Отец и сын вместе получивших нобелевскую премию. Интересные факты о нобелевской премии. Нобелевские династии

Как получил премию самый молодой лауреат в истории, теоретическими изысканиями дополнив эксперименты своего отца, выжить в Первой мировой войне и реформировать одну из самых авторитетных лабораторий мира, рассказывает сайт в своей традиционной рубрике.

Нобелевская премия по физике 1915 года (совместно с отцом, ). Формулировка Нобелевского комитета: «За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей (For their services in the analysis of crystal structure by means of X-rays)».

Обычно, когда мы пишем о нобелевском лауреате, мы начинаем рассказ с его родителей. Но об отце нашего нынешнего героя мы написали целую статью. Как вы помните, в 1915 году в истории нобелевских премий произошло уникальное событие: награду присудили отцу и сыну, Уильяму Брэггу и Уильяму Брэггу. Точнее, Уильяму Генри Брэггу и Уильяму Лоренсу Брэггу. Сейчас речь пойдет о втором из них.

Отец и сын родились в разных странах. Точнее, тогда еще в одной – Британской империи. Но если Брэгг-отец родился в старой доброй Англии, то сын его родился уже в городе Аделаида, в Южной Австралии, где его родитель преподавал в местном университете и где он встретил свою будущую жену, Гвендолайн Тодд, дочку министра почт Южной Австралии.

С загадочными Х-лучами, принесшими Уильямам Нобелевскую премию, Брэгг-младший познакомился в возрасте всего пяти лет, через несколько недель после того, как их открыл будущий первый нобелиат по физике, Вильгельм Рентген. Отец мальчика тогда преподавал физику, еще не занимался собственными исследованиями, но следил за новинками в науке. Поэтому сразу же после открытия Рентгена он добыл себе рентгеновскую установку. Одновременно пятилетний Уильям Лоренс упал с велосипеда и сломал руку. Отец сделал рентгеновский снимок для того, чтобы посмотреть характер перелома. Так состоялось первое научное достижение отца и сына: впервые в Австралии рентген был применен в медицинских целях.

Впрочем, надо сказать, что молодой Уильям с самых ранних лет интересовался наукой и был очень талантливым учеником. Уже в 14 лет он поступил в университет Аделаиды и даже успел его окончить до того, как отец получил хорошую должность в Университете Лидса. В 1908 году юноша вместе с семьей переехал в Англию и поступил в престижнейший Тринити-колледж при Кембриджском университете.

Большой двор Тринити-колледжа

Andrew Dunn/Wikimedia Commons

В 1912 году он окончил Кембридж и сдал с отличием экзамены. Задумайтесь: физик получил Нобелевскую премию через три года после окончания университета! Вряд ли этот рекорд будет когда-то и кем-то побит.

Именно тогда юноша начал собственную исследовательскую работу под руководством нобелевского лауреата , у которого учился еще его отец. Интересно, что Томсон, воспитавший много нобелевских лауреатов, выучил не только Брэгга-отца и Брэгга-сына. Даже его собственный сын, Джордж Пэйджет Томсон, учившийся у отца, стал нобелевским лауреатом почти за то же, что и Брэгги – за дифракцию на кристаллах. Только не рентгеновских лучей, а электронов. Одно слово – школа!

В том же 1912 году, едва выпустившись из Кембриджа, Уильям Лоренс вместе с отцом начал обсуждать открытие : рентгеновские волны после прохождения кристаллов образуют дифракционную картину. Это открытие разрушило теорию отца, который считал рентген потоком частиц: дифракцию могут давать только волны.

Посвященная Максу фон Лауэ почтовая марка, на которой изображено и его открытие

Deutsche Post der DDR/Wikimedia Commons

Отец и сын стали исследовать проблему и дальше: старший - с экспериментальной точки зрения, сын уселся за уравнения. Уильям Лоуренс пришел к убеждению, что волновая интерпретация рентгеновского излучения Лауэ верна, но, в то же время, описание деталей дифракции нобелевский лауреат 1914 года уж чересчур усложнил. Уже в 1913 году юноша публикует уравнение, которое ныне называется законом Брэгга и легло в основу всего рентгеноструктурного анализа. Его формула подсказывает угол, под которым нужно направить рентгеновские лучи на кристалл, чтобы определить его структуру по дифракционной картине.

