Звуковой резонанс и интерференция звука. Резонанс в природе и технике вред и польза

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний - катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.

Кстати! Для наших читателей сейчас действует скидка 10% на

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний - это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) - это количество колебаний в единицу времени. 1 Герц - это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.

Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Примеры резонанса

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся - круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.

Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от до курсовой по физике колебаний или эссе по литературе.

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Каждый из вас знаком с таким звуковым явлением, как эхо. Эхо образуется в результате отражения звука от различных преград - стен большого пустого помещения, леса, сводов высокой арки в здании (рис. 81).

Рис. 81. Отражение звуковых волн

Но почему мы не слышим эха в небольшой квартире? Ведь и в ней звук должен отражаться от стен, потолка, пола.

Оказывается, эхо слышно лишь в том случае, когда отражённый звук воспринимается отдельно от произнесённого. Для этого нужно, чтобы промежуток времени между воздействием этих двух звуков на барабанную перепонку уха составлял не менее 0,06 с.

Определим, через какое время после произнесённого вами короткого возгласа отражённый от стены звук достигнет вашего уха, если вы стоите на расстоянии 3 м от этой стены.

Звук должен пройти расстояние до стены и обратно, т. е. 6 м, распространяясь со скоростью 340 м/с. На это потребуется время t = s/v, т.е.

В данном случае интервал между двумя воспринимаемыми вами звуками - произнесённым и отражённым - значительно меньше того, который необходим, чтобы услышать эхо. Кроме того, образованию эха в комнате препятствует находящаяся в ней мебель, шторы и другие предметы, частично поглощающие отражённый звук. Поэтому в таком помещении речь людей и другие звуки не искажаются эхом и звучат чётко и разборчиво.

Большие полупустые помещения с гладкими стенами, полом и потолком обладают свойством очень хорошо отражать звуковые волны. В таком помещении благодаря набеганию предшествующих звуковых волн на последующие получается наложение звуков, и образуется гул. Для улучшения звуковых свойств больших залов и аудиторий их стены часто облицовывают звукопоглощающими материалами.

На свойстве звука отражаться от гладких поверхностей основано действие рупора - расширяющейся трубы обычно круглого или прямоугольного сечения (рис. 82). При использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счёт чего мощность звука увеличивается и он распространяется на большее расстояние.

Рис. 82. Принцип действия рупора

Напомним, что при резонансе амплитуда установившихся вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с собственной частотой колебательной системы.

Например, довольно тяжёлый нитяной маятник (рис. 83) можно сильно раскачать, если периодически дуть на него (даже очень слабой струёй) в направлении его движения с частотой, равной его собственной частоте.

Рис. 83. Пример механического резонанса

Резонанс может быть вызван и действием звуковых волн. Чтобы пронаблюдать это, проделаем следующий опыт. Возьмём два камертона А и В с одинаковыми собственными частотами и поставим их рядом, обратив отверстия ящиков, на которых они укреплены, навстречу друг другу (рис. 84). Ударяя резиновым молоточком по камертону А, приведём его в колебание, а затем приглушим пальцами. Мы услышим звук, издаваемый камертоном В, который отзывается на колебания камертона А подобно тому, как в опытах с маятниками (см. рис. 68, б) маятник 1 отзывался на колебания маятника 3.

Рис. 84. Оборудование для демонстрации звукового резонанса

Изменим период колебания камертона В, надев на его ножку небольшую муфточку С. Повторив опыт, обнаружим, что теперь камертон В уже не отзывается на колебания камертона А.

Звуковые волны, образованные камертоном А, дойдя до камертона В, возбуждают в нём вынужденные колебания. Поскольку собственные частоты колебаний камертонов одинаковы, то имеет место резонанс: камертон В колеблется с наибольшей возможной амплитудой и издаёт звук. Но при наличии на камертоне В муфты С его собственная частота колебаний меняется, и амплитуда колебаний уменьшается настолько, что звука мы не услышим.

Ящики, на которых установлены камертоны, способствуют усилению звука и наиболее полной передаче энергии от одного камертона к другому. Усиление звука происходит за счёт колебаний самого ящика и особенно столба воздуха в нём. Размеры ящика подбирают таким образом, чтобы собственная частота воздушного столба в нём совпадала с частотой колебаний камертона. При этом столб воздуха колеблется в резонанс с камертоном, т. е. амплитуда его колебаний и соответственно громкость звука достигают наибольших значений.

Камертон, снабжённый таким ящиком (резонатором), издаёт более громкий, но менее длительный звук (по закону сохранения энергии).

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Например, в гитаре, скрипке и других подобных им струнных инструментах резонаторами служат деки, которые усиливают издаваемые струнами звуки и придают звучанию инструмента характерную для него окраску - тембр. Тембр звука зависит не только от формы и размера резонатора, но и от того, из какого дерева он изготовлен, и даже от состава лака, покрывающего его. Тембр определяется также материалом, из которого сделана струна, и тем, гладкая она или витая.

Резонаторы имеются и в голосовом аппарате человека. Источники звука в голосовом аппарате - голосовые связки. Они приходят в колебание благодаря продуванию воздуха из лёгких и возбуждают звук, основной тон которого зависит от их натяжения. Этот звук богат обертонами. Гортань усиливает те из обертонов, частота колебаний которых близка к её собственной частоте. Дальше звуковые волны попадают в полость рта. Для произнесения каждой гласной необходимо особое положение губ, языка и определённая форма резонаторной полости во рту.

