Водяной пар при температуре. Теплофизические свойства водяного пара: плотность, теплоемкость, теплопроводность. Температура кипения соленой воды

Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.

В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С) . Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.

Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С) . При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.

Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.

При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С) . Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.

Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.

Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С , а влажность воздуха 50% . Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.

Плотность насыщенного водяного пара при 30 0 С равна 30,4 г/м 3 (табличное значение). Так как влажность воздуха 50%, то плотность водяных паров составляет 0,5·30,4 г/м 3 = 15,2 г/м 3 . Роса выпадет, если при некоторой температуре эта плотность будет равна плотности насыщенного водяного пара. Согласно табличным данным это наступит при температуре примерно 18 0 С . То есть, если ночью температура воздуха опустится ниже 18 0 С , то выпадет роса.

По предложенному методу мы предлагаем вам решить задачу:

В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80% , а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С . Какая масса воды выпадет в виде росы после наступления теплового равновесия.

Кипение - процесс изменения агрегатного состояния вещества. Когда мы говорим о воде, то имеем в виду изменение жидкого состояния в парообразное. Важно отметить, что кипение - это не испарение, которое может протекать даже при комнатной температуре. Также не стоит путать с кипячением, что является процессом нагревания воды до определенной температуры. Теперь, когда мы разобрались с понятиями, можно определить, при какой температуре кипит вода.

Процесс

Сам процесс преобразования агрегатного состояния из жидкого в газообразное является сложным. И хотя люди этого не видят, существует 4 стадии:

  1. На первой стадии на дне нагреваемой емкости образуются небольшие пузырьки. Также их можно заметить по бокам или на поверхности воды. Они образуются из-за расширения воздушных пузырьков, которые всегда есть в трещинах емкости, где нагревается вода.
  2. На второй стадии объем пузырьков увеличивается. Все они начинают рваться к поверхности, так как внутри них находится насыщенный пар, который легче воды. При повышении температуры нагрева давление пузырьков возрастает, и они выталкиваются на поверхность благодаря известной силе Архимеда. При этом можно слышать характерный звук кипения, который образуется из-за постоянного расширения и уменьшения в размере пузырьков.
  3. На третьей стадии на поверхности можно видеть большое количество пузырьков. Это вначале создает помутнение воды. Данный процесс в народе называют "кипением белым ключом", и длится он короткий промежуток времени.
  4. На четвертой стадии вода интенсивно бурлит, на поверхности возникают большие лопающиеся пузыри, возможно появление брызг. Чаще всего брызги означают, что жидкость нагрелась до максимальной температуры. Из воды начнет исходить пар.

Известно, что вода кипит при температуре 100 градусов, которая возможна лишь на четвертой стадии.

Температура пара

Пар представляет собой одно из состояний воды. Когда он поступает в воздух, то, как и другие газы, оказывает на него определенное давление. При парообразовании температура пара и воды остаются постоянными до тех пор, пока вся жидкость не изменит свое агрегатное состояние. Это явление можно объяснить тем, что при кипении вся энергия расходуется на преобразование воды в пар.

В самом начале закипания образуется влажный насыщенный пар, который после испарения всей жидкости становится сухим. Если его температура начинает превышать температуру воды, то такой пар является перегретым, и по своим характеристикам он будет ближе к газу.

Кипение соленой воды

Достаточно интересно знать, при какой температура кипит вода с повышенным содержанием соли. Известно, что она должна быть выше из-за содержания в составе ионов Na+ и Cl-, которые между молекулами воды занимают область. Этим химический состав воды с солью отличается от обычной пресной жидкости.

