Принцип движения ракеты. Движение ракеты. Краткая история ракет

Эту вертушку можно назвать первой в мире паровой реактивной турбиной.

Китайская ракета

Еще раньше, за много лет до Герона Александрийского, в Китае тоже изобрели реактивный двигатель несколько иного устройства, называемый ныне фейерверочной ракетой . Фейерверочные ракеты не следует смешивать с их тезками - сигнальными ракетами, которые применяют в армии и флоте, а также пускают в дни всенародных праздников под грохот артиллерийского салюта. Сигнальные ракеты - это просто пули, спрессованные из вещества, горящего цветным пламенем. Ими выстреливают из крупнокалиберных пистолетов - ракетниц.


Сигнальные ракеты — пули, спрессованные из вещества, горящего цветным пламенем

Китайская ракета представляет собой картонную или металлическую трубку, закрытую с одного конца и наполненную пороховым составом. Когда эту смесь поджигают, струя газов, вырываясь с большой скоростью из открытого конца трубки, заставляет ракету лететь в сторону, противоположную направлению газовой струи. Взлетать такая ракета может без помощи пистолета-ракетницы. Палочка, привязанная к корпусу ракеты, делает ее полет более устойчивым и прямолинейным.


Фейерверк с использованием китайских ракет

Обитатели моря

В мире животных:

Здесь также встречается реактивное движение. Каракатицы, осьминоги и некоторые другие головоногие моллюски не имеют ни плавников, ни мощного хвоста, а плавают не хуже прочих обитателей моря . У этих мягкотелых существ в теле имеется довольно вместительный мешок или полость. В полость набирается вода, а затем животное с большой силой выталкивает эту воду наружу. Реакция выброшенной воды заставляет животное плыть в сторону, противоположную направлению струи.


Осьминог — обитатель моря, который использует реактивное движение

Падающая кошка

Но самый интересный способ движения продемонстрировала обыкновенная кошка .

Лет сто пятьдесят назад известный французский физик Марсель Депре заявил:

А знаете ли, законы Ньютона не совсем верны. Тело может двигаться с помощью внутренних сил, ни на что не опираясь и ни от чего не отталкиваясь.

Где доказательства, где примеры? - протестовали слушатели.

Хотите доказательств? Извольте. Кошка, нечаянно сорвавшаяся с крыши, - вот доказательство! Как бы кошка ни падала, хоть головой вниз, на землю она обязательно встанет всеми четырьмя лапками. Но ведь падающая кошка ни на что не опирается и ни от чего не отталкивается, а переворачивается быстро и ловко. (Сопротивлением воздуха можно пренебречь - оно слишком ничтожно.)

Действительно, это знают все: кошки, падая; ухитряются всегда становиться на ноги.


Кошки это делают инстинктивно, а человек может сделать то же самое сознательно. Пловцы, прыгающие с вышки в воду, умеют выполнять сложную фигуру - тройное сальто, то есть трижды перевернуться в воздухе, а потом вдруг выпрямиться, приостановить вращение своего тела и уже по прямой линии нырнуть в воду.

Такие же движения, - без взаимодействия с каким-либо посторонним предметом, случается наблюдать в цирке во время выступления акробатов - воздушных гимнастов.


Выступление акробатов - воздушных гимнастов

Падающую кошку сфотографировали киносъемочным аппаратом и потом на экране рассматривали кадр за кадром, что делает кошка, когда летит в воздухе. Оказалось, что кошка быстро вертит лапкой. Вращение лапки вызывает ответное движение- реакцию всего туловища, и оно поворачивается в сторону, противоположную движению лапки. Все происходит в строгом соответствии с законами Ньютона, и именно благодаря им кошка становится на ноги.

То же самое происходит во всех случаях, когда живое существо без всякой видимой причины изменяет свое движение в воздухе.

Водометный катер

У изобретателей появилась мысль, а почему бы не перенять у каракатиц их способ плавания. Они решили построить самоходное судно с водно-реактивным двигателем . Идея безусловно осуществимая. Правда, уверенности в удаче не было: изобретатели сомневались, получится ли такой водометный катер лучше обычного винтового. Надо было сделать опыт.


Водометный катер — самоходное судно с водно-реактивным двигателем

Выбрали старый буксирный пароход, починили его корпус, сняли гребные винты, а в машинном отделении поставили насос-водомет. Этот насос качал забортную воду и через трубу выталкивал ее за корму сильной струей. Пароход плыл, но двигался он все же медленнее винтового парохода. И это объясняется просто: обычный гребной винт вращается за кормой ничем не стесненный, вокруг него только вода; воду в водометном насосе приводил в движение почти точно такой же винт, но вращался он уже не на воде, а в тесной трубе. Возникало трение водяной струи о стенки. Трение ослабляло напор струи. Пароход с водометным движителем плыл медленнее винтового и топлива расходовал больше.