Вопросы

  1. Какова причина образования эха? Почему эхо не возникает в маленькой, заполненной мебелью комнате? Ответы обоснуйте.
  2. Как можно улучшить звуковые свойства большого зала?
  3. Почему при использовании рупора звук распространяется на большее расстояние?
  4. Приведите примеры проявления звукового резонанса, не упомянутые в тексте параграфа.
  5. Для чего камертоны устанавливают на резонаторных ящиках? Каково назначение резонаторов, применяемых в музыкальных инструментах?
  6. Что является источником голоса человека?

Задание

Придумайте, с помощью каких предметов (кроме камертонов на резонаторных ящиках) можно продемонстрировать явление звукового резонанса. Проделайте придуманный вами опыт, опишите ваши действия и наблюдаемые результаты.

Итоги главы. Самое главное

Ниже даны физические понятия и их определения. Последовательность изложения определений не соответствует последовательности понятий.

Перенесите в тетрадь названия понятий и в квадратные скобки впишите порядковый номер определения, соответствующего данному понятию.

  • Периодические механические колебания ;
  • свободные колебания ;
  • колебательные системы ;
  • собственные колебания ;
  • вынужденные колебания ;
  • резонанс ;
  • волны ;
  • звук.
  1. Колебания, происходящие только благодаря начальному запасу энергии.
  2. Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия.
  3. Системы тел, которые способны совершать свободные колебания.
  4. Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения.
  5. Упругие волны с диапазоном частот от 16 до 20 000 Гц.
  6. Свободные колебания в отсутствие трения и сопротивления воздуха.
  7. Явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынуждающей силы к собственной частоте этой системы.
  8. Колебания, совершаемые телом под действием внешней периодически изменяющейся силы.

Проверь себя

  1. Взаимосвязь между периодом и частотой колебаний представлена уравнением

      A. λ = V/v
      Б. T = t/N
      B. T = λ/V
      Г. v = 1/t

  2. В процессе колебаний маятника ускорение его движения

      A. постоянно
      Б. меняется только по направлению
      B. достигает наибольшего значения в точке равновесия маятника
      Г. всегда направлено к положению равновесия

  3. Звук тем выше, чем больше

      A. частота колебаний
      Б. период колебаний
      B. амплитуда колебаний
      Г. громкость звука

Идя по доске, перекинутой через ров, можно попасть шагами в резонанс с собственным периодом системы (доски с человеком на ней), и доска начинает тогда сильно колебаться (изгибаться вверх и вниз). То же самое может случиться и с мостом, по которому проходит войсковая часть или проезжает поезд (периодическая сила обусловливается ударами ног или ударами колес на стыках рельсов). Так, например, в 1906г. в Петербурге обрушился так называемый Египетский мост через реку Фонтанку. Это произошло при переходе через мост кавалерийского эскадрона, причем четкий шаг лошадей, отлично обученных церемониальному маршу, попал в резонанс с периодом моста. Для предотвращения таких случаев войсковым частям при переходе через мосты приказывают обычно идти не «в ногу», а вольным шагом. Поезда же большей частью переезжают мосты на медленном ходу, чтобы период ударов колес о стыки рельсов был значительно больше периода свободных колебаний моста. Иногда применяют обратный способ «расстройки» периодов: поезда проносятся через мосты на максимальной скорости. Случается, что период ударов колес на стыках рельсов совпадает с периодом колебаний вагона на рессорах, и вагон тогда очень сильно раскачивается. Корабль также имеет свой период качаний на воде. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной. Капитан меняет тогда скорость корабля или его курс. В результате период волн, набегающих на корабль, изменяется (вследствие изменения относительной скорости корабля и воли) и уходит от резонанса. Неуравновешенность машин и двигателей (недостаточная центровка, прогиб вала) является причиной того, что при работе этих машин возникает периодическая сила, действующая на опору машины - фундамент, корпус корабля и т. п. Период силы может совпасть при этом с периодом свободных колебаний опоры или, например, с периодом колебаний изгиба самого вращающегося вала или с периодом крутильных колебаний этого вала. Получается резонанс, и вынужденные колебания могут быть настолько сильны, что разрушают фундамент, ломают валы и т. д. Во всех таких случаях принимаются специальные меры, чтобы избежать резонанса или ослабить его действие (расстройка периодов, увеличение затухания - демпфирование и др.). Очевидно, для того чтобы с помощью наименьшей периодической силы получить определенный размах вынужденных колебаний, нужно действовать в резонанс. Тяжелый язык большого колокола может раскачать даже ребенок, если он будет натягивать веревку с периодом свободных колебаний языка. Но самый сильный человек не раскачает язык, дергая веревку не в резонанс.

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают равномерного движения из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы «качели-ребенок».

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения подвесных качелей. То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота вынужденных колебаний и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент амплитуда колебаний достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой свободных колебаний моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей силой упругости трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Что общего между звуками прекрасной музыки, катанием на качелях, грозой и молитвой? Как мы связаны со своей Землей? И что происходит, когда работают целители? Этому явлению дано очень простое определение - резонанс .

