Планетарная модель атома своими руками. Планетарная модель атома: опыт Резерфорда

Первая модель строения атома была предложена Дж. Томсоном в 1904 г., согласно которой атом – положительно заряженная сфера с вкрапленными в нее электронами. Несмотря на свое несовершенство томсоновская модель позволяла объяснить явления испускания, поглощения и рассеяния света атомами, а также установить число электронов в атомах легких элементов.

Рис. 1. Атом, согласно модели Томсона. Электроны удерживаются внутри положительно заряженной сферы упругими силами. Те из них, которые находятся на поверхности, могут легко «выбиваться» , оставляя ионизированный атом.

    1. 2.2 Модель Резерфорда

Модель Томсона была опровергнута Э. Резерфордом (1911 г.), который доказал, что положительный заряд и практически вся масса атома сконцентрированы в малой части его объема – ядре, вокруг которого двигаются электроны (рис. 2).

Рис. 2. Эта модель строения атома известна как планетарная, т. к. электроны вращаются вокруг ядра подобно планетам солнечной системы.

Согласно законам классической электродинамики, движение электрона по окружности вокруг ядра будет устойчивым, если сила кулоновского притяжения будет равна центробежной силе. Однако, в соответствии с теорией электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро. Однако атом устойчив.

К тому же при непрерывном излучении энергии у атома должен наблюдаться непрерывный, сплошной спектр. На самом деле спектр атома состоит из отдельных линий и серий.

Таким образом, данная модель противоречит законам электродинамики и не объясняет линейчатого характера атомного спектра.

2.3. Модель Бора

В 1913 г. Н. Бор предложил свою теорию строения атома, не отрицая при этом полностью предыдущие представления. В основу своей теории Бор положил два постулата.

Первый постулат говорит о том, что электрон может вращаться вокруг ядра только по определенным стационарным орбитам. Находясь на них, он не излучает и не поглощает энергию (рис.3).

Рис. 3. Модель строения атома Бора. Изменение состояния атома при переходе электрона с одной орбиты на другую.

При движении по любой стационарной орбите запас энергии электрона (Е 1, Е 2 …) остается постоянным. Чем ближе к ядру расположена орбита, тем меньше запас энергии электрона Е 1 ˂ Е 2 …˂ Е n . Энергия электрона на орбитах определяется уравнением:

где m – масса электрона, h – постоянная Планка, n – 1, 2, 3… (n=1 для 1-ой орбиты, n=2 для 2-ой и т.д.).

Второй постулат говорит о том, что при переходе с одной орбиты на другую электрон поглощает или выделяет квант (порцию) энергии.

Если подвергнуть атомы воздействию (нагреванию, облучению и др.), то электрон может поглотить квант энергии и перейти на более удаленную от ядра орбиту (рис. 3). В этом случае говорят о возбужденном состоянии атома. При обратом переходе электрона (на более близкую к ядру орбиту) энергия выделяется в виде кванта лучистой энергии – фотона. В спектре это фиксируется определенной линией. На основании формулы

,

где λ – длина волны, n = квантовые числа, характеризующие ближнюю и дальнюю орбиты, Бор рассчитал длины волн для всех серий в спектре атома водорода. Полученные результаты соответствовали экспериментальным данным. Стало ясным происхождение прерывистых линейчатых спектров. Они – результат излучения энергии атомами при переходе электронов из возбужденного состояния в стационарное. Переходы электронов на 1-ю орбиту образуют группу частот серии Лаймана, на 2-ю – серию Бальмера, на 3-ю серию Пашена (рис. 4,табл. 1).

Рис. 4. Соответствие между электронными переходами и спектральными линиями атома водорода.

Таблица 1

Проверка формулы Бора для серий водородного спектра

Однако, теория Бора не смогла объяснить расщепление линий в спектрах многоэлектронных атомов. Бор исходил из того, что электрон – это частица, и использовал для описания электрона законы, характерные для частиц. Вместе с тем накапливались факты, свидетельствующие о том, что электрон способен проявлять и волновые свойства. Классическая механика оказалась не в состоянии объяснить движение микрообъектов, обладающих одновременно свойствами материальных частиц и свойствами волны. Эту задачу позволила решить квантовая механика – физическая теория, исследующая общие закономерности движения и взаимодействия микрочастиц, обладающих очень малой массой (табл. 2).

