Железо сталь и прочие металлы. Что делают из железной руды

Cтраница 1


Переработка железных руд осуществляется несколькими последовательными процессами: сначала из руды выплавляют чугун, затем его перерабатывают, получая сталь и ковкое железо.  

Переработка железной руды производится в специальных шахтных печах, называемых доменными, поэтому процесс получения чугуна из железных руд называется доменным процессом. Железная руда, кокс и флюс в требуемых количествах подаются в засыпное устройство в верхней части доменной печи. Снизу в домну поступает воздух, предварительно нагретый в воздухонагревателях. В результате сложного химического взаимодействия между рудой, флюсом, топливом и кислородом воздуха образуются чугун и шлак. Чугун стекает в нижнюю часть печи, откуда через летку выпускается в ковш.  

Схема доменного процесса.  

Переработка железных руд осуществляется несколькими последовательными процессами: сначала из руды выплавляют чугун, натем часть его перерабатывают, получая сталь и ковкое железо.  

При переработке железных руд получают чугун - сплав железа с углеродом (2 - 5 % углерода), твердую сталь - железоуглеродистый сплав (0 2 - 2 % углерода) и мягкую сталь (железо), содержащую меньше 0 2 % углерода.  

При переработке железных руд получается чугун - сплав железа с углеродом, содержащий от 1 7 до 5 % углерода и примеси серы, кремния, фосфора, марганца и некоторых других элементов. Благодаря высокому содержанию углерода чугун не обладает ковкостью и тягучестью.  

При переработке цинксодержа-щих железных руд на ряде предприятий черной металлургии при очистке газов доменного и мартеновского производства образуются шла-мы, которые складируются на больших земельных площадях. Высокое содержание в них цинка и железа (до 13 и 35 % соответственно) делает их ценным сырьем, использование которого в народном хозяйстве требует разработки экономически целесообразных схем комплексной переработки.  


Двухстадийный процесс переработки железной руды в сталь путем получения чугуна в домнах и выплавки из него стали в конвертерах, мартеновских и электросталеплавильных печах требует повышенных энергозатрат и экологически несовершенен, особенно стадия доменного производства чугуна. Поэтому шире начали использовать более экономичные процессы прямого восстановления железа из руд с последующей его плавкой в электропечах для получения стали.  

Технологический процесс переработки железной руды, угля, известняка и углеводородных топлив в конечный продукт может быть разбит на 3 - 4 основные стадии, которые осуществляются раздельно с получением определенного продукта, на следующей стадии перерабатываемого в продукт нового вида. Различные стадии процесса могут проходить в одной технологической установке.  

Доменные печи предназначены для переработки железной руды в чугун. В засыпное устройство, расположенное в верхней части печи, подают агломерат, кокс, флюсы при помощи специального подъемника, оборудованного скиповыми тележками, которые перемещаются по наклонному мосту.  

Во вращающихся печах возможна переработка различных железных руд, в том числе высококремнеземистых комплексных руд, пиритных огарков, колошниковой пыли, шлаков. В качестве восстановителей могут использоваться коксовая и угольная мелочь, буроугольный полукокс и другие виды низкосортного топлива.  

Металлургические фосфатные шлаки, образующиеся при переработке высокофосфористых железных руд, являются дополнительным источником фосфорных удобрений. В этом отношении они представляют интерес как щелочные удобрения, отличающиеся высокой агрохимической эффективностью на кислых дерново-подзолистых почвах.  

Намечается значительное увеличение их выпуска на базе переработки фосфористых железных руд Керченского, Кустанайского, Ангарского месторождений. Развивается также отечественное производство обесфторенных фосфатов.  

Новый этап в разведывании, добыче и переработке железных руд начался в 30 - х годах, когда голландский купец А. Д. Виниус, получив царскую жалованную грамоту на мельницы и всякое железное дело, приступил к строительству первых в стране вододействующих железоделательных заводов под Тулой, в 40 верстах от ранее разведанного Деди-ловского железорудного массива.  

Железные руды - природные минеральные образования, содержащие железо и его соединения в таком объёме, когда промышленное извлечение железа из этих образований целесообразно. Несмотря на то, что железо входит в большем или меньшем количестве в состав всех горных пород, под названием железных руд понимают только такие скопления железистых соединений, из которых с выгодой в экономическом отношении можно получить металлическое железо.

Железные руды представляют собой особые минеральные образования, в состав которых входит железо и его соединения. Данный тип руды считается железной, если доля этого элемента содержаться в таком объеме, чтобы в ее промышленное извлечение было экономически выгодным.

В черной металлургии используются три основных вида железорудной продукции:

— сепарированная железная руда (низкое содержание железа);

— аглоруда (среднее содержание железа);

— окатыши (сырая железосодержащая массы)

Залежи железной руды считаются богатыми, если доля железа в них составляет более 57%. Бедные железные руды могут содержать минимум 26% железа. Ученные выделяют два основных морфологических типа железной руды; линейные и плоскоподобные.

Линейные залежи железной руды представляют собой клиновидные рудные тела в зонах земных разломов, изгибов в процессе метаморфоза. Данный тип железных руд отличается особо высоким содержанием железа (54-69%) с низким содержанием серы и фосфора.

Плоскоподобные залежи можно найти на вершинах пластов железистых кварцитов. Они относятся к типовым корам выветривания.

Богатые железные руды, в основном, отправляют на выплавку в мартеновское и конверторное производство или же на прямое восстановление железа.