Дело в том, что в соленой воде имеет место реакция гидратации - процесс присоединения молекул воды к ионам соли. Связь между молекулами пресной воды слабее тех, которые образуются при гидратации, поэтому закипание жидкости с растворенной солью будет происходить дольше. По мере роста температуры молекулы в воде с содержанием соли двигаются быстрее, но их становится меньше, из-за чего столкновения между ними осуществляются реже. В результате пара образуется меньше, и его давление из-за этого ниже, чем напор пара пресной воды. Следовательно, для полноценного парообразования потребуется больше энергии (температуры). В среднем для закипания одного литра воды с содержанием 60 граммов соли необходимо поднять градус кипения воды на 10% (то есть на 10 С).

Зависимости кипения от давления

Известно, что в горах вне зависимости от химического состава воды температура кипения будет ниже. Это происходит из-за того, что атмосферное давление на высоте ниже. Нормальным принято считать давление со значением 101.325 кПа. При нем температура закипания воды составляет 100 градусов по Цельсию. Но если подняться на гору, где давление составляет в среднем 40 кПа, то там вода закипит при 75.88 С. Но это не значит, что для приготовления еды в горах придется потратить почти вдвое меньше времени. Для термической обработки продуктов нужна определенная температура.

Считается, что на высоте 500 метров над уровнем моря вода будет закипать при 98.3 С, а на высоте 3000 метров температура закипания составит 90 С.

Отметим, что данный закон действует и в обратном направлении. Если поместить жидкость в замкнутую колбу, через которую не может проходить пар, то с ростом температуры и образованием пара давление в этой колбе будет расти, и закипание при повышенном давлении произойдет при более высокой температуре. Например, при давлении 490.3 кПа температура кипения воды составит 151 С.

Кипение дистиллированной воды

Дистиллированной называется очищенная вода без содержания каких-либо примесей. Ее часто применяют в медицинских или технических целях. С учетом того, что в такой воде нет никаких примесей, ее не используют для приготовления пищи. Интересно заметить, что закипает дистиллированная вода быстрее обычной пресной, однако температура кипения остается такой же - 100 градусов. Впрочем, разница по времени закипания будет минимальной - всего доли секунды.

В чайнике

Часто люди интересуются, при какой температуре кипит вода в чайнике, так как именно этими приборами они пользуются для кипячения жидкости. С учетом того, что атмосферное давление в квартире равно стандартному, а используемая вода не содержит солей и других примесей, которых там не должно быть, то и температура закипания также будет стандартной - 100 градусов. Но если вода будет содержать соль, то температура закипания, как мы уже знаем, будет выше.

Заключение

Теперь вы знаете, при какой температуре кипит вода, и как атмосферное давление и состав жидкости влияют на данный процесс. В этом нет ничего сложного, и подобную информацию дети получают еще в школе. Главное - запомнить, что со снижением давления понижается и температура кипения жидкости, а с его ростом увеличивается и она.

В интернете можно найти множество разных таблиц, где указывается зависимость температуры кипения жидкости от атмосферного давления. Они доступны всем и активно используются школьниками, студентами и даже преподавателями в институтах.

В таблице представлены теплофизические свойства водяного пара на линии насыщения в зависимости от температуры. Свойства пара приведены в таблице в интервале температуры от 0,01 до 370°С.

Каждой температуре соответствует давление, при котором водяной пар находится в состоянии насыщения. Например, при температуре водяного пара 200°С его давление составит величину 1,555 МПа или около 15,3 атм.

Удельная теплоемкость пара, теплопроводность и его увеличиваются по мере роста температуры. Также растет и плотность водяного пара. Водяной пар становится горячим, тяжелым и вязким, с высоким значением удельной теплоемкости, что положительно влияет на выбор пара в качестве теплоносителя в некоторых типах теплообменных аппаратов.

Например, по данным таблицы, удельная теплоемкость водяного пара C p при температуре 20°С равна 1877 Дж/(кг·град), а при нагревании до 370°С теплоемкость пара увеличивается до значения 56520 Дж/(кг·град).