2dsinθ=nλ

Где d - межплоскостное расстояние, θ - угол скольжения (брэгговский угол), n - порядок дифракционного максимума, λ - длина волны.

Ровно через сорок лет по этой формуле сотрудники Брэгга Уотсон и Крик определят структуру двойной спирали ДНК.

Но пока что отец с сыном начали изучать кристаллы поваренной соли – и с удивлением для себя и для всей мировой науки обнаружили, что молекул поваренной соли не существует, а кристаллы состоят из ионов натрия и хлора.

В 1915 году в семье Брэггов практически одновременно случился двойной праздник и огромное горе. Отец и старший сын стали нобелевскими лауреатами по физике (впрочем, премию им вручат только в 1919 году), а вот младший сын, Роберт, погиб на фронтах Первой мировой.

Впрочем, воевал и Уильям Лоренс: он занимался акустической разведкой, вычисляя расположение вражеских батарей по звуку канонады, и, естественно, тоже постоянно находился в опасности.

Свою Нобелевскую лекцию Брэгг-младший прочитал только в 1922 году. В ней он подвел итог своей короткой пока еще научной биографии. Нужно сказать, что Уильям Лоренс Брэгг стал человеком, который прожил, кажется, самую долгую жизнь после Нобелевки. 55 лет, более полувека он жил, неся груз и славу самого молодого лауреата.

Нужно сказать, что ученый проявил себя талантливым организатором науки. После Второй мировой он вернулся в , в которой начинал работу еще у Томсона, и занялся ее реформированием. Он считал, что идеальной научной группой станет коллектив до дюжины ученых и нескольких ассистентов.

Еще одно исследование, поддержанное Брэггом – расшифровка структуры гемогломбина Максом Перутцем - тоже принесло Кавендишской лаборатории «Нобеля». Поддержал Брэгг и труды отца на ниве популяризации науки – с 1953 до выхода на пенсию в 1966 году, будучи профессором Королевского института в Лондоне, он проводил лекции с экспериментами по физике для школьников. К концу работы Брэгга-младшего на этом поприще на лекции приходили примерно двадцать тысяч ребят ежегодно.

Так что в нашем случае сын оказался достоин отца – прожил такую же длинную, важную и насыщенную в каждый момент жизнь. Лишь в одном он оказался «круче» – в 1941 году Уильям Брэгг-младший стал рыцарем. Но старый отец, которому исполнилось 79 лет, не завидовал, а радовался достижению своего сына как ребенок.

Золотая медаль Нобелевского лауреата в области химии

Отец и сын: Роджер Корнберг, лауреат 2006 года

Отец и сын: Артур Корнберг, нобелевский лауреат 1959 года

Любопытно, что среди трех получивших высшую научную награду женщин-химиков две также представляют одну семью — это Мария Склодовская-Кюри (1911, «за выдающиеся заслуги в развитии химии»), и ее дочь Ирен Жолио-Кюри (1935, «за выполненный синтез новых радиоактивных элементов»).

Из отечественных ученых Нобелевской премии по химии был удостоен только один человек — академик Николай Семенов. В 1956 году он разделил с Сирилом Норманном Хиншельвудом награду за описание механизма цепных реакций. А безусловно заслуживавший этой награды Дмитрий Иванович Менделеев так и не получил премии, хотя, когда ее начали присуждать, он был в зените славы. Нобелевский комитет решил, что от Менделеева премия и так «никуда не денется», и предпочел наградить более молодого химика.

Интересна также премия 1965 года, полученная Робертом Бернсом Вудвордом, про которого говорили, что он «продал душу дьяволу» за свой талант химика-органика. На счету Вудворда столько виртуозных органических синтезов, что Нобелевку ему присудили не за какую-то определенную работу, а по совокупности — «за выдающийся вклад в искусство органического синтеза». Среди всех вердиктов Нобелевского комитета по химии, пожалуй, нет более элегантного.