Таблица 2

Свойства элементарных частиц, образующих атом

Исторические модели1 атома отражают уровни знаний, соответствующие опреде­лённому периоду развития науки.

Первый этап развития моделей атома характеризовался отсутствием экспериментальных данных о его строении.

Объясняя явления микромира, учёные искали аналогии в макромире, опираясь на законы класси­ческой механики.

Дж. Дальтон – создатель химической атомистики (1803 г.), предполагал, что атомы одного и того же химического элемента представляют собой одинаковые шарообразные мельчайшие, а следовательно, неделимые частицы.

Французский физик Жан Батист Перрен (1901 г.) предложил модель, фактически предвосхитившую "плане­тарную" модель. Согласно этой модели в центре атома расположено положительно заряженное ядро, вокруг которо­го движутся по определённым орбитам, как планеты вокруг Солнца, отрицательно заряженные электроны. Модель Перрена не привлекла внимания учёных, так как давала только ка­чественную, но не количественную характеристику атома (на рис. 7 это показано несоответствием заряда ядра атома числу элек­тронов).

В 1902 г. английский физик Уильям Томсон (Кельвин) разработал представле­ние об атоме как о положительно заряженной сферической частице, внутри которой совершают колебания (излучая и поглощая энергию) отрицательно заряженные электроны. Кельвин обратил внима­ние на то, что число электронов равно положительному заряду сферы, поэтому в целом атом не имеет электрического заряда (рис. 7).

Годом позже немецкий физик Филипп Ленард предложил модель, согласно которой атом – полая сфера, внутри которой находят­ся электрические диполи (динамиды). Объём, занимаемый этими диполями, значительно меньше объёма сферы, и основная часть атома оказывается незаполненной.

По представлениям японского физика Гонтаро (Хантаро) Нагаоки (1904 г.), в центре атома находится положительно заряженное ядро, а электроны движутся в пространстве вокруг ядра в плоских кольцах, напоминающих кольца планеты Сатурн (эта модель называлась "сатурнианским" атомом). Большинство учёных не об­ратили внимания на идеи Нагаоки, хотя они в какой-то мере перекли­каются с современным представлением об атомной орбитали.

Ни одна из рассмотренных моделей (рис. 7) не объясняла, каким образом свойства химических элементов связаны со строением их атомов.

Рис. 7. Некоторые исторические модели атома

В 1907 г. Дж. Дж. Томсон предложил статическую модель строения атома, представлявшую атом как заряженную положительным электричеством шарообразную частицу, в которой равномерно распределены отрицательно заряженные электроны (модель "пудинга ", рис. 7).

Математичес­кие расчёты показали, что электроны в атоме должны находиться на концентри­чески расположенных кольцах. Томсон сделал весьма важный вывод: причина периодического изменения свойств химических элементов связана с осо­бенностями электронного строения их атомов. Благодаря этому, модель атома Томсона была высоко оценена современниками. Однако она не объясняла некоторых явлений, например, рассеяния α-частиц при прохождении их через металлическую пластину.

На основании своих представлений об атоме Томсон вывел формулу для рас­чёта среднего отклонения α-частиц, и этот расчёт показал, что вероятность рассеяния таких частиц под большими углами близка к нулю. Однако экспе­риментально было доказано, что приблизительно одна из восьми тысяч падающих на золотую фольгу α-частиц отклоняется на угол больше 90°. Это противоречило модели Томсона, которая предполагала отклонения только на малые углы.

Эрнест Резерфорд, обобщая экспериментальные данные, в 1911 г. предложил "планетарную" (её иногда называют "ядерной") модель строения атома, согласно которой 99,9 % массы атома и его положительный заряд сосредоточены в очень маленьком ядре, а отрицательно заряженныеэлектроны, число которых равно заряду ядра, вращаются вокруг него, подобно планетам Солнечной системы1 (рис. 7).

Резерфорд вместе со своими учениками поставил опыты, позволившие исследовать строение атома (рис. 8). На поверхность тонкой металлической (золотой) фольги 2 от источника радиоактивного излучения 1 направлялся поток положительно заряженных частиц (α-частицы). На их пути был установлен флуоресцирующий экран 3, позволяющий наблюдать за направлением дальнейшего движения α-частиц.