В таблице даны следующие теплофизические свойства водяного пара на линии насыщения:

  • давление пара при указанной температуре p·10 -5 , Па;
  • плотность пара ρ″ , кг/м 3 ;
  • удельная (массовая) энтальпия h″ , кДж/кг;
  • r , кДж/кг;
  • удельная теплоемкость пара C p , кДж/(кг·град);
  • коэффициент теплопроводности λ·10 2 , Вт/(м·град);
  • коэффициент температуропроводности a·10 6 , м 2 /с;
  • вязкость динамическая μ·10 6 , Па·с;
  • вязкость кинематическая ν·10 6 , м 2 /с;
  • число Прандтля Pr .

Удельная теплота парообразования, энтальпия, коэффициент температуропроводности и кинематическая вязкость водяного пара при увеличении температуры снижаются. Динамическая вязкость и число Прандтля пара при этом увеличиваются.

Будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100! Например, теплопроводность пара при температуре 100°С равна 0,02372 Вт/(м·град).

Теплопроводность водяного пара при различных температурах и давлениях

В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 0,1 до 500 атм. Размерность теплопроводности Вт/(м·град).

Черта под значениями в таблице означает фазовый переход воды в пар, то есть цифры под чертой относятся к пару, а выше ее — к воде. По данным таблицы видно, что значение коэффициента и водяного пара увеличивается по мере роста давления.

Примечание: теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность водяного пара при высоких температурах

В таблице приведены значения теплопроводности диссоциированного водяного пара в размерности Вт/(м·град) при температурах от 1400 до 6000 K и давлении от 0,1 до 100 атм.

По данным таблицы, теплопроводность водяного пара при высоких температурах заметно увеличивается в области 3000…5000 К. При высоких значениях давления максимум коэффициента теплопроводности достигается при более высоких температурах.

Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Водяной пар и его свойства

Водяной пар получают в паровых котлах при постоянном давлении и постоянной температуре. Сначала происходит нагрев воды до температуры кипения(она остается постоянной) или температурой насыщения. . При дальнейшем нагреве кипящая вода превращается в пар и ее температура до полного испарения воды остается постоянной. Кипение есть процесс парообразования во всем объеме жидкости. Испарение - па­рообразование с поверхности жидкости.

Переход вещества из жидкого состояния в газообразное называется парообразованием , а из газообразного состояния в жидкое конденсацией . Количество теплоты, которое необходимо сообщить воде для превра­щения ее из жидкого состояния в парообразный при температуре кипения, называется теплотой испарения .

Количество теплоты необходимое для нагрева 1 кг воды на 1 0 С назы­вается теплоемкостью воды . = 1 ккал/кг. град.

Температура кипения воды зависит от давления (имеются специальные таблицы):

Р абс = 1 кгс/см 2 = 1 атм, t к = 100°С

Р абс = 1,7 кгс/см 2 , t к = 115°С

Р абс = 5 кгс/см 2 , t к = 151°С

Р абс =10 кгс/см 2 , t к = 179°С

Р абс = 14 кгс/см 2 , t к = 195°С

При температуре воды в котельных на выходе 150°С и обратной t во-

ды 70°С каждый кг воды переносит 80 ккал теплоты.

В системах пароснабжения 1 кг воды превращенный в пар переносна около 600 ккал теплоты.

Вода практически не сжимается. Наименьший объем занимает при t= +4°С. При t выше и ниже +4°С объем воды увеличивается. Температура, при которой начинается конденсация избыточного кол-ва водяных паров называется t «точки росы».

Различают пар насыщенный и перегретый. При испарении часть молекул вылетает с поверхности жидкости и образуют над ней пар. Если поддерживать температуру жидкости постоянной, т. е. непрерывно подво­дить к ней теплоту, то число вылетающих молекул будет наростать, при этом из-за хаотичного движения молекул пара, одновременно с образова­нием пара происходит обратный процесс - конденсация при которой часть молекул пара возвращается в жидкость.

Если испарение происходит в закрытом сосуде, то количество пара будет увеличиваться до тех пор, пока не наступит равновесие, т. е. коли­чество жидкости и пара станет постоянным.