Основные промышленные типы месторождений железной руды:

  • — пластовые осадочные месторождения;
  • — комплексные титаномагнетитовые месторождения;
  • — месторождения железистых кварцитов и богатых руд;
  • — скарновые железорудные месторождения;

Второстепенные промышленные типы месторождений железной руды:

  • — железорудные сидеритовые месторождения;
  • — железорудные пластообразные латеритные месторождения;
  • — комплексные карбопатитовые апатит-магнетитовые месторождения;

Мировые запасы разведанных месторождений железной руды составляют 160 миллиардов тонн, в них содержится около 80 миллиардов тонн чистого железа. Крупнейшие месторождения железной руды найдены в Украине, а крупнейшие запасы чистого железа расположены на территории России и Бразилии.

Объем мировой добычи железной руды с каждым годом растет. В 2010 году было добыто более 2,4 млрд тонн железной руды, при этом, Китай, Австралия и Бразилия обеспечили две трети добычи. Если прибавить к ним Россию и Индию, то их суммарная доля на рынке составит более 80%.

Как добывают руду

Рассмотрим несколько основных вариантов добычи железной руды. В каждом конкретном случае выбор в пользу той или иной технологии делается с учетом расположения полезных ископаемых, экономической целесообразности использования того или иного оборудования и т.п.

В большинстве случаев, добыча руды происходит карьерным способом. То есть для организации добычи, сначала вырывается глубокий карьер приблизительно 200-300 метров в глубину. После этого прямо из его дна на больших машинах вывозится железная руда. Которая сразу же после добычи на тепловозах переправляется на различные комбинаты, где из нее изготавливается сталь. На сегодняшний день многие крупные предприятия производят добычу руды, в том случае если у них есть все необходимо оборудование для проведения таких работ.

Рыть карьер следует с использованием больших экскаваторов, однако следует учесть то, что данный процесс может отнять у вас достаточно много лет. После того как экскаваторы дороют до самого первого пласта железной руды, необходимо сдать ее на анализ экспертам, чтобы они смогли определить какой именно процент железа в ней содержится. Если этот процент будет не менее 57, то в таком случае будет экономически выгодным решение о добычи руды в этой местности. Такую руда можно смело перевозить на комбинаты, ведь после переработки из нее обязательно получится сталь высокого качества.

Однако это еще не все, следует очень тщательно проверять сталь, которая появляется в результате переработки железной руды. Если качество добываемой руды не будет соответствовать европейским стандартам, то следует понять, как улучшить качество производства.

Недостаток открытого метода состоит в том, что он позволяет добывать железную руду только на сравнительно небольшой глубине. Поскольку нередко она лежит гораздо глубже – на расстоянии в 600-900 м от поверхности земли – приходится строить шахты. Сначала делают ствол шахты, который напоминает очень глубокий колодец с надежно укрепленными стенками. От ствола в разные стороны отходят коридоры, которые называются штреками. Найденную в них железную руду взрывают, а затем ее куски с помощью специального оборудования поднимают на поверхность. Этот способ добычи железной руды эффективен, но в то же время связан с серьезной опасностью и затратен.

Есть и еще один способ, позволяющий добывать железную руду. Он называется СГД или скважинная гидродобыча. Руду извлекают из-под земли следующим образом: бурят глубокую скважину, опускают туда трубы с гидромонитором и с помощью очень сильной водной струи дробят породу, а затем поднимают ее на поверхность. Этот способ безопасен, однако, к сожалению, он пока неэффективен. Благодаря этому методу удается добыть только около 3% железной руды, в то время как с помощью шахт добывается примерно 70%. Тем не менее, разработкой метода скважинной гидродобычи занимаются специалисты, а потому есть надежда, что в будущем именно этот вариант станет основным, вытеснив карьеры и шахты.

При этом столь широкое использование стали, которое мы наблюдаем в наши дни, обусловлено, в первую очередь, тем, что железо является одним из наиболее распространённых в земной коре элементов.

Однако железо находится в природе, преимущественно, в виде оксидов, реже – сульфидов. Соответственно, для получения железа в чистом виде (или в виде стали – сплава железа с углеродом) необходимо провести химическую реакцию восстановления. При этом единственным восстановителем, который целесообразно использовать для этой цели в условиях нашей планеты, является углерод.

Связано это с тем, что только углерод, благодаря тому, что растения (преимущественно деревья), используя энергию солнца, концентрируют его в процессе построения собственных «тел». При этом углерод, окисляясь в процессе горения, не только восстанавливает железо из его соединений, но и обеспечивает необходимую температуру для интенсивного протекания этого процесса (поскольку реакции восстановления железа эндотермичны и требуют затрат тепла).

На протяжении нескольких тысячелетий для производства железа из руд люди использовали собственно древесину, которую обугливали при недостатке воздуха, получая древесный уголь. При обугливании протекают эндотермические процессы удаления влаги и разложения и удаления сложных органических соединений, в результате чего использование древесного угля вместо дров позволяло достичь более высоких температур.

Для восстановления железа из руд использовался небольшой шахтный (то есть в виде сложенного из камней, глины и прочих огнеупорных материалов цилиндра) агрегат, называемый «сыродутный горн». В него слоями загружали руду и древесный уголь, а снизу подавали через трубки-фурмы необходимый для горения воздух. Поскольку температура в горне была недостаточно высока для расплавления полученного железа, оно скапливалось в нижней части в виде крицы – своего рода «железной губки», пропитанной шлаком – расплавом оксидов, которые не восстанавливались (в основном кремния и железа, а также некоторых других). В дальнейшем крицу проковывали, получая железный брусок, из которого с помощью кузнечной ковки изготавливали необходимые предметы.

Конструкции горнов у различных народов были различны, но принцип действия оставался неизменным. Такой способ применялся несколько тысяч лет, пока в XV веке в Европе не возросла потребность в металле. Для удовлетворения этой потребности размеры горнов стали увеличивать, а для подачи воздуха начали применять мощные мехи, приводимые в движение водяным колесом.