Рис. 8. Опыт Резерфорда

Было установлено, что большинство α-частиц проходило сквозь фольгу, практически не меняя своего направления. Лишь отдельные частицы (в среднем одна из десяти тысяч) отклонялись и летели почти в обратном направлении. Был сделан вывод, что бóльшая часть массы атома сосредоточена в положительно заряженном ядре, поэтому α-частицы так сильно отклоняются (рис. 9).

Рис. 9. Рассеивание α-частиц атомным ядром

Движущиеся в атоме электроны в соответствии с законами электромагнетизма должны излучать энергию и, теряя её, притягиваться к противоположно заряженному ядру и, следовательно, "падать" на него. Это должно приводить к ис­чезновению атома, но так как этого не происходило, был сделан вывод о неадекватности этой модели.

В начале XX века немецкими физиком Максом Планком и физиком-теоретиком Альбертом Эйнштейном была создана квантовая теория света. Согласно этой теории лучистая энергия, например свет, испускается и поглощается не непрерывно, а отдельными порциями (квантами). При­чём величина кванта энергии неодинакова для разных излуче­ний и пропорциональна частоте колебаний электромагнитной волны: Е = hν, гдеhпо­стоянная Планка, равная 6,6266·10 –34 Дж·с, ν – частота излучения. Эту энергию несут частицы света – фотоны .

Пытаясь искусственно соединить зако­ны классической механики и квантовой теории, датский физик Нильс Бор в 1913 г. дополнил модель атома Резерфорда двумя постулатами о скачкообразном (дискретном) изменении энергии электронов в атоме. Бор считал, что электрон в атоме водорода может находиться лишь на впол­не определённых стационарных орбитах , радиусы которых отно­сятся друг к другу как квадраты натуральных чисел (1 2: 2 2: 3 2: ... : п 2 ). Электро­ны движутся вокруг атомного ядра по стационарным орбитам. Атом пребывает в устойчивом состоянии, не поглощая и не излучая энергию, – это первый постулат Бора. Согласно второму постулату излучение энергии происходит только при переходе электрона на более близкую к атомному ядру орбиту. При переходе электрона на более отдалённую орби­ту энергия атомом поглощается. Эта модель была усовершенствована в 1916 г. немецким физиком-теоретиком Арнольдом Зоммерфельдом, указавшим на движение электронов по эллиптическим орбитам .

Планетарная модель, благодаря своей наглядности и постулатам Бора, долгое время использовалась для объяснения атомно-молекулярных явлений. Однако оказалось, что движение электрона в атоме, устойчивость и свойства атома, в отличие от движения планет и устойчивости Солнечной системы, нельзя опи­сать законами классической механики. В основе этой механики лежат законы Ньютона, и предметом её изучения является движение макроскопических тел, совершаемое со скоростями, малыми по сравнению со скоростью света. Для описания строения атома необходимо применять представления квантовой (волновой) механики о двойственной корпускулярно-волновой природе микрочастиц, которые сформулировали в 1920-е годы физики-теоретики: француз Луи де Бройль, немцы Вернер Гейзенберг и Эрвин Шрёдингер, англичанин Поль Дирак и др.

В 1924 году Луи де Бройль выдвинул гипотезу о наличии у электрона волновых свойств (первый принцип квантовой механики) и предложил формулу для вычисления его длины волны. Стабильность атома объясняется тем, что электроны в нём движутся не по орбитам, а в неких областях пространства вокруг ядра, называе­мых атомными орбиталями. Электрон занимает практически весь объём атома и не может "упасть на ядро", находящееся в его центре.

В 1926 году Шрёдингер, продолжая развитие идей Л. де Бройля о волно­вых свойствах электрона, эмпирически подобрал математическое уравнение, похожее на уравне­ние колебания струны, с помощью которого можно вычислять энергии связи элек­трона в атоме на разных энергетических уровнях. Это уравнение стало основным уравне­нием квантовой механики.

Открытие волновых свойств электрона показало, что распространение знаний о макромире на объекты микромира неправомерно. В 1927 г. Гейзенберг установил, что невозможно определить точное положение в пространстве электрона, имеющего определённую ско­рость, поэтому представления о движении электрона в атоме носят ве­роятностный характер (второй принцип квантовой механики).