Пар, находящийся в динамическом равновесии со своей жидкостью и имеющий одинаковые с ней температуру и давление, называется насыщен­ным паром.

Влажным насыщенным паром , называется пар, в котором имеются ка­пельки котловой воды; насыщенный пар, неимеющий капелек воды назы­вается сухим насыщенным паром .

Доля сухого насыщенного пара во влажном паре называется степенью сухости пара (x). При этом влажность пара будет равна 1 - х. Для сухого насыщенного пара х = 1. Если сообщать теплоту сухому насыщенному па­ру при постоянном давлении, то получается перегретый пар. Температура перегретого пара выше температуры котловой воды. Получают перегретый пар из сухого насыщенного пара в пароперегревателях, которые устанав­ливаются в газоходах котла.

Применение влажного насыщенного пара не желательно, т. к. при его перемещении по паропроводам возможны гидравлические удары (резкие толчки внутри труб) конденсата, скапливающегося в арматуре, на закруг­лениях и в пониженных местах паропроводов, а также в паровых насосах. Очень опасно резкое снижение давления в паровом котле до атмосферного которое может произойти в результате аварийного нарушения прочности котла, т. к. температура воды до такого изменения давления была выше 100°С, то избыточное количество тепла расходуется на парообразование, которое происходит практически мгновенно. Количество пара резко воз­растает что приводит к мгновенному повышению давления в котле и к серьезным разрушениям. Чем больше объем воды в котле и выше ее тем­пература, тем значительнее последствия таких разрушений. Объем пара в 1700 раз больше объема воды.

Перегретый пар- пар имеющий более высокую температуру, чем насыщенный при том же давлении - влаги не имеет. Перегретый пар получают в специальном устройстве- пароперегревателе, где сухой насыщенный пар нагревается дымовыми газами. В отопительных котельных перегретый пар не используется,поэтому нет пароперегревателя.

Основные свойства насыщенного пара:

1) t насыщ. пара = t кип. воды при данном Р

2) t кип. воды зависит от Рпара в котле

3) насыщенный пар конденсируется.

Основные свойства перегретого пара:

1) перегретый пар на конденсируется

2) t перегретого пара не зависит от давления пара в котле.

(Схема получения пара в паровом котле)(карт на стр 28 не обязательно)

А. А. Филоненко , директор ЧТСУП «Стим-систем»

Несмотря на положительные результаты работы по повышению эффективности использования энергоресурсов, отражённые в значительном снижении удельного расхода энергии как в целом по республике, так и на отдельных предприятиях, проблема энергосбережения сохраняет свою остроту, при этом становится актуальнее и сложнее. По мере реализации малозатратных и краткосрочных проектов значительно увеличились удельные затраты на экономию энергии при сохранении дефицита инвестиционных ресурсов. Ужесточается законодательство в сфере энергосбережения: невыполнение показателей грозит не только лишением премии некоторых руководителей, но и оплатой предприятием потребления электроэнергии и газа сверх установленных величин по двойному тарифу.

Водяной пар — очень удобный и эффективный теплоноситель. Его достаточно просто произвести, легко транспортировать, контролировать параметры, управлять ими и, наконец, использовать содержащуюся в нём энергию. Благодаря таким характеристикам и огромному опыту применения в системах теплоснабжения и множестве самых разнообразных технологических процессов пар с давних пор широко используется на промышленных предприятиях.

Разнообразие применений и огромные объёмы потребления пара ставят эффективность его использования в ряд важнейших задач энергосбережения. Наведение порядка в пароконденсатном хозяйстве может обеспечить снижение потребления энергии, сопоставимое по результатам с выполнением крупных энергосберегающих мероприятий. При этом по материальным затратам повышение эффективности использования пара несопоставимо мало в сравнении с реализацией крупных проектов, которая длится месяцы, а то и годы. Кроме того, мероприятия, связанные с паром, могут выполняться поэтапно и тем самым обеспечить возможность энергетикам регулировать показатели на непродолжительных промежутках времени.