При этом температура возросла настолько, что железо стало насыщаться углеродом и плавиться: результатом плавки стала уже не железная крица, почти не содержащая углерода, а жидкий чугун – сплав железа с достаточно высоким содержанием этого элемента. Сам же сыродутный горн, увеличиваясь в размерах, постепенно превратился в доменную печь, которая и по сей день остаётся основным агрегатом для восстановления железа из руд. Отметим, что в Китае к использованию чугуна перешли ещё раньше, однако таких последствий, как в Европе, это не имело.

Таким образом, использование доменных печей обеспечило требуемую производительность, однако хрупкий чугун далеко не во всех сферах мог заменить ковкое железо. По этой причине там, где хрупкость не играла существенной роли, использовали чугун, а часть чугуна подвергали обезуглероживанию («фришеванию», т.е. «очитке»), в ходе которого получалось железо.

Для этого чугунный слиток помещали в открытый горн, заполненный горящим древесным углём, в нижнюю часть которого через фурмы подавали воздух. Чугун плавился и каплями стекал по углю в нижнюю часть горна. При этом он контактировал с потоком воздуха, в результате чего углерод окислялся и удалялся из металла. В результате в нижней части горна формировалась железная крица, которую далее обрабатывали обычным способом.

К началу XVIII века производительность доменных печей увеличилась настолько, что в отдельных странах, в первую очередь в Великобритании остро встала проблема нехватки древесины. На помощь пришли всё те же растения, только произраставшие миллионы лет назад и дошедшие до нас в виде каменного угля.

Однако проблема заключалась в том, что уголь содержит значительное количество серы, которая, попадая в металл, приводит к тому, что он трескается при ковке («красноломкость»). Тем не менее, долгие годы неудачных экспериментов увенчались успехом и в XVIII веке стало возможным выплавлять и фришевать чугун с помощью каменного угля.

Для использования в доменной печи каменный уголь, как в своё время древесину, подвергали нагреву без доступа воздуха, в результате чего из него удалялись сложные органические летучие вещества, а сам уголь превращался в достаточно прочный пористый материал – кокс. Железо же с помощью угля стали получать из чугуна в печах особой конструкции, получивших название пудлинговых.

Однако в середине XIX века значительно развившаяся европейская промышленность предъявила новые требования к свойствам используемых материалов, которым железо и чугун уже не удовлетворяли – чугун был слишком хрупким, а железо слишком мягким. Отметим, что в это время умели получать и жидкую сталь путём переплавки небольших кусочков стали в тиглях, однако производительность этого способа была очень низкой.

Для решения этой проблемы в середине XIX века англичанин Генри Бессемер разработал конструкцию бессемеровского конвертера, в котором, путём продувки жидкого чугуна воздухом стало возможно получить в значительных количествах сталь в жидком виде – литую сталь. Немного позднее англичанин Сидни Томас усовершенствовал конвертер Бессемера, в результате чего стало возможным выплавлять качественную сталь из чугуна с высоким содержанием фосфора (фосфор, как и сера – главные вредные примеси в стали).

Почти одновременно с Бессемером немцы Вильгельм (Уильям) и Фридрих Сименсы разработали печь особой конструкции, а французы, отец и сын Мартены – способ выплавки в ней литой стали из чугуна и металлолома. Последнее было особенно важно, поскольку человечество накопило к тому времени значительное количество лома, способы переработки которого были несовершенны.

До середины XX века бессемеровский и томасовский конвертера (в меньшей степени) и мартеновская печь (в большей степени) были основными агрегатами для выплавки рядовой стали из чугуна. Для выплавки же стали повышенного качества продолжали использовать тигельный способ, который на рубеже XIX и XX веков был вытеснен способом выплавки стали в электропечах (в основном – дуговых), которые также стали использоваться для производства стали повышенного качества.

Однако с развитием техники получения чистых газов в промышленных масштабах получил распространение кислородный конвертер, в котором чугун продувался не воздухом, как в конвертерах Бессемера и Томаса, а чистым кислородом. Всю вторую половину XX века этот способ вытеснял своих предшественников из металлургической практики, а в настоящее время он является главным способом получения стали из доменного чугуна.

Вторым по важности способом в настоящее время является производство стали в электропечах, которые только из агрегатов для получения стали повышенного качества стали также важными агрегатами для переплава металлического лома. Дело в том, что в конвертере можно использовать до 25 % лома, в то время как электропечь может работать полностью на ломе.

Помимо чугуна и лома электропечь может переплавлять металлизованное сырьё (DRI – железо прямого восстановления и HBI – горячебрикетированное железо) – практически чистое железо, полученное в агрегатах различной конструкции путём восстановления железорудных материалом восстановительным газом (СО и Н2).

Перейдём теперь непосредственно к технологии производства чугуна и стали. Если на протяжении всей истории человечества, до начала XX века, добытая железная руда подвергалась минимальной обработке – отмывалась от загрязнений, дробилась, сортировалась по крупности, то сейчас путь её от карьера до доменной печи весьма длителен.

Связано это с исчерпанием запасов руд с высоким содержанием железа (50-60 %) – так называемых богатых руд. Современные руды в своей массе бедные, содержащие порядка 20-30 % железа, что делает их переработку в доменной печи невыгодной из-за очень высокого расхода топлива и малого выхода чугуна, а зачастую и технологически невозможной.

Для решения этой проблемы на рубеже XIX и XX веков стали применять различные способы обогащения руд, благодаря которым от них отделяется не содержащая железа пустая порода, а содержание железа в полученном продукте возрастает, в среднем, до 60 %.