Резонанс, как основа всех явлений в природе С переходом к новому веку, как обычно, не было недостатка в предсказаниях относительно тенденций развития науки и техники. Значительно реже встречались высказывания о будущем самого человечества как вида. Если не брать в расчет глобальные катаклизмы типа затопления-оледенения или столкновения с астероидом, то пожалуй, наиболее важное, ярко выраженное масштабное явление, способное сильно повлиять на человека – это электромагнитные поля. Даже для тех, у кого невидимый мир населен ангелами, бесами и другими сущностями, он реально пронизан электромагнитными колебаниями, вибрациями самых разных частот, порожденными как человеком, так и самой природой. Однако видим мы менее одного процента всего этого великолепия.

Распространяются эти колебания в виде волн. Замечательно, что колебания и волны любой природы описываются одними и теми же уравнениями. И если разобраться с некоторыми понятиями, удобными для рассуждений о колебаниях и волнах, то мы довольно неожиданно сможем выйти на очень разные явления в жизни, о которых точно думали, но «не у кого было спросить». Начнем с того, что легче ощутить.

Вибрации и колебания, волны, резонанс в музыке Вот, например, восхитительное явление – резонанс. Не только музыканты знают, что если бы не резонанс, то музыки не существовало бы. Щипком струны, ударом молоточка по ней или потоком воздуха в трубке исполнитель создает только слабое первоначальное колебание. Оно осталось бы незамеченным, если бы не резонатор или, проще говоря, корпус инструмента, который способен откликаться на каждую частоту, усиливать ее, придавать тембр.

Такое возможно потому, что у этого резонатора есть свои резонансные частоты, то есть он способен усиливать, окрашивать и продлевать некоторые колебания струны. Но не любые, а только те, которые близки к так называемым собственным частотам. А эти последние зависят, прежде всего, от размеров и формы корпуса-резонатора. И еще от множества тонкостей, куда входят вид древесины, влажность её и т.п. Вот здесь-то и проявляется мастерство изготовителя инструмента, о котором мы так часто слышим. В случае удачи инструмент будет петь в руках исполнителя в полном соответствии с той музыкой, что звучит в его душе.

Интересно, что, по современным понятиям, органы и системы человеческого тела имеют собственные частоты колебаний, которые звуковая волна усиливает или подавляет, тем самым влияя на их функции.

Бывают резонансы и другого вида. Механический резонанс, например. Можно хорошо ощутить механический резонанс, предаваясь всеми любимому веселому занятию – раскачиванию на качелях. Развлекая себя или ребенка, мы прилагаем силу нужного направления в строго определенный момент. Точная формула для определения этого момента довольно сложна, как ни странно. Но каждый легко определяет его инстинктивно. Очень странно выглядел бы человек, который пытается раскачать качели, подталкивая их не вовремя, то есть не в резонансе с собственной частотой его колебаний. Здесь уместно сказать, наконец, что такое частота колебания. Она показывает, сколько раз в секунду качели придут в одно и то же место своей траектории. Ну, скажем для определенности, – в то место, где их толкают. И если частота колебаний качелей совпадает с частотой толчков, возникает явление резонанса – тогда размах колебаний качелей будет возрастать. Для наших дальнейших рассуждений важно, что при резонансе некие внешние воздействия синхронизованы во времени с внутренними свойствами системы, то есть максимально реализован принцип «в нужное время в нужном месте».

Явление механического резонанса способно причинить и жуткий вред. Известен случай разрушения моста, по которому маршировала рота солдат. Мост-то, наверное, рассчитывался на очень большие нагрузки. Но резонанс! Кто же мог предполагать, что собственная частота колебаний моста совпадет с ритмом продвижения роты. Солдаты шли в ногу, синхронно чеканили шаг, как один большой солдат. И именно с той частотой, которая была резонансной для этого моста! С той поры в уставе отмечено, что при передвижении по мосту необходимо сбивать шаг.

Мы познакомились со звуковыми и механическими резонансами. И теперь легче будет разобраться с самыми интересными резонансами – электромагнитными.

Резонанс другого уровня взаимодействия - электромагнитный

Резонанс Шумана Мы живем в слое между поверхностью Земли и ионосферой, нижняя граница которой находится на уровне примерно 80 км и называется слоем Хевисайда. Если представить Землю в виде апельсина размером 5 сантиметров, то этот слой будет на высоте 3 миллиметра, то есть этот слой очень близко к Земле. Длинноволновая радиосвязь возможна только благодаря слою Хевисайда, потому что именно от него происходит отражение радиоволн, огибающих Землю. Земля – хороший проводник электрического тока, в любом случае на ней для этого достаточно воды, причем две трети из нее – соленая вода океанов. В ионосфере тоже есть чему обеспечивать проводимость – солнечный свет отрывает электроны от молекул газов разреженной атмосферы, создается плазма. В пространстве между этими сферами – воздух, слабый проводник. Получается симметричный сферический конденсатор, образованный двумя помещенными друг в друга проводящими сферами. При этом Земля заряжена отрицательно, а ионосфера – положительно. Такая система называется волноводом, в ней хорошо распространяются электромагнитные волны.