Знаменитый физик Уильям Генри Брэгг родился в Англии в 1862 г. в семье моряка. В 1884 г. он окончил Кембриджский университет и вскоре стал профессором физики и математики в университете Южной Австралии. Там – в Австралии – родился его сын Уильям Лоренс Брэгг, которому было суждено, вместе с отцом, стать гордостью Англии, вписать славные страницы в историю английской и мировой науки. Блестящие способности позволили Вилли (так звали его в семье) с отличием закончить Аделаидский университет уже в 1908 г. А через год семья переехала в Англию, где У.Г.Брэгг преподавал и вел научные исследования в Лидсе, а УЛ.Брэгг завершал свое образование в Кембридже.

В июне 1912 г. молодой Уильям Лоренс приехал на каникулы в Лидс. В это время вышла статья Макса Лауэ о дифракции Х-лучей на кристаллах. Отец и сын Брэгг многократно обсуждали статью (она опровергала некоторые научные гипотезы У.Г.Брэгга). Чтобы точнее представить ход событий, следствием которых явилось рождение рентгеноструктурного анализа, процитируем воспоминания У.Л.Брэгга, записанные им полвека спустя: "По возвращении в Кембридж я продолжал изучать результаты Лауэ и убедился, что особенности дифракционной картины объясняются схемой расположения атомов в кристалле ZnS, который использовал Лауэ. Свою первую работу по дифракции ZnS я изложил на заседании Кембриджского философского общества в ноябре 1912 г. В ней я показал, что в основе "цинковой обманки" (так называется минерал состава ZnS, другое название этого минерала – сфалерит) лежит кубическая гранецентрированная решетка. Это был первый, хотя и неполный анализ кристалла с помощью Х-лучей".

Таким образом, именно Брэгг-младший сделал первый решительный шаг к познанию структуры кристалла, и было ему тогда 22 года. Вскоре и Брэгг-отец проявил немалый интерес к изучению кристаллических структур. Он сконструировал для этой цели специальный прибор – ионизационный спектрометр, конструкция которого в основе своей предвосхищала прибор для рентгенострукурного анализа – автоматический дифрактометр. В качестве первых объектов были выбраны NaCI, KCI, KBr, алмаз, ZnS (сфалерит). " Спектрометр X-лучей, вспоминал в последствии У.Л.Брэгг, – открыл новый мир. Он оказался более мощным средством анализа кристаллической структуры, чем фотографии Лауэ... Это было подобно золотой россыпи с разбросанными самородками, ожидающими, чтобы их подобрали. На этом этапе отец и я объединили силы и неистово работали все лето 1913 года... Это было восхитительное время, когда мы трудились ежедневно до глубокой ночи, изучая новые миры, которые раскрывались перед нами в безмолвной лаборатории".

В 1915 г. увидела свет первая монография У.Г.Брэгга и У.Л.Брэгга, посвященная рентгеноструктурному анализу, в которой было описано строение 33 веществ. В том же году отец и сын Брэгги были удостоены Нобелевской премии, причем Брэгг-сын стал самым молодым Нобелевским лауреатом за всю историю присуждения этих престижных премий в XX веке.

Вскоре к определению кристаллических структур подключилась большая группа исследователей из разных стран, но Брэгги – основоположники рентгеноструктурного анализа – еще долгие годы оставались лидерами этого важнейшего научного направления.

Уильям Генри Брэгг возглавил группу исследователей, изучавших строение органических кристаллов в Лондонском Королевском институте; с 1923 г. по 1942 г. (до конца своих дней) он занимал почетную должность директора этого института; впоследствии, с 1953 г. по 1966 г. главой Королевского института был Брэгг-младший.