Однако, поскольку для отделения пустой породы руду необходимо подвергнуть дроблению до пудрообразного состояния, использование продукта обогащения – железорудного концентрата, в доменной печи невозможно. Проблема заключается в том, что для эффективной доменной плавки необходимо, чтобы загружаемые в печь материалы (шихта) имели оптимальную крупность (25-40 мм) для обеспечения прохода через них большого количества газов, образующихся в нижней части печи при горении кокса

Железорудные концентраты, производимые в настоящее время при обогащении руд, представлены частицами 0,1 мм и меньше. Такие мелкие рудные материалы непригодны для непосредственного использования в доменной плавке. Столб шихты высотой 20 м, сложенный из частиц такой крупности, практически непроницаем для газа. А если подобные пылевидные частицы и попадают в печь, то уже при скорости 0,5 м/с выносятся из неё восходящим потоком газа.

В настоящее время существуют три основных способа окускования железорудных материалов: агломерация, производство окатышей (окомкование) и брикетирование. Каждый из них обладает своими преимуществами и недостатками, которые обуславливают их применение в конкретных производственных условиях.

Брикетирование, то есть окускование мелкодисперсных материалов посредством их прессования (обычно с добавкой связующего) исторически было первым способом окускования, однако позднее было вытеснено агломерацией и окомкованием. В настоящее время брикетирование вновь начинает использоваться на металлургических предприятиях, преимущественно для окускования пылевидных железосодержащих отходов. Однако, зачастую, из-за неудовлетворительной брикетируемости материалов используются различные связующие (как правило, цемент), что приводит к снижению технико-экономических показателей доменной плавки. Кроме того, при брикетировании отходов требуется использование усреднительного оборудования для обеспечения стабильности химсостава и свойств продукта. По этим причинам брикетирование используется лишь эпизодически на отдельных предприятиях.

Окомкование производят непосредственно на горно-обогатительном комбинате (ГОК), где руда подвергается обогащению. При этом железорудный концентрат увлажняют и смешивают со связующим – бентонитовой глиной. Затем полученную массу помещают в барабанный или чашевый окомкователь, где в ходе вращения формируются достаточно прочные шарики – окатыши. Получившиеся сырые окатыши помещают на движущуюся ленту обжиговой машины (схожей по конструкции с рассматриваемой далее агломерационной машиной), где по ходу движения они продуваются раскалёнными продуктами сгорания природного газа. При этом мельчайшие частички концентрата оплавляются и спекаются между собой, в результате чего получается прочный кусковой материал.

Таким образом, на металлургическое предприятие окатыши прибывают уже в готовом виде по железной дороге или по воде, если комбинат расположен близ реки или моря, что позволяет избежать перевозок пылевидного концентрата с неизбежными его потерями от выдувания, вытекания и при перегрузках. Однако в их производстве используется только пылевидный железорудный концентрат, что не позволяет использовать более крупнофракционные материалы, в том числе железосодержащие отходы.

Агломерат же, ввиду его склонности к разрушению при перевозке, напротив, производят непосредственно на металлургических комбинатах. Сырьём для них служит также железорудный концентрат, который поступает на предприятие с ГОКа обычно по железной дороге. Агломерация является на сегодняшний день наиболее массовым способом окускования.

Аглофабрики, как правило, располагаются на территории металлургического комбината или на небольшом расстоянии от него и тесно интегрированы в его структуру. Это связано не только с невозможностью осуществлять транспортировку агломерата на дальние расстояния, но и с возможностью использования в качестве добавок в аглошихту широкого спектра железосодержащих отходов других производств. Однако процесс агломерации является одним из наиболее экологически неблагополучных (в первую очередь по выбросам оксидов серы, углерода, а также пыли).

Агломерация как способ окускования был открыт случайно в 1887 г. английскими исследователями Ф. Геберлейном и Т. Хатингтоном в ходе опытов по десульфурирующему (обессеривающему) обжигу руд цветных металлов на колосниковой решётке.

В ходе исследований выяснилось, что при обжиге руд с высоким содержанием серы выделялось так много тепла и температура поднималась до такого уровня, что происходило приплавление обожженных кусков руды друг к другу. После окончания процесса слой руды превращался в закристаллизовавшуюся пористую массу – спёк. Куски раздробленного спёка, которые назвали агломератом, оказались вполне пригодными по своим физико-химическим свойствам для плавки в печи шахтного типа, к которым относится и доменная печь.

Сравнительная простота технологии и высокая тепловая эффективность слоевого окислительного обжига сульфидных руд привлекли внимание специалистов чёрной металлургии. Появилась идея разработать термический способ окускования железорудных материалов на базе подобной технологии. Отсутствие в железных рудах серы как источника тепла предполагалось компенсировать добавкой к руде мелких частиц топлива – угля или кокса.

Железорудный агломерат по такой технологии в лаборатории впервые был получен в Германии в 1902-1905 гг. Некоторое время для производства агломерата использовались чашевые установки (Геберлейна, Гриневальта, AIB), а также, в 20-30 гг. XX столетия, трубчатые вращающиеся печи (Полизиуса).

Поскольку каждая из упомянутых агломерационных установок обладала теми или иными существенными недостатками (один из самых серьезных – низкая производительность), ни чаши, ни трубчатые печи не получили широкого распространения в металлургии. Прорыв в области окускования руд был сделан двумя американскими инженерами А. Дуайтом и Р. Ллойдом, которые в 1906 г. разработали конструкцию, а в 1911 г. ввели в эксплуатацию первую конвейерную агломерационную машину непрерывного действия.

Процесс спекания руд шел по тому же принципу, что и в котлах Геберлейна или в чашах – тепло, необходимое для оплавления рудных зёрен, выделялось при сжигании частичек твёрдого топлива в слое железорудного концентрата или мелкой руды (аглоруды). Для горения через слой материалов (шихты) просасывался воздух, а для обеспечения прохода воздуха через слой шихты, она размещалась на колосниковой решётке. Успех в быстром и широком распространении агломерации как главного способа окускования железорудных материалов был предопределен очень удачной конструкцией агломерационой машины, обеспечивающей непрерывность процесса.