Как показывают результаты проведения энергоаудитов и опыт общения с персоналом, обслуживающим пароконденсатное хозяйство, имеет место явный недостаток практических знаний даже у опытных работников энергослужб промышленных предприятий. В связи с этим в журнале будет опубликован цикл статей, ориентированный на техническую поддержку специалистов, связанных с проектированием и эксплуатацией паросилового хозяйства.

Пар. Основные понятия

Что такое водяной пар, каким он бывает и какими основными свойствами обладает.

Водяной пар — это газ, получаемый в процессе испарения воды. Свойства пара отличаются от свойств идеального газа и не описываются газовыми законами. Формулы для расчёта параметров пара сложны и громоздки для ежедневного применения, поэтому проще пользоваться таблицами свойств пара и воды, например, из . Ниже приведен сокращённый вариант такой таблицы.

Таблица. Свойства насыщенного пара

Абсолютное
давление, бар
Температура
пара, °С
Удельный объём
пара, м 3 /кг
Плотность, кг/м 3 Энтальпия кипя-
щей жидкости,
ккал/кг
Скрытая теплота
парообразова-
ния, ккал/кг
Энтальпия насы-
щенного пара,
ккал/кг
P t V Y i r i "
0,010 7,0 129,20 0,007739 7,0 593,5 600,5
0,020 17,5 67,01 0,01492 17,5 587,6 605,1
0,030 24,1 45,67 0,02190 24,1 583,9 608,0
0,040 29,0 34,80 0,02873 28,9 581,2 610,1
0,050 32,9 28,19 0,03547 32,9 578,9 611,8
0,060 36,2 23,47 0,04212 36,2 577,0 613,2
0,070 39,0 20,53 0,04871 39,0 575,5 614,5
0,080 41,5 18,10 0,05523 41,5 574,0 615,5
0,090 43,8 16,20 0,06171 43,7 572,8 616,5
0,10 45,8 14,67 0,06814 45,8 571,8 617,6
0,20 60,1 7,650 0,1307 60,1 563,3 623,4
0,301 69,1 5,229 0,1912 69,1 558,0 627,
0,40 75,9 3,993 0,2504 75,8 554,0 629,8
0,50 81,3 3,240 0,3086 81,3 550,7 632,0
0,60 86,0 2,732 0,3661 85,9 547,9 633,8
0,70 90,0 2,365 0,4229 89,9 545,5 635,4
0,80 93,5 2,087 0,4792 93,5 543,2 636,7
0,90 96,7 1,869 0,5350 96,7 541,2 637,9
1,00 99,6 1,694 0,5904 99,7 539,3 639,0
1,5 111,4 1,159 0,8628 111,5 531,8 643,3
2,0 120,2 0,8854 1,129 120,5 525,9 646,4
2,5 127,4 0,7184 1,392 127,8 521,0 648,8
3,0 133,5 0,6056 1,651 134,1 516,7 650,8
3,5 138,9 0,5240 1,908 139,5 512,9 652,4
4,0 143,6 0,4622 2,163 144,4 509,5 653,9
4,5 147,9 0,4138 2,417 148,8 506,3 655,1
5,0 151,8 0,3747 2,669 152,8 503,4 656,2
6,0 158,8 0,3155 3,170 160,1 498,0 658,1
7,0 164,9 0,2727 3,667 166,4 493,3 659,7
8,0 170,4 0,2403 4,162 172,2 488,8 661,0
9,0 175,4 0,2148 4,655 177,3 484,8 662,1
10 179,9 0,1943 5,147 182,1 481,0 663,1
11 184,1 0,1774 5,637 186,5 477,4 663,9
12 188,0 0,1632 6,127 190,7 473,9 664,6
13 191,6 0,1511 6,617 194,5 470,8 665,3
14 195,0 0,1407 7,106 198,2 467,7 665,9
15 198,3 0,1317 7,596 201,7 464,7 666,4
16 201,4 0,1237 8,085 205,1 461,7 666,8
17 204,3 0,1166 8,575 208,2 459,0 667,2
18 207,1 0,1103 9,065 211,2 456,3 667,5
19 209,8 0,1047 9,555 214,2 453,6 667,8
20 212,4 0,09954 10,05 217,0 451,1 668,1
25 223,9 0,07991 12,51 229,7 439,3 669,0
30 233,8 0,06663 15,01 240,8 428,5 669,3
40 250,3 0,04975 20,10 259,7 409,1 668,8
50 263,9 0,03943 25,36 275,7 391,7 667,4
60 275,6 0,03244 30,83 289,8 375,4 665,2
70 285,8 0,02737 36,53 302,7 359,7 662,4
80 295,0 0,02353 42,51 314,6 344,6 659,2
90 303,3 0,02050 48,79 325,7 329,8 655,5
100 311,0 0,01804 55,43 336,3 315,2 651,5
110 318,1 0,01601 62,48 346,5 300,6 647,1
120 324,7 0,01428 70,01 356,3 286,0 642,3
130 330,8 0,01280 78,14 365,9 271,1 637,0
140 336,6 0,01150 86,99 375,4 255,7 631,1
150 342,1 0,01034 96,71 384,7 239,9 624,6
200 365,7 0,005877 170,2 436,2 141,4 577,6