Квантово-механическая модель атома (1926 г.) описывает состояние атома посредством математических функций и не имеет геометричес­кого выражения (рис. 10). В такой модели не рассматриваются динамический характер устройства атома и вопрос о размере электрона как частицы. Считается, что электроны занимают определённые энергетические уровни и излучают или поглощают энергию при переходах на другие уровни. На рис. 10 энергетические уровни изобра­жены схематически в виде концентрических колец, расположенных на разных расстояниях от атомного ядра. Стрелками показаны переходы электронов между энергетическими уровнями и излучение фотонов, сопровождающих эти переходы. Схема показана качественно и не отражает реальных расстояний между энергетическими уровнями, которые могут отличаться между собой в десятки раз.

В 1931 году американским учёным Гилбертом Уайтом впервые были предложены гра­фическое представление атомных орбиталей и "орбитальная" модель атома (рис. 10). Модели атомных орбиталей используются для отражения понятия "электронная плотность" и демонстрации распределения отрицательного заряда вокруг ядра в атоме или системы атомных ядер в молекуле.


Рис. 10. Исторические и современные модели атома

В 1963 году американский художник, скульптор и инженер Кеннет Снельсон предложил "кольцегранную модель" электронных оболочек атома (рис. 10), которая объясняет количественное распределение электронов в атоме по устойчивым электронным оболочкам. Каждый электрон моделируется кольцевым ма­гнитом (или замкнутым контуром с электрическим током, имеющим магнитный момент). Кольцевые магниты притягиваются друг к другу и образуют симметрич­ные фигуры из колец – кольцегранники . Наличие у магнитов двух полюсов накладывает ограничение на возможные варианты сборки кольцегранников. Модели устойчивых электронных оболочек – это наиболее симметричные фигуры из колец, составленные с учётом наличия у них магнитных свойств.

Наличие у электрона спина (см. раздел 5) является одной их основ­ных причин образования в атоме устойчивых электронных оболочек. Электроны образуют пары с противоположными спинами. Кольцегранная модель электронной пары, или заполненной атомной орбитали, – это два кольца, расположенных в параллельных плоскостях с противоположных сторон от атомного ядра. При расположении около ядра атома более одной пары электронов кольца-электро­ны вынужденно взаимно ориентируются, образуя электронную оболочку. При этом близко распо­ложенные кольца имеют разные направления магнитных силовых линий, что обозначается разным цветом колец, изображающих электроны.

Модель­ный эксперимент показывает, что самой устойчивой из всех возможных кольцегранных моделей является модель из 8 колец. Геометрически модель образована таким образом, как будто атом в виде сферы поделили на 8 частей (трижды разделив пополам) и в каждую часть поместили по одному кольцу-электрону. В кольцегранных моделях используют кольца двух цветов: красного и синего, которые отражают положительное и отрицательное значение спина электрона.

"Волногранная модель" (рис. 10) похожа на "кольцегранную" с тем отличием, что каж­дый электрон атома представлен "волновым" кольцом, которое содержит целое число волн (как это было предложено Л. де Бройлем).

Взаимо­действие электронов электронной оболочки на этой модели атома показано совпадением точек контакта синих и красных "волновых" колец с узлами стоячих волн.

Модели атома имеют право на существование и границы применения. Всякая модель атома – это прибли­жение, отражающее в упрощённой форме определённую часть знаний об атоме. Но ни одна из моделей не от­ражает полностью свойств атома или его составляющих частиц.

Многие модели сегодня представляют только исторический интерес. При построении моде­лей объектов микромира учёные опирались на то, что можно непо­средственно наблюдать. Так появились модели Перрена и Резерфор­да (аналогия со строением Солнечной системы), Нагаоки (некое подобие планеты Сатурн), Томсона ("пудинг с изюмом"). Некоторые идеи были отброшены (динамичная модель Ленарда), к другим через некоторое время вновь обращались, но уже на новом, более высоком теоретическом уровне: модели Перрена и Кельвина получили развитие в моделях Резерфорда и Томсона. Представления о строении атома постоянно совер­шенствуются. Насколько точ­на современная – "квантово-механическая" модель – покажет время. Именно поэтому в верхней части спирали, символизирующей путь познания, нарисован вопро­сительный знак (рис. 7).