Те волны, которые являются резонансными для этого гигантского природного волновода, могут несколько раз огибать Землю. Совершенно аналогично тому, как звук резонирует в объеме музыкального инструмента. Какие это частоты? Такую задачу в 1949 поставил перед своими студентами на занятиях по электрофизике профессор Мюнхенского технического университета Винфред Отто Шуман. Если подойти к вопросу приблизительно и просто, достаточно знать размеры Земли и ее ионосферы, чтобы рассчитать эти частоты. Получилось, что в полости Земля – ионосфера могут распространяться (резонировать) электромагнитные волны довольно низкой, даже сверхнизкой частоты – 10 герц. Вскоре Шуман и экспериментально обнаружил такие волны и опубликовал статью об этом в каком-то физическом журнале. Эти волны так и стали называть – резонансы Шумана. А откуда же они вообще взялись, эти волны, в полости Земля – ионосфера? Молнии! Их, оказывается, так много вблизи Земли – в среднем около сотни разрядов за минуту. Молнии производят целый спектр электромагнитных колебаний. Но только те из них, что совпадают с собственными частотами природного волновода, то есть с рассчитанной частотой около 10 герц, могут огибать Землю несколько раз за секунду.

Никто поначалу не придал особого значения этим открытиям, даже сам Шуман. Тем более что на самом-то деле по миру ранее уже бродили подобные идеи. Автор их – гениальный серб Никола Тесла – создавал искусственные молнии еще в конце девятнадцатого века. Он обнаружил, что при разряде появляются волны очень низкой частоты. И они могут глубоко проникать в Землю без ослабления, потому что резонируют с собственными колебаниями Земли. Более того, образуется стоячая волна, обегающая Землю. Эти исследования Теслы тогда не были поддержаны – время не пришло. Пришло оно через 50 лет – с работами Шумана.

Резонанс и новый взгляд на вибрации и частоту в науке, резонанс Шумана Здоровое любопытство иногда заставляет исследователей просматривать книги и журналы по далеким от специальности разделам науки. Быть бы резонансам Шумана похороненными в анналах истории науки, если бы не любопытство одного оставшегося неизвестным психолога, просматривавшего физико-техническую периодику. Прочтя публикацию Шумана, он оторопел. Основная частота резонанса – около 10 герц – совпадала с основным ритмом человеческого мозга – альфа-ритмом! Почему?! Конечно, он сразу же позвонил Шуману. Ведь в высшей степени удивительно, что совпадают ритмы Земли и мозга человека в состоянии спокойного бодрствования. Шуман подключил к работам студента-выпускника, будущего своего преемника Герберта Кёнига. Необычным делом увлекался этот студент. Он исследовал, как работают те, кто может находить в земле воду или минералы при помощи ивового прута, лозоходцы то есть. Далее мы увидим всю примечательность этого обстоятельства. В своей докторской диссертации Кёниг сообщил о более точных измерениях основной частоты резонанса Шумана – 7,83 гц.

Удалось измерить и более высокие гармоники первой частоты. Они составляют в среднем 14, 20, 26, 33, 39 и 45 герц. Оказалось, и этим частотам есть соответствие в спектре волн, излучаемых мозгом человека! Словом, частотная полоса изменения биотоков мозга лежит в пределах изменения резонансных частот полости Земля – ионосфера в спокойных условиях. Колебательная система «человек – среда обитания» находится в состоянии равновесия. Это не может быть случайным совпадением! Если бы мы сознательно всё устраивали для жизни на Земле, лучше бы не сделали.

Измерить резонанс Шумана – это значит для какого-нибудь места на Земле сделать запись интенсивности электрического и магнитного полей отдельно в зависимости от времени либо от частоты. Несмотря на глобальную важность, до недавнего времени работ по резонансам Шумана было мало. Может, потому, что этим диапазоном частот интересуются военные – для связи с подводными лодками, ведь такие волны проникают глубоко в воду и в землю. А может, потому, что измерять резонансы Шумана – трудная задача. Они слишком слабы на фоне собственных электрического и магнитного полей Земли, которые в 10 тысяч, а то и в 100 тысяч раз больше. Чтобы измерить резонансы Шумана, необходима стандартная электроника (усилители-предусилители) и очень необычные антенны. Для измерения электрического поля обычная антенна должна была бы быть длиной 20 тысяч километров. Поэтому используют специальную, шаровую антенну вместе с усилителем. Магнитные поля измерять – тоже нужны всяческие ухищрения. Перемещение людей, животных, раскачивание деревьев при ветре могут перечеркнуть кропотливые труды коллективов геофизиков и радиоэлектронщиков.

Где измеряют резонансы Шумана? Да по всей Земле. В Америке и в Австралии, в Финляндии, Германии и в России, в Англии и в Исландии.

Чтобы получше понять явление, хорошо бы узнать, отчего оно зависит. Частота и интенсивность естественных пульсаций Земли – не постоянные фиксированные величины. Как показали дальнейшие исследования, они слегка изменяются под влиянием следующих факторов:

Географическое место. Сильнее всего резонансы Шумана заметны вблизи мировых очагов гроз. Если рассмотреть данные со спутников NASA о местах возникновения молний за много лет, можно заметить, что молнии в основном случаются над землей, а не над поверхностью воды. Больше всего их в Африке. Так ведь по современным воззрениям там и появился человек.

Время суток. Ночью Солнце не ионизирует атмосферу на темной стороне Земли, и слой Хевисайда здесь исчезает, а с ним и шумановские волны. С рассветом восстанавливается верхняя граница околоземного волновода и вновь появляются волны Шумана. Земля отдыхает и пробуждается вместе с нами. Или это мы – с нею.

Чистота воздуха. Наблюдается повышение частоты, если в воздухе много водяных паров, газов.