Абсолютное (истинное или полное) давление — это давление, измеренное относительно полного вакуума. Манометрическое давление — давление, измеренное относительно атмосферного давления. Следовательно, значение абсолютного давления больше манометрического на 0,1 МПа.

1 ккал = 4,186 кДж; 1 кДж = 0,24 ккал; 1 бар = 0,102 МПа

Насыщенный пар

Насыщенным называют пар, который образовался в процессе кипения и находится в динамическом равновесии с жидкостью. Как следует из таблицы, при повышении давления растёт температура фазового перехода жидкости в пар. Пар, параметры которого находятся на этой кривой насыщения, и называется насыщенным паром.

Рассмотрим, какими свойствами он обладает и что означают параметры, приведённые в таблице. Давление и температура уже упоминались. Удельный объём пара — это объём в метрах кубических, который занимает 1 кг насыщенного пара при определённом давлении. Знание удельного объёма пара необходимо при расчёте скоростей движения пара по трубопроводам, объёмов, которые будет занимать вторичный пар в ресиверах и расширительных баках, и т. д. (подробно об этом в следующих статьях).

Энтальпия кипящей воды — это полная теплота, которой обладает кипящая вода. Для нагрева 1 кг воды на 1 °С требуется 1 ккал тепловой энергии. Энтальпия кипящей воды отражает, сколько теплоты содержится в одном её килограмме. Чтобы превратить воду в пар, надо затратить дополнительную энергию, например, для 1 кг кипящей воды при атмосферном давлении потребуется 539,3 ккал теплоты. Вся теплота, которая была расходована на нагрев воды и превращение её в пар, называется энтальпией насыщенного пара. Она как бы аккумулируется в полученном паре и будет отдаваться при его конденсации и охлаждении конденсата.

При конденсации пар выделяет ту теплоту, которая была затрачена на испарение кипящей воды. Количество этой теплоты представляет собой разность энтальпий насыщенного пара и кипящей воды и называется скрытой теплотой парообразования. Обратите внимание, что если с ростом давления температура насыщенного пара растёт, то скрытая теплота парообразования (то есть эффективная теплота пара) снижается.

Перегретый пар

Если полученный насыщенный пар нагревать дальше (например, в пароперегревателе котла), то мы получим перегретый пар. Энтальпия перегретого пара будет выше энтальпии насыщенного. При перегреве пара будет также увеличиваться его удельный объём. Это свойство перегретого пара используется в паровых машинах, чтобы снизить расход воды и топлива.