Лекция: Планетарная модель атома

Строение атома


Наиболее точный способ определения структуры любого вещества - это спектральный анализ. Излучение у каждого атома элемента исключительно индивидуальное. Однако, прежде, чем понять, каким образом происходит спектральный анализ, разберемся, какую структуру имеет атом любого элемента.


Первое предположение о строении атома было представлено Дж. Томсоном. Этот ученый длительное время занимался изучением атомов. Более того, именно ему принадлежит открытие электрона - за что он и получил Нобелевскую премию. Модель, что предложил Томсон, не имела ничего общего с действительностью, однако послужила достаточно сильным стимулом в изучении строения атома Резерфордом. Модель, предложенная Томсоном, называлась "пудингом с изюмом".

Томсон считал, что атом является сплошным шаром, имеющим отрицательный электрический заряд. Для его компенсации в шар вкраплены электроны, как изюминки. В сумме заряд электронов совпадает с зарядом всего ядра, что делает атом нейтральным.

ВО время изучения строения атома выяснили, что все атомы в твердых телах совершают колебательные движения. А, как известно, любая двигающаяся частица излучает волны. Именно поэтому каждый атом имеет свой собственный спектр. Однако данные утверждения никак не вкладывались в модель Томсона.

Опыт Резерфорда


Чтобы подтвердить или опровергнуть модель Томсона, Резерфордом был предложен опыт, в результате которого происходила бомбардировка атома некоторого элемента альфа-частицами. В результате данного эксперимента было важно увидеть, как будет вести себя частица.


Альфа частицы были открыты в результате радиоактивного распада радия. Их потоки представляли собой альфа-лучи, каждая частица которых имела положительный заряд. В результате многочисленных изучений было определено, что альфа-частица походит на атом гелия, в котором отсутствуют электроны. Используя нынешние знания, мы знаем, что альфа частица - это ядро гелия, в то время Резерфорд считал, что это были ионы гелия.


Каждая альфа-частица имела огромную энергию, в результате чего она могла лететь на рассматриваемые атомы с высокой скоростью. Поэтому основным результатом эксперимента являлось определение угла отклонения частицы.


Для проведения опыта Резерфорд использовал тонкую фольгу из золота. На нее он направлял высокоскоростные альфа-частицы. Он предполагал, что в результате данного эксперимента все частицы будут пролетать сквозь фольгу, причем с небольшими отклонениями. Однако, чтобы выяснить это наверняка, он поручил своим ученикам проверить, нет ли больших отклонений у данных частиц.


Результат эксперимента удивил абсолютно всех, ведь очень многие частицы не просто отклонились на достаточно большой угол - некоторые углы отклонения достигали более 90 градусов.


Данные результаты удивили абсолютно всех, Резерфорд говорил, что такое чувство, будто на пути снарядов был поставлен листок бумаги, который не дал альфа-частице проникнуть во внутрь, в результате чего, она повернулась обратно.


Если бы атом действительно был сплошным, то он должен был иметь некоторое электрическое поле, которое затормаживало частицу. Однако, сила поля была недостаточной, чтобы остановить её полностью, а уж тем более отбросить обратно. А это значит, что модель Томсона была опровергнута. Поэтому Резерфорд начал работать над новой моделью.


Модель Резерфорда

Чтобы получить такой результат эксперимента, необходимо сосредоточить положительный заряд в меньшем размере, в результате чего получится большее электрическое поле. По формуле потенциала поля можно определить необходимый размер положительной частицы, которая смогла бы оттолкнуть альфа-частицу в противоположном направлении. Радиус её должен быть порядка максимум 10 -15 м . Именно поэтому Резерфорд предложил планетарную модель атома.


Данная модель названа так неспроста. Дело в том, что внутри атома имеется положительно заряженное ядро, подобное Солнцу в Солнечной системе. Вокруг ядра, как планеты вращаются электроны. Солнечная система устроена таким образом, что планеты притягиваются к Солнцу с помощью гравитационных сил, однако, они не падают на поверхность Солнца в результате имеющейся скорости, которая держит их на своей орбите. То же самое происходит и с электронами - кулоновские силы притягивают электроны к ядру, но за счет вращения они не падают на поверхность ядра.