Окружающая обстановка. Электромагнитный смог от всего электрооборудования перекрывает в сотни раз живительные природные всплески резонансов Шумана. Их гасят и некоторые строительные материалы. Может, поэтому собаки и дети хотят гулять, даже если только что вернулись с улицы.

Вспышки на Солнце. Исследователи утверждают, что при магнитных бурях или в условиях электромагнитных полей техногенного происхождения, когда изменяется частота природных резонансов Шумана, ухудшается состояние людей в возрасте и детей, чаще случаются гипертонические кризы, эпилептические припадки и суициды.

А каким образом все же осуществляется влияние магнитных бурь на человека? Возможно, дело обстоит так. При вспышках на Солнце изменяются свойства слоя Хевисайда – верхней границы нашего природного резонатора. Это приводит к изменениям частоты резонанса Шумана. Еще в 1665 году Христиан Гюйгенс заметил, что если неподалеку друг от друга начинают колебаться два маятника с близкой, но все же различной частотой, то по прошествии некоторого времени их частота колебаний станет одинаковой. И это всеобщий закон. Каждой колебательной системе «легче» колебаться в такт, чем вразнобой. Значит, резонансы Шумана для нас являются как бы ритмоводителем.

Изменилась по какой-то причине частота Шумана – это приводит к изменению частоты электромагнитных колебаний мозга и ухудшению состояния человека. Таким образом, именно через резонансы Шумана здоровье человека связано с геофизическим состоянием Земли. Более того, оказалось, что не только физическое здоровье, но и душевное, да и просто способность мыслить. Ведь мозг работает в режиме альфа-ритма (на частоте около 8 герц) в тех случаях, когда человек, находясь в состоянии мышечной релаксации, решает творческие задачи. У большинства людей, имеющих четко выраженный альфа-ритм, преобладает способность к абстрактному мышлению. Изредка встречаются люди, у которых обнаруживается полное отсутствие альфа-ритмов. Они свободно мыслят зрительными образами, однако испытывают трудности в решении проблем абстрактного характера.

Те, кто склонен к исследовательской деятельности, могут сами проследить связь собственного самочувствия (изменение артериального давления, например) с изменениями в спектре волн Шумана. Сделать это можно, посещая, например, сайт Томского государственного университета Данные обновляются каждые два часа. Кроме того, интересно самому убедиться, действительно ли растет частота шумановских волн, как сообщается иногда об этом. Ведь это означало бы, ни много ни мало, что идет эволюция мозга человека.

Оказалось: собственное магнитное поле Земли пульсирует в том же диапазоне частот, что и резонансы Шумана, и ритмы мозга. Это привело даже к некоторой путанице. Вы можете иногда услышать, что резонансы Шумана – это просто колебания магнитного поля Земли. А не волны, рожденные молниями и огибающие Землю в естественном волноводе.

Сейчас количество публикаций по резонансам Шумана сильно возросло – примерно до тысячи в год. Обсудим две главных причины этого.

Во-первых, обнаружилась возможность определения по резонансам Шумана температуры и грозовой активности в масштабах планеты. Сейчас уже точно известно, что чем выше температура воздуха нижних слоев атмосферы, тем больше гроз, молний и осадков. А значит, мощнее резонансы Шумана. По нехитрой логике, измеряя интенсивность резонансов в разных местах Земли, можно судить о ее средней температуре. То есть резонанс Шумана – это термометр для матушки-Земли. «Средняя по Земле» температура – сейчас больной вопрос для всех людей вообще, а не только для ученых. Не утихают споры, началось ли уже глобальное потепление или это проблема наших потомков.

С резонансами Шумана, точнее, с деятельностью человеческого мозга на частотах этих резонансов, некоторые исследователи связывают различные эффекты дальновидения, целительства, гипноза, поисков воды и полезных ископаемых с помощью лозы или рамки. Доктор Джон Циммерман, основатель и президент Института биоэлектромагнетизма в Рено, штат Невада, занимался изучением обширной литературы по деятельности целителей. Он обнаружил, что в начале сеанса у целителя устанавливается связь с волнами Шумана. Его правое и левое полушария мозга синхронизируются, в то время как обычно они слегка разбалансированы. Оба полушария начинают работать в альфа-ритме с частотой около 8 герц. Затем в альфа-ритм входят и мозговые волны пациента. Эти волны синхронизируются с волнами целителя. У пациентов во время сеанса также наблюдается частотное равновесие между полушариями мозга. Образно говоря, целитель присоединяет своего пациента к электромагнитному полю волн Шумана и к пульсациям магнитного поля Земли.

Резонанс ритмов человека при медитации и молитве Существуют исследования, свидетельствующие, что при медитации и во время молитвы человеческий мозг тоже работает с частотой около 8 герц, в ритме с волнами Шумана и магнитным полем Земли.

До сих пор мы размышляли главным образом о природной составляющей системы человек – среда его обитания. Но уже существует понятие «электромагнитный смог». Это хаотическое излучение от различных бытовых и промышленных электроприборов. Его мощность уже в сотни раз превышает природный фон. Конечно, волны с частотой альфа-ритма очень слабенькие, их размах, или амплитуда, составляет всего около 30 миллионных долей вольта. Казалось бы, это ничтожно мало по сравнению с собственным магнитным полем Земли и с техногенными полями. Но частоты-то совпадают с ритмами мозга! Вспомните о резонансных эффектах! С этой точки зрения для человека опасны устройства, работающие в том же диапазоне частот, что и слабые, но такие необходимые естественные поля. Вот, например, сотовые телефоны. Все исследования их «вредности» проводились с учетом только их теплового воздействия. Но очень важно и информационное воздействие, которое никто не учитывает. Ведь одна из частот излучения сотового телефона – все те же 8 Гц – связана с нашей индивидуальной умственной деятельностью. Следовательно, извне, причем из непосредственной близости, в головной мозг человека поступают сигналы, которые способны резонансным образом взаимодействовать с собственной биоэлектрической активностью головного мозга и тем самым нарушать его функции. Такие изменения заметны на электроэнцефалограмме и не исчезают длительное время после окончания разговора.