Какими свойствами обладает перегретый пар? При охлаждении он не конденсируется. Конденсация начинается только после того, как перегретый пар достигнет температуры насыщения (см. таблицу). При этом теплообмен между перегретым паром и стенкой теплообменника или трубопровода происходит хуже, чем в случае с насыщенным паром. Это свойство перегретого пара говорит о том, что его использование при транспортировке, особенно на дальние расстояния, эффективнее, так как в трубопроводе не будет образовываться конденсат пара, который может вызывать гидроудары, коррозию труб и запорной арматуры (подробно о проблемах, которые может вызвать конденсат, в следующих статьях). Естественно, что для работы в теплообменнике (где требуется максимально эффективно отобрать теплоту, содержащуюся в паре) предпочтительнее насыщенный пар, который лучше отдаёт теплоту. Исключение составляют случаи, когда требуются высокие температуры теплообменника, при которых использование насыщенного пара требует очень высоких давлений и, следовательно, более сложной и дорогой конструкции теплообменного аппарата.

Следует также рассмотреть такое понятие, как критическая температура . Допустим, имеется пар с давлением 3 кг/см 2 абс и температурой 137 °С. При таких параметрах пар является перегретым. Как видно из таблицы, если при той же температуре повысить давление до 4 кг/см 2 абс, то пар сконденсируется. Если же перегреть пар до температуры 374 °С, то пар не будет конденсироваться ни при каком давлении. Такая температура и называется критической .

Часто упоминается понятие «влажный» пар. Иногда в него вкладывают разный смысл. Доводилось слышать, как влажным называли насыщенный пар. Это неверно. Правильно говорить о сухом насыщенном паре и влажном паре, то есть о паре с какой-либо степенью влажности. определяется как отношение содержащейся в насыщенном паре капельной жидкости к общему количеству смеси фаз:

где G f — масса жидкой фазы, G s — масса сухого пара.

Аналогично определяется :

Очевидно, что влажность и сухость пара могут принимать значения от 0 до 1. В расширенном понимании сухость пара, или паросодержание жидкостно-паровой смеси, можно определить через энтальпии среды i, насыщенной жидкости i ’ и сухого насыщенного пара i ” как:

Эта величина может быть как отрицательной (для недогретой до кипения воды), так и больше единицы (для перегретого пара).


Рис. 1 . Зависимость энтальпии пара от степени сухости (х) (энтропия — это сокращение доступной энергии вещества в результате передачи энергии. В рамках данной статьи смысл понятия энтропии не так важен.)


Как следует из рис. 1, теплосодержание (энтальпия) влажного пара будет тем меньше, чем меньше его сухость. Соответственно, чтобы максимально эффективно использовать пар в теплообменниках, следует использовать пар с минимальной влажностью. Её можно снизить, используя циклонные сепараторы или дросселирование (подробно об этом в следующих статьях).

Ещё одна особенность пара, используемого на промышленных предприятиях. В нём может содержаться воздух или другие неконденсируемые газы. Их присутствие снижает температуру пара и, что ещё более вредно, ухудшает теплоотдачу от пара стенкам теплообменника (рис. 2). Воздух, обладая хорошими теплоизоляционными свойствами, в определённых условиях может образовывать плёнки на поверхности стенки теплообменника, значительно ухудшающие теплоотдачу.


Рис. 2 . Зависимость температуры насыщенного пара от давления и содержания воздуха


Углекислый газ (CO 2), содержащийся в паре, может раствориться в конденсате, образуя угольную кислоту, которая приведёт к коррозии стенок трубопроводов, теплообменников и запорной арматуры. Следовательно, воздух и неконденсируемые газы нужно своевременно удалять из пара.

Литература

М.П. Вукалович. Термодинамические свойства воды и водяного пара. Государственное научно-техническое издательство машиностроительной литературы «МАШГИЗ». — М., 1955.