Одно предположение Томсона оказалось абсолютно верно - суммарный заряд электронов соответствует заряду ядра. Однако в результате сильного взаимодействия электроны могут быть выбиты со своей орбиты, в результате чего заряд не компенсируется и атом превращается в положительно заряженный ион.


Очень важной информации относительно строения атома является то, что практически вся масса атома сосредоточена в ядре. Например, у атома водорода имеется всего один электрон, чья масса более, чем в полторы тысячи раз меньше, чем масса ядра.




Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Резерфорд предложил в 1906 г. применить зондирование атома с помощьюα -частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость α -частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α -частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не в состоянии заметно изменить его скорость. Рассеяние (изменение направления движения) α -частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α -частиц можно определить характер распределения положительного заряда и массы внутри атома.

Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок α -частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.). После рассеяния α -частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4. Весь прибор размещался в сосуде, из которого был откачан воздух.

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α -частиц. Но когда на пути пучка помещали фольгу, α -частицы из-за рассеяния распределялись на экране по кружку большей площади. Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α -частиц на большие углы. Совершенно неожиданно оказалось, что небольшое число α -частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°. Позднее Резерфорд признался, что, предложив своим ученикам эксперимент по наблюдению рассеяния α -частиц на большие углы, он сам не верил в положительный результат. «Это почти столь же невероятно, - говорил Резерфорд, - как если бы вы выстрелили 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанес вам удар». В самом деле, предвидеть этот результат на основе модели Томсона было нельзя. При распределении по всему атому положительный заряд не может создать достаточно интенсивное электрическое поле, способное отбросить а-частицу назад. Максимальная сила отталкивания определяется по закону Кулона:

где q α - заряд α -частицы; q - положительный заряд атома; r - его радиус; k - коэффициент пропорциональности. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Поэтому, чем меньше радиус r, тем больше сила, отталкивающаяα -частицы.

Определение размеров атомного ядра. Резерфорд понял, что α -частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к идее атомного ядра - тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.

Планетарная модель атома , или модель Резерфорда , - историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики. Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга»Джозефа Джона Томсона, которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.

Планетарная модель атома

Планетарная модель атома: ядро (красное) и электроны (зелёные)

Планетарная модель атома , или модель Резерфорда , - историческая модель строения атома , которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц . По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны , - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики . Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга » Джозефа Джона Томсона , которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.

Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеянию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10 -10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе.

Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро. Следующим шагом в развитии планетарной модели стала модель Бора , постулирующая другие, отличные от классических, законы движения электронов. Полностью противоречия электродинамики смогла решить квантовая механика .


Wikimedia Foundation . 2010 .

  • Планетарий Эйсе Эйсинги
  • Планетарная фантастика

Смотреть что такое "Планетарная модель атома" в других словарях:

    планетарная модель атома - planetinis atomo modelis statusas T sritis fizika atitikmenys: angl. planetary atom model vok. Planetenmodell des Atoms, n rus. планетарная модель атома, f pranc. modèle planétaire de l’atome, m … Fizikos terminų žodynas

    Боровская модель атома - Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

    Модель (в науке) - Модель (франц. modèle, итал. modello, от лат. modulus мера, мерило, образец, норма), 1) образец, служащий эталоном (стандартом) для серийного ли массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого либо… …

    Модель - I Модель (Model) Вальтер (24.1.1891, Гентин, Восточная Пруссия, 21.4.1945, близ Дуйсбурга), немецко фашистский генерал фельдмаршал (1944). В армии с 1909, участвовал в 1 й мировой войне 1914 18. С ноября 1940 командовал 3 й танковой… … Большая советская энциклопедия

    СТРОЕНИЕ АТОМА - (см.) построен из элементарных частиц трёх видов (см.), (см.) и (см.), образующих устойчивую систему. Протон и нейтрон входят в состав атомного (см.), электроны образуют электронную оболочку. В ядре действуют силы (см.), благодаря которым… … Большая политехническая энциклопедия

    Атом - У этого термина существуют и другие значения, см. Атом (значения). Атом гелия Атом (от др. греч … Википедия

    Резерфорд Эрнест - (1871 1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член корреспондент РАН (1922) и почетный член АН СССР (1925). Родился в Новой Зеландии, после окончания… … Энциклопедический словарь

    Άτομο

    Корпускул - Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

    Корпускулы - Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

Книги