденсации на земной поверхности

Жидким налетом называется пленка воды, возникающая на холодных, преимущественно вертикальных, поверхностях в пасмурную и ветреную погоду.

Инеем называют ледяные кристаллы различной формы, длиной порядка нескольких миллиметров

Твердый налет возникает на вертикальных поверхностях, особенно каменных (стены, цоколи зданий), с наветренной стороны при таких же условиях, как жидкий налет, но при температурах ниже нуля.

Изморозью называют рыхлые белые кристаллы, нарастающие на ветвях деревьев, на хвое, проводах, проволочных изгородях и других тонких предметах (рисунок 44).

Гололед (устаревший синоним - ожеледь) - нарастающие атмосферные осадки в виде слоя плотного стекловидного льда (гладкого или слегка бугристого), образующегося на растениях, проводах, предметах

39 Атмосферное давление, единицы измерения. Плотность воздуха

Атмосфе́рное давле́ние - давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере на единицу площади поверхности по нормали к ней . Давление - величина скалярная, имеющая размерность L −1 MT −2 , измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая . Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па) .

Пло́тность во́здуха - масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях.

40 Методы и средства измерения атмосферного давления

Барограф - прибор, используемый для непрерывной регистрации давления воздуха. Он состоит из колонки анероидных коробок, соединенного со стрелкой самозаписувача (рис. 2.6).

41Уравнение состояния сухого воздуха

Состояние каждого из атмосферных газов характеризуется значе­ниями трех величин: температуры, давления и плотности (или удель­ного объема). Эти величины всегда связаны между собой некоторым уравнением, которое носит название уравнения состояния газа.

При условиях, наблюдающихся в атмосфере, основные газы, входящие в состав воздуха, ведут себя практически как идеальные газы. Поэтому уравнение состояния какого-либо газа имеет вид уравнения состояния идеального газа:

Где p i - парциальное давление; Т - температура; V i - удельный объем; R i - удельная газовая постоянная i-гo газа; п - число газов, составляющих механическую смесь.

42 Уравнение статики атмосферы

Рассмотрим условие, при котором отсутствуют вертикальные перемещения воздуха. Для этого на любой высоте в атмосфере выделим столб единичного сечения. Пусть давление на его нижнем основании будет p , а на верхнем p – dp . Тогда очевидно, что при отсутствии разности давлений в горизонтальном направлении уменьшение давления – dp , согласно Q = p , будет определятся весом столба воздуха. Если ρ – плотность воздуха на данной высоте z , а g – ускорение силы тяжести, то

dp = ρgdz

Это соотношение связывает давление и плотность с высотой для идеального газа, находящегося под действием силы тяжести. Оно справедливо при указанных выше условиях статического равновесия воздуха, и называется уравнением статики атмосферы . Из него непосредственно вытекает, что падение давления с высотой прямо пропорционально плотности воздуха. Разделив левую и правую части уравнения на dz получим второй вид основного уравнения статики атмосферы:

43 Барометрическая формула и физический смысл атмосферного давления

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести в стационарных условиях.

Для идеального газа, имеющего постоянную температуру T {\displaystyle T} и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g {\displaystyle g} одинаково), барометрическая формула имеет следующий вид:

В ходе урока вы сможете получить подробную информацию о теме «Годовой ход температуры». Мы обсудим, как меняется годовой ход температуры воздуха, от чего это зависит. Вы также узнаете, чем он характеризуется, рассмотрите, как рассчитывают средние месячные температуры, и многое другое.

Тема: Атмосфера

Урок: Годовой ход температуры

Цель урока: узнать, как меняется температура воздуха в течение года и от чего это зависит.

Годовой ход температуры воздуха характеризуется среднемесячными температурами воздуха. Среднемесячную температуру получают путем деления суммы суточных температур на число суток в месяце. Годовой ход температуры воздуха - изменение температуры воздуха в течение года. По нему можно определить, какой месяц в году был самым холодным, какой самым теплым, проанализировать изменение температуры воздуха за год. В северном полушарии самый теплый месяц - июль, самый холодный - январь. В южном полушарии все наоборот.

Рис. 1. Зима в Австралии ()

Над океанами максимумы и минимумы температур в течение года немного «опаздывают» относительно температур над сушей. Самые теплые температуры над океанами в северном полушарии характерны для августа, а самые холодные - для февраля-марта. Это связано с тем, что океан медленнее остывает и медленнее нагревается, по сравнению с сушей. В связи с этим, океан зимой оказывает отепляющее воздействие на воздух, благодаря относительно теплой воде, а летом охлаждающее.

Рис. 2. Годовой ход температуры воздуха Красного моря ()

Кроме того, над океанами амплитуда температур воздуха меньше, чем над сушей.

Рис. 3. Годовой ход температуры воздуха в Рязанской области ()

Амплитуда годового хода температуры воздуха - разность среднемесячных температур самого теплого и самого холодного месяцев.То есть, чтобы посчитать амплитуду, нужно из самой высокой температуры вычесть самую низкую. Например, ниже дан график годового хода температуры воздуха. Попробуем по этому графику посчитать амплитуду. Максимальная температура на этом графике +20, минимальная -3, значит, надо из +20 вычесть -3: 20-(-3)=23, т.е. амплитуда будет 23 градуса.

Рис. 4. График годового хода температуры воздуха ()

Чем ближе к экватору, тем меньше амплитуда температур. Это связано с тем, что территории рядом с экватором получают примерно одинаковое количество тепла на протяжении всего года, поэтому значения температур по месяцам практически не меняются.

Рис. 5. Температуры воздуха и воды в Сингапуре

Не надо забывать, что на температуру воздуха влияют водные территории (океаны, моря, озера), изрезанность береговой линии, удаленность от экватора, течения, рельеф, воздушные массы.

На температуру и ее годовой ход оказывают воздействия погодные явления. Так, например, отсутствие облачности летом приводит в повышению температур в данной местности.

Таким образом, годовой ход температуры воздуха зависит от многих причин.

Домашнее задание

Параграф 37.

1. От чего зависит изменение температуры воздуха в течение года?

2. Назовите самый теплый месяц в северном полушарии.

Список литературы

Основная

1. Начальный курс географии: учеб. для 6 кл. общеобразоват. учреждений / Т.П. Герасимова, Н.П. Неклюкова. - 10-е изд., стереотип. - М.: Дрофа, 2010. - 176 с.

2. География. 6 кл.: атлас. - 3-е изд., стереотип. - М.: Дрофа; ДИК, 2011. - 32 с.

3. География. 6 кл.: атлас. - 4-е изд., стереотип. - М.: Дрофа, ДИК, 2013. - 32 с.

4. География. 6 кл.: конт. карты: М.: ДИК, Дрофа, 2012. - 16 с.

Энциклопедии, словари, справочники и статистические сборники

1. География. Современная иллюстрированная энциклопедия / А.П. Горкин. - М.: Росмэн-Пресс, 2006. - 624 с.

Литература для подготовки к ГИА и ЕГЭ

1. География: Начальный курс: Тесты. Учеб. пособие для учащихся 6 кл. - М.: Гуманит. изд. центр ВЛАДОС, 2011. - 144 с.

2. Тесты. География. 6-10 кл.: Учебно-методическое пособие / А.А. Летягин. - М.: ООО «Агентство «КРПА «Олимп»: «Астрель», «АСТ», 2001. - 284 с.

1.Федеральный институт педагогических измерений ().

2. Русское географическое общество ().

3.Geografia.ru ().