Сообщают, что в Америке каждый сотрудник NASA имеет при себе приборчик – индивидуальный источник «полезных» электромагнитных волн в диапазоне волн Шумана, для улучшения самочувствия при «подстройке» к естественным природным ритмам.

А вот пчелы… Пчелы вымирают. По заключению ученых немецкого университета Кобленц-Ландау, в США и в некоторых странах Европы погибло до 70% пчелиных семей. Их гибель связывают с потерей ориентации под воздействием техногенных электромагнитных полей, порождаемых мощными антеннами сотовой связи.

Человечество как вид обладает необычайным потенциалом, который едва только начали изучать. Дар творчества, интуиция, талант – без этих качеств человек не смог бы создать тот прекрасный мир, в котором он живет. А что, если, окутанные антропогенным электромагнитным смогом, разрушающим тонкие настройки взаимосвязей в этом изменчивом, колеблющемся мире, мы потеряем свои бесценные дары?

…Рассвет. На зыбкой границе между сном и бодрствованием Земля посылает нам свой утренний привет на частоте 7,8 герц – частоте альфа-ритма нашего мозга. Что бы ни происходило, мы в резонансе со своей Землей и со всем живым на ней.

Источник - выдающиеся из всех известных изобретений Теслы связаны с понятием резонанса. Тесла считал резонанс ключом к пониманию и управлению любой системой, природной или рукотворной. Каждая система, по его мнению, обладает некой «собственной частотой колебания». Таких частот может быть несколько, они являются своего рода «паспортом», «удостоверением личности» любой системы. Любые системы могут взаимодействовать, будучи настроенными друг на друга. Это очень легко объяснить на примере человеческих отношений: два человека, желающие понять друг друга (то есть «настроенные в резонанс» друг к другу), потратят гораздо меньше времени и сил на решение какой-то проблемы, чем те же два человека, не желающие понимать или просто безразличные. Таким образом, задача человека - не «брать силой» у Природы ее богатства, а уметь настраивать свою технику в резонанс с природными явлениями, чтобы взаимодействие было максимально естественным и эффективным. По этому пути и шел сам Тесла, поражая современников результатами.

Резонанс является одним из интереснейших физических явлений. И чем глубже становятся наши познания об окружающем нас мире, тем явственнее прослеживается роль этого явления, в различных сферах нашей жизни - в музыке, медицине, радиотехнике и даже на детской площадке.

Каков же смысл этого понятия, условия его возникновения и проявление?

Собственные и вынужденные колебания. Резонанс

Вспомним простое и приятное развлечение - раскачивание на подвесных качелях.

Прикладывая в нужный момент совсем незначительное усилие, ребёнок может раскачивать взрослого. Но для этого частота воздействия внешней силы должна совпасть с собственной частотой раскачивания качелей. Только в этом случае амплитуда их колебаний заметно вырастет.

Итак, резонанс это явление резкого возрастания амплитуды колебаний тела, когда частота его собственных колебаний совпадет с частотой действия внешней силы.

Прежде всего, разберемся в понятиях - собственные и вынужденные колебания. Собственные - присущи всем телам - звёздам, струнам, пружинам, ядрам, газам, жидкостям… Обычно они зависят от коэффициента упругости, массы тела и других его параметров. Такие колебания возникают под воздействием первичного толчка, осуществляемой внешней силой. Так, чтобы привести в колебания груз, подвешенный на пружине, достаточно оттянуть его на некоторое расстояние. Возникшие при этом собственные колебания будут затухающими, поскольку энергия колебаний затрачивается на преодоление сопротивления самой колебательной системы и окружающей среды.

Вынужденные колебания возникают при воздействии на тело сторонней (внешней) силы с определенной частотой. Эту стороннюю силу ещё называют вынуждающей силой. Очень важно, чтобы эта внешняя сила действовала на тело в нужный момент и в нужном месте. Именно она восполняет потери энергии и увеличивает её при собственных колебаниях тела.

Механический резонанс

Очень ярким примером проявления резонанса является несколько случаев обрушения мостов, когда по ним строевым шагом проходила рота солдат.

Чеканный шаг солдатских сапог совпал с собственной частотой колебаний моста. Он стал колебаться с такой амплитудой, на которую его прочность не была рассчитана и… развалился. Тогда и родилась новая воинская команда «…не в ногу». Она звучит, когда пешая или конная рота солдат проходит по мосту.

Если вам случалось путешествовать на поезде, то самые внимательные из вас обратили внимание на заметные покачивания вагонов, когда его колеса попадают на стыки рельс. Это так вагон откликается, т. е. резонирует с колебаниями, возникающими при преодолении этих зазоров.