Накопление и анализ сведений о строении кристаллов в 1920 г. привели Уильяма Лоренса Брэгга к созданию первой таблицы атомных радиусов, и хотя эта таблица вскоре была пересмотрена (это сделали немецкий ученый Виктор Гольдшмидт и величайший химик XX века американец Лайнус Полинг), именно это исследование заложило основы новой науки – кристаллохимии.

В конце 20-х годов в университете Манчестера У.Л. Брэгг и его ученики выполнили цикл классических работ по определению структуры силикатов. Исследование этих структур стало триумфом рентгеноструктурного анализа и кристаллохимии. Силикаты – один из важнейших классов неорганических химических соединений. Они составляют основу Земной коры, они широко используются в технике. Естественно, многие химики пытались разобраться в структурах силикатов, но все без исключения теории строения этих веществ оказались ошибочными. Развитая У.Л.Брэггом концепция, согласно которой разнообразие силикатов определяется различием способов сочленения тетраэдров SiO 4 (и тетраэдров АlO 4 в случае алюмосиликатов), и поныне составляет основу этой обширной области химии и геохимии.

Создание рентгеноструктурного анализа и развитие кристаллохимии силикатов к середине 30-х годов принесли У.Л. Брэггу всемирную славу; он стал бесспорным лидером кристаллографов и кристаллохимиков всего мира, и когда в 1948 г. по его инициативе был создан Международный союз кристаллографов, и поныне остающийся одним из крупнейших научных сообществ, У.Л. Брэгг стал его первым президентом.

Но впереди у него еще был долгий путь, длинная цепь успехов, завоеванных ярким талантом и самоотверженным трудом. В 1938-53 гг., возглавляя знаменитую Кавендишевскую лабораторию, он осуществил многочисленные исследования по кристаллохимии металлов и сплавов, а затем, переехав из Кембриджа в Лондон, принял участие в работах по изучению структуры белков, явившихся одной из самых ярких страниц истории естествознания.

Диапазон научных интересов и достижений этого уникального человека поистине поражает. Силикаты, металлы, белки... И в каждом из столь различных классов химических веществ – весомые, основополагающие структурные данные. Точное знание структуры – знаменательная черта современной химии, и следовательно, Уильяма Лоренса Брэгга можно по праву причислить к числу ее творцов. К тому же он был одним из основоположников кристаллохимии – науки о строении вещества, базирующейся на результатах рентгеноструктурного анализа.

А между тем, ни в одной из своих работ У.Л. Брэгг не употребил термина "кристаллохимия". Он не считал себя химиком. Напротив – часто подчеркивал свою принадлежность к славной когорте физиков XX века. Разумеется, он имел для этого основания. Нобелевская премия по физике ознаменовала создание одного из самых мощных физических методов изучения вещества. Однако химичны по своей сути результаты, получаемые с помощью этого метода – такие, как постройки из тетраэдров SiO 4 в силикатах (см. рисунок), плотнейшие шаровые упаковки в металлах, частично неупорядоченная структура сплавов и их трансформация в интерметаллические химические соединения и, наконец, фантастически сложное строение белков (У.Л.Брэгг одним из первых описал его в своей знаменитой статье "Молекулы-гиганты"). Невозможно представить себе современную химию без этих сведений.

Согласимся с У-Л.Брэггом – конечно, он физик, как и его отец. Но и химик тоже – великий химик.

У.Л.Брэгг был блестящим педагогом, талантливым популяризатором науки, занимался проблемой организации научных исследований. В одной из статей, посвященных этой проблеме, он отмечал, что ученых можно подразделить на четыре типа: мыслителей – тех, "кто находит новый взгляд на явление" (Ньютон, Бор и др.), первооткрывателей , обнаруживших не известное ранее явление, но "редко идущих к новым достижениям" (например, Рентген), охотников – "чующих истину" (Фарадей, Резерфорд и др.), и конструкторов – создающих аппаратуру, которая открывает совершенно новый путь научного исследования (например, Вильсон).