Конвейерная агломерационная машина (рис.) состоит из следующих основных частей: спекательных тележек – паллет (днище которых представляет колосниковую решетку с зазорами 5-6 мм), перемещающихся по направляющим – стальным рельсам; вакуум-камер (обеспечивающих разряжение под колосниками паллет для просасывания воздуха); привода (состоящего из большого зубчатого колеса диаметром 4-6 м, приводимого во вращение электродвигателем).

Работает машина следующим образом. Медленно вращающееся колесо в головной части машины захватывает зубцами подкатившуюся внизу тележку и поднимает её на верхнюю ветвь направляющих, где она прижимается к предыдущей, толкает её и через неё – все остальные паллеты, находящиеся на рабочей ветви машины. При этом последняя тележка в хвостовой части машины переходит на круговой участок направляющих и далее – на «холостую» ветвь машины, имеющую небольшой уклон к головной её части.

Тележка подхватывается зубчатым колесом, поднимается вверх, и цикл повторяется. При подходе к загрузочному устройству паллета заполняется шихтой и проходит под зажигательным горном, где осуществляется воспламенение топлива шихты в поверхностном слое. В течение времени, пока тележка находится на рабочей ветви машины, через слой шихты непрерывно просасывается воздух (под действием разрежения в вакуум-камерах, который создает эксгаустер).

Скорость движения паллет подбирается такой, чтобы за время перемещения тележки от зажигательного горна до последней вакуум-камеры зона горения – формирования агломерата – прошла сверху вниз весь слой (толщиной 200-400 мм). При опрокидывании паллеты в конце машины происходит её освобождение от образовавшегося пористого агломерационного спёка, который затем охлаждается и подвергается дроблению с последующим разделением по крупности.

Кроме железорудного концентрата и топлива в состав агломерационной шихты входит молотый известняк. Он является источником оксида кальция, который необходим для того, чтобы, взаимодействуя с тугоплавким оксидом кремния, который находится в пустой породе концентрата, перевести последний в состав легкоплавких соединений, которые затем формируют в доменной печи шлак.

Второй задачей оксида кальция является связывание серы, которая, как уже говорилось, существенно ухудшает качество металла. При использовании же оксида кальция, значительное количество серы удаляется из печи со шлаком и не попадает в металл. Известняк можно добавлять и непосредственно в доменную печь, однако в этом случае источником тепла на его нагрев и осуществление реакций разложения карбонатов и гидратов, а также образования легкоплавких соединений, будет служить дорогостоящий кокс. В то же время в процессе агломерации для тех же целей используется более дешёвая коксовая мелочь – фактически отход производства кокса.

Вторым компонентом доменной шихты, помимо железорудных материалов – агломерата и окатышей, является кокс. Помимо того, что он является топливом и восстановителем, чрезвычайно высока его роль для протекания доменного процесса– поскольку он занимает большую часть объёма доменной печи и остаётся при этом твёрдым (в то время как агломерат и окатыши плавятся), именно кокс обеспечивает прохождение газов по высоте доменной печи, что определяет как производительность агрегата, так и эффективность восстановления железа из оксидов.

Как уже говорилось, кокс представляет собой продукт нагрева каменного угля без доступа воздуха. Этот процесс происходит в узких вертикальных камерах коксования, объединённых в батареи по нескольку десятков камер (рис.), между которыми располагаются простенки, в которых сжигается газообразное топливо. Таким образом, камеры чередуются с простенками, один простенок греет две соседние камеры, а одна камера обогревается двумя простенками.

Каждая коксовая печь снабжена двумя герметичными дверями по торцам. В своде печи имеются три отверстия для загрузки шихты из трех бункеров загрузочного вагона. Под печью располагаются кирпичные регенераторы.

Нагрев угольной шихты в печи происходит только посредством теплопроводности от двух её стен. Температура сгорания газов в простенках составляет 1350-1400 °С, коксуемый уголь постепенно прогревается до 1100 °С. Выделяющиеся из шихты газы немедленно отводятся из печи через специальные отверстия. «Грязный» коксовый газ через газосборник и газоотводы направляется в химические цехи. Процесс коксования занимает 17-25 часов.

С машинной стороны печь обслуживается перемещающимся по рельсовому пути коксовыталкивателем. С помощью штанги эта машина выталкивает коксовый пирог из печи в тушильный вагон. Предварительно с коксовой стороны двересъёмная машина снимает дверь. После тушения кокса (водой или инертным газом – азотом) он выгружается на наклонную рампу и конвейером направляется на коксосортировку.

1 – приёмный бункер для сырого каменного угля; 2 – отделение для дробления и смешения угля; 3 – распределительная башня; 4 – погрузочная тележка; 5 – камера коксования; 6 – кокс; 7 – коксовыталкиватель; 8 – тушильный вагон; 9 – тушильная башня; 10 – платформа для выгрузки охлаждённого кокса (рампа); 11 – отвод коксового газа

Как правило, кокс сортируется на классы: 0-10, 10-25, 25-40 и крупнее 40 мм. Появление доменных печей большой мощности потребовало дополнительного разделения доменного кокса на два класса: крупнее 60 и 40-60 мм. В практике коксохимического производства сложились следующие виды доменного кокса, различающиеся по крупности и месту отбора. Кокс, выдаваемый из камеры коксования, называется валовым. Кокс, прошедший сортировку по крупности, размером более 25 мм, называется металлургическим или доменным. Кокс, переданный в доменный цех и прошедший там обязательную сортировку по крупности, называется скиповым. Средний выход металлургического кокса (>25 мм) из валового составляет 93-94 %.

Помимо описанных выше коксовых батарей кокс также производят в горизонтальных камерах со сводом, а сжигание топлива (коксового газа, выделяющегося из угля при коксовании) происходит не в простенках, а непосредственно внутри камеры. Однако такой способ распространён в существенно меньшей степени и на отечественных предприятиях в настоящее время не применяется.