Корабельные приборы снабжают массивными подставками или подвешивают на мягких пружинах, чтобы избежать резонанса этих корабельных деталей с колебаниями корабельного корпуса. При запуске корабельных двигателей судно так может войти в резонанс с их работой, что это грозит его прочности.

Приведенных примеров достаточно, чтобы убедиться в необходимости учитывать резонанс. Но мы иногда и используем механический резонанс, не замечая этого. Выталкивая машину, застрявшую в дорожной грязи, водитель и его добровольные помощники вначале раскачивают её, а затем дружно толкают вперёд по направлению движения.

Раскачивая тяжелый колокол, звонари тоже неосознанно используют это явление.

Они ритмично в такт с собственными колебаниями языка колокола, дергают за прикрепленный к нему шнур, всё увеличивая амплитуду колебаний.

Существуют приборы, измеряющие частоту электрического тока. Их действие основано на использовании резонанса.

Акустический резонанс

На страницах нашего сайта мы познакомили вас с важнейшими сведениями о звуке. Продолжим наш разговор, дополнив его примерами проявления акустического или звукового резонанса.

Для чего у музыкальных инструментов, особенно у гитары и скрипки такой красивый корпус? Неужели лишь для того, чтобы красиво выглядеть? Оказывается, нет. Он нужен для правильного звучания, всей издаваемой инструментом звуковой палитры. Звук, издаваемый самой гитарной струной достаточно тихий. Чтобы его усилить струны, располагают поверх корпуса, имеющего определенную форму и размеры. Звук, попадая внутрь гитары, резонирует с различными частями корпуса и усиливается.

Сила и чистота звука зависит от качества дерева, и даже от лака, которым покрыт инструмент.

Имеются резонаторы и в нашем голосовом аппарате. Их роль выполняют самые различные воздушные полости, окружающие голосовые связки. Они-то усиливают звук, формируют его тембр, усиливая именно те колебания, частота которых близка к их собственной. Умение использовать резонаторы своего голосового аппарата - это одна из сторон таланта певца. Им в совершенстве владел Ф.И. Шаляпин.

Рассказывают, что когда этот великий артист пел во всю мощь, гасли свечи, тряслись люстры и трескались гранёные стаканы.

Т.е. явление звукового резонанса играет громадную роль в восхитительном мире звуков.

Электрический резонанс

Не миновало это явление и электрические цепи. Если частота изменения внешнего напряжения совпадет с частой собственных колебаний цепи, то может возникнуть электрический резонанс. Как всегда он проявляется в резком возрастании и силы тока и напряжения в цепи. Это чревато коротким замыкание и выходом из строя приборов, включённых в цепь.

Однако именно резонанс позволяет нам настроиться на частоту определенной радиостанции. Обычно на антенну поступает множество частот от различных радиостанций. Вращая ручку настройки, мы меняем частоту приёмного контура радиоприёмника.

Когда одна из пришедших на антенну частот совпадет с этой частотой, тогда мы и услышим эту радиостанцию.

Волны Шумана

Между поверхностью Земли и ее ионосферой существует слой, в котором очень хорошо распространяются электромагнитные волны. Этот небесный коридор называют волноводом. Рождающиеся здесь волны могут несколько раз огибать Землю. Но откуда они берутся? Оказалось, что они возникают при разрядах молний.

Профессор Мюнхенского технического университета Шуман рассчитал их частоту. Выяснилось, что она равна 10 Гц. Но именно с таким ритмом происходят колебания человеческого мозга! Этот удивительный факт не мог быть простым совпадением. Мы живём внутри гигантского волновода, который своим ритмом управляет нашим организмом. Дальнейшие исследования подтвердили это предположение. Оказалось, что искажение волн Шумана, например, при магнитных бурях ухудшает состояние здоровья людей.

Т.е. для нормального самочувствия человека ритм важнейших колебаний человеческого организма должен резонировать с частотой волн Шумана.

Электромагнитный смог от работы бытовых и промышленных электроприборов искажают природные волны Земли, и разрушает наши тонкие взаимосвязи со своей планетой.

Законам резонанса подчинены все объекты Вселенной. Этим законам подчиняются даже взаимоотношения людей. Так, выбирая себе друзей, мы ищем себе подобных, с которыми нам интересно, с которыми находимся «на одной волне».

Если это сообщение тебе пригодилось, буда рада видеть тебя

в группе ВКонтакте

А ещё - спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Вы можете оставить комментарий к докладу.

Резонанс – это резкий рост амплитуды вынужденных колебаний, который наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами колебательной системы. Увеличение амплитуды происходит при совпадении внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи резонансных явлений можно выделить и/или усилить даже совсем слабые гармонические колебания. Резонанс – явление, заключающееся в том, что колебательная система оказывается особенно отзывчивой на воздействие определённой частоты вынуждающей силы.

В нашей жизни довольно много ситуаций, в которых проявляется резонанс. Например, если к струнному музыкальному инструменту поднести звенящий камертон, то акустическая волна, исходящая от камертона, вызовет вибрацию струны настроенной на частоту камертона, и она сама зазвучит.

Еще один пример, всем известный эксперимент с тонкостенным бокалом. Если измерить частоту звука, с которой звенит бокал, и, подать звук с такой же частотой от генератора частот, но с большей амплитудой, через усилитель и динамик обратно на бокал, его стенки входят в резонанс с частотой звука идущего от динамика и начинают вибрировать. Увеличение амплитуды этого звука до определенного уровня приводит к разрушению бокала.