Брэгг говорил о физиках, но аналогичная типология приложима и к химикам, и к другим естествоиспытателям. Затруднительно, однако, сколько-нибудь уверенно отнести к одному из этих типов самого Брэгга-младшего. Он отличился и как мыслитель, и как первооткрыватель, и как охотник. Он не претендовал, пожалуй, лишь на лавры конструктора. В этом отношении он не захотел конкурировать со своим отцом – создателем рентгеновского дифрактометра.

Роджер Корнберг. По стопам отца

Николай Мельников

Лауреатов Нобелевской премии в мире немало, и каждый год их список пополняется всё новыми и новыми фамилиями. Однако династия обладателей самой престижной научной премии мира – дело совсем иное.

Отец и сын Корнберги.

Среди таких кланов можно назвать, пожалуй, лауреатов премии по физике Нильса Бора и его сына Оге Нильса, семейную чету Пьера и Марии Кюри и их дочь Ирен Жолио-Кюри, разделившую премию по химии со своим мужем Фредериком Жолио, и шведских физиков Карла Манне Сигбана и его сына Кая. В этом году, когда в Стокгольме среди новых лауреатов было названо имя Роджера Дэвида Корнберга, получившего Нобелевскую премию в области химии «за исследование механизма копирования клетками генетической информации», таких семей стало на одну больше.

Роджер Корнберг, член Национальной академии наук США и американской Академии искусств и наук, – сын Артура Корнберга, который сорок семь лет назад тоже удостоился чести произносить речь с «нобелевской» трибуны, и внук Джозефа Корнберга и Лены Кац, приехавших в 1900 году в Америку из Австрийской Галиции (ныне территория Польши). Роджер родился в 1947 году в США, в городе Сент-Луисе, штат Миссури, в 1967 году окончил Гарвардский университет со степенью бакалавра, а спустя еще пять лет стал доктором биохимии в Станфорде. Некоторое время Корнберг-младший занимался научными исследованиями в Великобритании, в лаборатории при Кембриджском университете, а затем вернулся в Соединенные Штаты и получил место доцента в военно-медицинской школе Гарвардского университета. В 1978 году он вернулся в родной Станфорд, где работает до сих пор, но уже в качестве профессора структурной биологии.

Самое интересное, что отец и сын Корнберги в разное время исследовали практически один и тот же процесс: функционирование молекул ДНК и РНК. Но Артур Корнберг изучал механизмы синтеза носителей наследственной информации, а Роджер, вооруженный куда более совершенным инструментарием, умудрился сделать эту биохимию видимой. Его премия относится к достаточно распространенной в последние годы категории «инженерных», когда Шведская королевская академия отмечает не столько очередной прорыв человеческой мысли, сколько достижения в прикладных или экспериментальных исследованиях. Сделать генетику видимой в принципе, как показал опыт, было возможно, но процесс требовал столь тщательной проработки всех деталей эксперимента, что результаты можно было получить лишь через много лет кропотливого каждодневного труда. Многие ученые брались за эту тему, но качественных фотографий работающей ДНК добилась лишь команда терпеливого Корнберга, убившего десяток лет на настройку техники, – остальные отступились гораздо раньше.

Этот год, такой урожайный на «Нобелевки» для Америки, знаменателен еще и тем, что впервые в этом веке премию в области естественных наук получил один человек. Традиционно они делятся надвое или даже натрое – ведь каждое подобное открытие является результатом либо совместных трудов, либо параллельной работы нескольких ученых в разных научных центрах. Однако на этот раз всё оказалось иначе: у Корнберга в его работе не было ни конкурентов, ни коллег – подобные старательность и терпение встречаются даже реже, чем самый редкий талант теоретика.

В 1959 году Роджер Корнберг уже присутствовал на церемонии награждения нобелевских лауреатов – ему было тогда двенадцать, а традиционные диплом и золотую медаль из рук короля Швеции принимал его отец. 10 декабря этого года он снова окажется в главном концертном зале Стокгольма. Но на этот раз – в рядах победителей. И его голос прозвучит со знаменитой «нобелевской» трибуны.

Ежемесячный литературно-публицистический журнал и издательство.