Роль железа в истории человеческой цивилизации переоценить очень трудно. Именно оно дало возможность людям противостоять окружающему миру, послужило основой всего, что было создано в дальнейшем. Конечно, первой была бронза, но она из-за своего достаточно узкого распространения стала как бы материалом для избранных, обладающих допуском к источнику сырья. Тогда как железо благодаря наличию практически в любом месте применялось всеми, при этом превосходя своими возможностями бронзу. Источником металла являются широко распространенные минералы. Но путь от них до готовых изделий очень длинный, поэтому резонно поинтересоваться, как и что делают из железной руды.

Несколько слов о руде

Не касаясь конкретных пород минералов, стоит отметить разделение на:

  • богатые руды (содержание железа больше 50 %);
  • рядовые (25-50 %);
  • бедные (железа меньше 25 %).

Другой подход к классификации руды – по составу. Обычно она представляет собой:

  • гидраты окисей;
  • окиси железа;
  • углекислые соли закиси железа.

Для полноты сведений о рудах стоит назвать основные из них:

  • магнитный железняк;
  • красный железняк;
  • бурый железняк;
  • шпатовый железняк.

Месторождения железа широко распространены по миру. Для нужд промышленности в первую очередь используются богатые руды, но и остальные применяются вполне успешно. Правда, для этого они проходят цикл обогащения, включающий в себя ряд операций (размельчение, промывка, продувка, обжиг), в результате которых в исходном сырье повышается концентрация железа и уменьшается содержание пустой породы и примесей.

Что получают из железной руды?

Самый простой ответ – железо – хоть и будет правильным, но не является полным. Это имело место на первом этапе, когда люди только начинали понимать суть металла.

О разновидностях железа

Прежде всего надо сказать, что железо – ковкий металл серебристого цвета, легко реагирующий с другими элементами, в частности с кислородом. Его обозначение – Fe. Фактически железо в промышленности в чистом виде не используется, а применяется в основном как сплав, в первую очередь с углеродом (С). По его содержанию говорят о:

  • чистом железе, С< 0,8 %;
  • стали, когда С < 2,1 %;
  • чугуне, при содержании C > 2,14 %.

Так вот, основным продуктом плавки в современной черной металлургии является чугун, из которого в дальнейшем получается сталь. И она, и чугун часто используются в качестве исходного материала в самых различных областях хозяйства. Но все-таки если посмотреть на исторический процесс, то первым было железо.

Сыродутный способ получения железа

В данном случае очень часто сырьем являлась болотная руда, широко распространенная по всей территории Европы. Это позволяло получать металлическое оружие, орудия производства и хозяйственную утварь практически повсеместно, что значительно ускорило развитие общества, а также открыло путь к освоению новых, недоступных ранее территорий.

Суть самого процесса достаточно проста – в глиняную печь, напоминающую небольшой цилиндр диаметром около метра, сверху слоями засыпали руду и древесный уголь. Сбоку были предусмотрены отверстия (фурмы) для подачи воздуха с помощью мехов. Печь разжигали и начинали плавку руды, постоянно вдувая в печь воздух.

Особенностью технологии были:

  • подача холодного, «сырого» воздуха, отчего и пошло название процесса;
  • достаточно низкая температура плавки, примерно 950 °С.

В результате получался спекшийся кусок смеси железа и шлаков, называемый крицей. Его проковывали для удаления всего мусора, и в итоге оставалось чистое железо. В дальнейшем из него изготавливалась хозяйственная утварь, или металл использовали как заготовку для получения стали. Технологии этого были разные. Многим знакомы такие слова, как харалуг или уклад (предметы, сделанные из определенного материала): они означали стальное оружие, только способы его производства в каждом случае были свои.

Чугун и его передел

Сыродутное производство отличалось малым выходом готового продукта и большим количеством сырья, уходившего в отходы (шлак). В конце концов в металлургии широко стала применяться другая технология, заключающаяся в том, что из железной руды сначала получали чугун, а потом из него – сталь. Для этого необходимо было построить специальные печи, так называемые домны, в которых и происходила плавка сырья.

При подобном подходе развивалась температура порядка 1500 °С, в результате чего руда полностью расплавлялась, окислы Fe, входящие в ее состав, восстанавливались до чистого металла, и он насыщался углеродом. Получался чугун, сплав Fe с C. Обычно 90 % жидкого чугуна отправляется на передел, т. е. после его обработки по специальной технологии в нем уменьшается содержание углерода, результатом чего будет образование стали.

Ее качество регулируется содержанием в составе С, а также специальных легирующих добавок, хрома, ванадия и других, придающих готовому металлу необходимые свойства.

Освоение выплавки железа дало человеку те инструменты, оружие, которые позволили значительно расширить его возможности. Однако первоначальный способ оказался не совсем удобным и требовал слишком большого расхода сырья. Поэтому со временем была принята другая технология, когда из железной руды получают чугун, а уж из него – сталь с необходимыми характеристиками.

Честно скажу, даже не думал, что смогу попасть в такое место и увидеть все своими глазами. Не каждому улыбается такой шанс, но я попал и сегодня расскажу вам об этом. Про то, как добывают железную руду, как превращают ее в ГБЖ (и что это такое), и как из нее делают уже готовые стальные изделия.

Сперва расскажу про сам карьер. Лебединский ГОК - является крупнейшим российским предприятием по добыче и обогащению железной руды и имеет самый крупный в мире карьер по добыче железной руды. Комбинат и карьер расположены в Белгородской области, между городами Старый Оскол и Губкин.