Биорезонанс: с Древней Руси и до наших времен

Наши православные предки, ещё за десятки тысяч лет до прихода христианства на Русь хорошо знали о силе колокольного звона и старались в каждой деревне установить колокольню! Благодаря чему в средневековье Русь, богатая церковными колоколами, избегала опустошительных эпидемий чумы в отличии от Европы (Галлии), в которой святые инквизиторы на кострах сожгли не только всех учёных и ведающих, но и все древние «еретические» книги, написанные на глаголице, хранившие уникальные знания наших предков, в том числе и о силе резонанса!

Таким образом, все православные знания, накопленные веками, были запрещены, уничтожены и подменены новой христианской верой. При этом по сей день данные о биорезонансе находятся под запретом. Даже спустя века любая информация о методах лечения, не приносящих прибыль фармацевтической промышленности, умалчивается. В то время как ежегодный многомиллиардный оборот фармацевтики растет с каждым годом.

Яркий пример применения резонансных частот на Руси, и это факт, от которого нельзя отвертеться. Когда в Москве в 1771 году (1771 г.) вспыхнула эпидемия чумы, Екатерина II отправила из Петербурга графа Орлова с четырмя лейб-гвардиями и огромным штатом врачей. Вся жизнь в Москве была парализована. Дабы отогнать «моровые поветрия» миряне окуривали жилища, на улицах разводили огромные костры, и вся Москва была окутана черным дымом, так как тогда считалось, что чума распространяется по воздуху, но это мало помогало. А ещё изо всех сил били в набат (самый большой колокол) и во все колокола меньшего размера в течении 3-х дней подряд, так как свято верили, что колокольный звон отведёт от города страшную беду. Через несколько дней эпидемия стала отступать. «В чем секрет?» - спросите Вы. На самом деле ответ лежит на поверхности.

А теперь рассмотрим небезызвестный пример использования биорезонанса в наше время. С целью соблюдения чистоты эксперимента, медики в палату с онкологическими больными поставили металлические пластины, наподобие тех, что использовались в древних монастырях, чтобы колокола у пациентов не могли ассоциироваться с церковью, и, рождаемое поневоле самовнушение, не могло существенно повлиять на результаты исследований. При подборе индивидуальных частот для каждого больного использовалось множество титановых пластин различного размера. Итог превзошел все ожидания!

После воздействия акустических волн определённой частоты на биологически активные точки пациентов у 30% больных прекратился болевой синдром, и они смогли уснуть, а ещё у 30% больных прекратились боли, не снимавшиеся самыми сильными наркотическими анестетиками!

В настоящее время, для достижения эффекта резонанса нет необходимости использовать огромные колокола, а есть уникальная возможность, применять достижения науки и техники, созданные электронные приборы на основе частотного резонанса, иными словами приборы биорезонансной терапии Smart Life.

Эффект резонанса в биологических структурах можно вызвать при помощи:

Акустических волн

Механического воздействия

Электромагнитных волн видимого и радиочастотного диапазонов

Импульсов магнитного поля

Импульсов слабого электрического тока

Импульсного теплового воздействия

То есть, эффект резонанса в биологических структурах можно вызывать внешним воздействием и любыми физическими явлениями, возникающими в процессе биохимических реакций внутри живой клетки. Причём каждая биологическая структура имеет свой уникальный частотный спектр, сопровождающий биохимические процессы и откликается на внешнее воздействие, как основной резонансной частоты, так и высших или низших гармоник от основной частоты, с амплитудой во столько раз большей, на сколько эти гармоники отстоят от частоты основного резонанса.

Как в повседневной жизни можно использовать силу резонанса, и какой же метод воздействия выбрать?

Акустические волны

Угадайте, что происходит с зубным камнем во время его удаления, при помощи ультразвука в кабинете у стоматолога или при разрушении камней в почках? Ответ очевиден. И без сомнения, акустическое воздействие – это прекрасная возможность для исцеления организма, если бы не одно «но». Колокола много весят, дорого стоят, создают сильный шум, и могут использоваться исключительно стационарно.

Магнитное поле

Чтобы вызвать хотя бы сколь-нибудь ощутимый эффект от воздействия пульсирующего магнитного поля на всё тело, необходимо изготовить электромагнит огромных размеров и массой пару тонн, он будет занимать пол комнаты и потреблять очень много электроэнергии. Инертность системы не позволит использовать его на высоких частотах. Маленькие электромагниты можно использовать лишь локально из-за малого радиуса действия. Также нужно точно знать зоны на теле и частоту воздействия. Вывод неутешителен: использовать магнитное поле для терапии заболеваний экономически не целесообразно в домашних условиях.

Электрический ток

Электромагнитные волны

Для метода частотного резонанса можно использовать радиоволны с несущей частотой от 10 кГц до 300 МГц, так как в этом диапазоне самый низкий коэффициент поглощения ЭМВ нашим телом и оно для них прозрачно, а также электромагнитные волны в видимом и инфракрасном спектре. Видимый красный свет с длиной волны от 630 нм до 700 нм проникает в ткани на глубину до 10 мм, а инфракрасный свет от 800 нм до 1000 нм проникает на глубину до 40 мм и глубже, вызывая ещё и некоторое тепловое воздействие при торможении в тканях. Для воздействия на биологически активные зоны на поверхности кожи, можно использовать радиоволны с несущей частотой до ~ 50 ГГц