Вид на карьер сверху. Он действительно огромный и разрастается с каждым днем. Глубина карьера Лебединского ГОКа - 250 м от уровня моря или 450 м - от поверхности земли (а диаметр - 4 на 5 километров), в него постоянно просачиваются подземные воды, и если бы не работа насосов, то он заполнился до самого верха за месяц. Он дважды занесен в книгу рекордов Гиннеса как крупнейший карьер по добыче негорючих полезных ископаемых.

Немного официальной информации: Лебединский ГОК входит в концерн «Металлоинвест» и является лидирующим производителем железорудной продукции в России. В 2011 году доля производства концентрата комбинатом в общем годовом объеме производства железорудного концентрата и аглоруды в России составила 21%.

В карьере работает много всевозможной техники, но самая заметная конечно же многотонные самосвалы «Белаз» и «Caterpillar».

В год оба комбината входящих в компанию (Лебединский и Михайловский ГОК) производят около 40 млн. тонн железной руды в виде концентрата и аглоруды (это не объем добычи, а обогащенная уже руда, то есть отделенная от пустой породы). Таким образом выходит, что в день на двух ГОКах производится в среднем около 110 тысяч тонн обогащенной железной руды.

Этот малыш за один раз перевозит до 220 тонн (!) железной руды.

Экскаватор дает сигнал и он аккуратно дает задний ход. Всего несколько ковшов и кузов гиганта заполнен. Экскаватор еще раз дает сигнал и самосвал отъезжает.

Недавно были закуплены «Белазы» грузоподъемностью 160 и 220 тонн (до сих пор грузоподъемность самосвалов в карьерах была не больше 136 тонн), и ожидается поступление экскаваторов «Хитачи» с емкостью ковша 23 куб.м. (в настоящее время максимальная емкость ковша карьерных экскаваторов составляет 12 куб.м.).

«Белаз» и «Caterpillar» чередуются. Импортный самосвал перевозит кстати всего 180 тонн. Самосвалы такой большой грузоподъемности - это новая техника, в настоящее время поступающая на ГОКи в рамках инвестпрограммы «Металлоинвеста» по повышению эффективности горно-транспортного комплекса.

Интересная фактура у камней, обратите внимание. Если не ошибаюсь слева кварцит, из такой руды добывают железо. Карьер полон не только железной руды, но и различными минералами. Они, в основном, не представляют интереса для дальнейшей переработки в промышленных масштабах. Сегодня из пустой породы получают мел, а также делают щебень для строительных целей.

Красивые камешки, точно не могу сказать, что за минерал, может кто-то подскажет?

Ежесуточно в карьере Лебединского ГОКа работает 133 единицы основной горной техники (30 большегрузных самосвалов, 38 экскаваторов, 20 бурстанков, 45 тяговых агрегатов).

Я конечно надеялся увидеть зрелищные взрывы, но даже если бы они проходили в этот день, мне все равно не удалось бы проникнуть на территорию карьера. Такой взрыв делают один раз в три недели. Вся техника по нормам безопасности (а ее немало) перед этим выводится из карьера.

Лебединский ГОК и Михайловский ГОК - два крупнейших комбината по добыче и переработке железной руды в России по объему выпускаемой продукции. Компания «Металлоинвест» обладает вторыми по величине в мире разведанными запасами железной руды — около 14,6 млрд тонн по международной классификации JORС, что гарантирует около 150 лет эксплуатационного периода при текущем уровне добычи. Так что жители Старого Оскола и Губкина надолго будут обеспечены работой.

Наверное заметили по предыдущим фотографиям, что погода была неважная, шел дождь, а в карьере стоял туман. Ближе к отъезду он слегка рассеялся, но все равно не сильно. Вытянул фото насколько возможно. Размеры карьера конечно впечатляют.

Прямо посередине карьера стоит гора с пустой породой, вокруг которой добыли всю руду содержащую железо. В скором времени планируется ее взорвать по частям и вывезти из карьера.

Железную руду загружают тут же в жд составы, в специальные усиленные вагоны, которые вывозят руду из карьера, они называются думпкары, их грузоподъемность - 105 тонн.

Геологические пласты, по которым можно изучать историю развития Земли.

Гигантские машины с высоты обзорной площадки кажутся не больше муравья.

Затем руду везут на комбинат, где происходит процесс отделения пустой породы методом магнитной сепарации: руду дробят мелко, потом отправляют на магнитный барабан (сепаратор), к которому в соответствии с законами физики все железное прилипает, а не железное - смывается водой. После этого из полученного железорудного концентрата делают окатыши и горячебрикетированное железо (ГБЖ), которое затем используется для выплавки стали.
Горячебрикетированное железо (ГБЖ) — один из видов прямовосстановленного железа (ПВЖ). Материал с высоким (>90 %) содержанием железа, полученный по технологии, отличной от доменного передела. Используется в качестве сырья для производства стали. Высококачественный (с малым количеством вредных примесей) заменитель чугуна, металлолома.

В отличие от чугуна, в производстве ГБЖ не используется угольный кокс. Процесс производства брикетированного железа базируется на обработке железорудного сырья (окатышей) высокими температурами, чаще всего, посредством природного газа.

Внутрь завода ГБЖ просто так не зайдешь, потому что процесс выпекания горячебрикетированных пирожков проходит при температуре около 900 градусов, а загорать в Старом Осколе у меня не входило в планах).

Лебединский ГОК - единственный производитель ГБЖ в России и СНГ. Комбинат начал производство этого вида продукции в 2001 году, запустив цех по производству ГБЖ (ЦГБЖ-1) с применением технологии HYL-III мощностью 1,0 миллион тонн в год. В 2007 году ЛГОК завершил строительство второй очереди цеха по производству ГБЖ (ЦГБЖ-2) с использованием технологии MIDREX с производственной мощностью 1,4 миллиона тонн в год. В настоящее время производственная мощность ЛГОКа составляет 2,4 миллиона тонн ГБЖ в год.

После карьера мы посетили Оскольский электрометаллургический комбинат (ОЭМК), входящий в Металлургический сегмент компании. В одном из цехов комбината производят вот такие стальные заготовки. Их длина может достигать от 4 до 12 метров, в зависимости от желания заказчиков.

Видите сноп искр? В том месте отрезается брусок стали.

Интересная машина с ковшом, называется бадьевоз, в него сливают шлак в процессе производства.

В соседнем цехе ОЭМК обтачивают и полируют стальные пруты разного диаметра, прошедшие прокат в другом цехе. Кстати, это комбинат - седьмое по величине предприятие в России по производству стали и стальной продукции.В 2011 году доля производства стали на ОЭМК составила 5 % от общего объема стали, производимой в Роcсии, доля производства проката также составила 5%.

ОЭМК применяет передовые технологии, включая технологию прямого восстановления железа и электродуговой плавки, что обеспечивает производство металла высокого качества, с уменьшенным содержанием примесей.

Основными потребителями металлопродукции ОЭМК на российском рынке являются предприятия автомобильной, машиностроительной, трубной, метизной и подшипниковой промышленности.

Металлопродукция ОЭМК экспортируется в Германию, Францию, США, Италию, Норвегию, Турцию, Египет и многие другие страны.

Комбинатом освоено производство сортового проката для изготовления изделий, используемых ведущими мировыми автомобилестроителями, такими как Peugeot, Mercedes, Ford, Renault, Volkswagen. Из некоторых изделий делают подшипники для этих самых иномарок.

Кстати, не первый раз замечаю на подобных производствах женщин - крановщиц.

На этом заводе чуть ли не стерильная чистота, не характерная для подобных производств.

Нравятся сложенные аккуратно стальные пруты.

По требованию заказчика на каждое изделие клеится стикер.

На стикере проштамповывается номер плавки и код марки стали.

Противоположный конец может маркироваться краской, а к каждому пакету к готовыми изделиями крепятся бирки с номером контракта, страны назначения, марки стали, номера плавки, размера в миллиметрах, наименования поставщика и веса пакета.

Эти изделия - эталоны, по которым настраивается оборудование для точной прокатки.

А этот станок может просканировать изделие, и выявить микротрещины и дефекты до того, как металл попадет к заказчику.

На предприятии серьезно относятся к технике безопасности.

Вся вода, используемая в производстве очищается совсем недавно установленным суперсовременным оборудованием.

Это установка очистки сточных вод комбината. После обработки она чище, чем в реке, куда ее сбрасывают.

Вода техническая, почти дистиллированная. Как и любую техническую воду ее пить нельзя, но один раз можно попробовать, это не опасно для здоровья.

На следующий день мы поехали в Железногорск, находящийся в Курской области. Именно там находится Михайловский ГОК. На снимке - строящийся комплекс обжиговой машины №3. Здесь будут производить окатыши.

В его строительство будет инвестировано 450 млн. долларов. Предприятие будет построено и пущено в эксплуатацию в 2014 г.

Это макет комбината.

Затем мы поехали на карьер Михайловского ГОКа. Глубина карьера МГОКа - более 350 метров от поверхности земли, а его размер - 3 на 7 километров. На его территории на самом деле три карьера, это можно видеть на снимке со спутника. Один большой и два поменьше. Примерно через 3-5 лет карьер разрастется настолько, что станет одним большим единым, и возможно догонит по размерам Лебединский карьер.

В карьере задействовано 49 самосвалов, 54 тяговых агрегата, 21 тепловоз, 72 экскаватора, 17 буровых станков, 28 бульдозеров и 7 автогрейдеров.

В остальном добыча руды на МГОКе не отличается от ЛГОКа.

В этот раз нам все-таки удалось попасть на комбинат, где железнорудный концентрат превращают в конечный продукт - окатыши..
Окатыши — комочки измельчённого рудного концентрата. Полуфабрикат металлургического производства железа. Является продуктом обогащения железосодержащих руд специальными концентрирующими способами. Используется в доменном производстве для получения чугуна.

Для производства окатышей используют железорудный концентрат. Для удаления минеральных примесей исходную (сырую) руду мелко измельчают и обогащают различными способами.

Процесс изготовления окатышей часто называют «окомкование». Шихта, то есть смесь тонко измельчённых концентратов железосодержащих минералов, флюса (добавок, регулирующих состав продукта), и упрочняющих добавок (обычно это бентонитовая глина), увлажняется и подвергается окомкованию во вращающихся чашах (грануляторах) или барабанах-окомкователях. Они самые на снимке.

Подойдем поближе.

В результате окомкования получают близкие к сферическим частицы диаметром 5÷30 мм.

Довольно интересно наблюдать за процессом.

Затем окатыши по ленте направляются в корпус обжига.

Они высушиваются и обжигаются при температурах 1200÷1300° C на специальных установках — обжиговых машинах. Обжиговые машины (обычно конвейерного типа) представляют собой конвейер из обжиговых тележек (палет), которые движутся по рельсам.

Но на снимке - концентрат, который вскоре попадет в барабаны.

В верхней части обжиговой машины над обжиговыми тележками располагают отопительный горн, в котором происходит сжигание газообразного, твердого или жидкого топлива и формирование теплоносителя для сушки, нагревания и обжига окатышей. Различают обжиговые машины с охлаждением окатышей непосредственно на машине и с выносным охладителем. Этого процесса к сожалению мы не увидели.

Обожжённые окатыши приобретают высокую механическую прочность. При обжиге удаляется значительная часть сернистых загрязнений. Так выглядит готовый к употреблению продукт).

Несмотря на то, что оборудование служит с советских времен, процесс автоматизирован, и для контроля за ним не нужно большого количества персонала.