Однако от постройки таких пароходов не отказались: у них нашлись важные преимущества. Судно, снабженное гребным винтом, должно сидеть в воде глубоко, иначе винт будет без толку пенить воду или вертеться в воздухе. Поэтому винтовые пароходы боятся отмелей и перекатов, они не могут плавать по мелководью. А водометные пароходы можно строить мелкосидящими и плоскодонными: им глубина не нужна - где пройдет лодка, там пройдет и водометный пароход.

Первые водометные катера в Советском Союзе построены в 1953 году на Красноярской судостроительной верфи. Они предназначены для малых рек, где обычные пароходы не могут плавать.

Особенно прилежно инженеры, изобретатели и ученые занялись исследованием реактивного движения при появлении огнестрельного оружия . Первые ружья - всевозможные пистоли, мушкеты и самопалы - при каждом выстреле сильно ударяли человека в плечо. После нескольких десятков выстрелов плечо начинало так болеть, что солдат уже не мог целиться. Первые пушки - пищали, единороги, кулеврины и бомбарды - при выстреле отпрыгивали назад, так что, случалось, калечили пушкарей-артиллеристов, если они не успевали увернуться и отскочить в сторону.

Отдача орудия мешала меткой стрельбе, потому что пушка вздрагивала раньше, чем ядро или граната вылетали из ствола. Это сбивало наводку. Стрельба получалась неприцельной.


Стрельба с огнестрельного оружия

Инженеры-артиллеристы начали борьбу с отдачей более четырехсот пятидесяти лет назад. Сначала лафет снабдили сошником, который врезался в землю и служил прочным упором для пушки. Тогда думали, что если хорошенько подпереть пушку сзади, так чтобы ей некуда было откатываться, то отдача исчезнет. Но это была ошибка. Не был принят во внимание закон сохранения количества движения. Пушки ломали все подпорки, а лафеты так расшатывались, что орудие становилось непригодным для боевой работы. Тогда изобретатели поняли, что законы движения, как и всякие законы природы, нельзя переделать по-своему, их можно только «перехитрить» с помощью науки - механики.

У лафета они оставили сравнительно небольшой сошник для упора, а ствол пушки положили на «салазки» так, чтобы откатывался только один ствол, а не все орудие целиком. Ствол соединили с поршнем компрессора, который ходит в своем цилиндре точно так же, как поршень паровой машины. Но в цилиндре паровой машины - пар, а в орудийном компрессоре - масло и пружина (или сжатый воздух).

Когда ствол пушки откатывается назад, поршень сжимает пружину. Масло же в это время сквозь мелкие отверстия в поршне продавливается по другую сторону поршня. Возникает сильное трение, которое частично поглощает движение откатывающегося ствола, делает его более медленным и плавным. Потом сжатая пружина расправляется и возвращает поршень, а вместе с ним и ствол орудия на прежнее место. Масло нажимает на клапан, открывает его и свободно перетекает снова под поршень. Во время беглого огня ствол орудия почти непрерывно движется вперед и назад.

В орудийном компрессоре отдача поглощается трением.

Дульный тормоз

Когда мощность и дальнобойность пушек возросла, компрессора оказалось недостаточно, чтобы обезвредить отдачу. В помощь ему был изобретен дульный тормоз .

Дульный тормоз - это всего лишь короткая стальная труба, укрепленная на срезе ствола и служащая как бы его продолжением. Диаметр ее больше диаметра канала ствола, и поэтому она нисколько не мешает снаряду вылетать из дула. В стенках трубки по окружности прорезано несколько продолговатых отверстий.


Дульный тормоз — уменьшает отдачу огнестрельного оружия

Пороховые газы, вылетающие из ствола орудия вслед за снарядом, сразу же расходятся в стороны, и часть их попадает в отверстия дульного тормоза. Эти газы с большой силой ударяются о стенки отверстий, отталкиваются от них и вылетают наружу, но уже не вперед, а немного вкось и назад. При этом они давят на стенки вперед и толкают их, а вместе с ними и весь ствол орудия. Они помогают лафетной пружине потому, что стремятся вызвать откат ствола вперед. А в то время, пока они находились в стволе, они толкали орудие назад. Дульный тормоз значительно уменьшает и ослабляет отдачу.

Другие изобретатели пошли иным путем. Вместо того чтобы бороться с реактивным движением ствола и стараться его погасить, они решили применить откат орудия с пользой для дела. Эти изобретатели создали много образцов автоматического оружия: винтовок, пистолетов, пулеметов и пушек, в которых отдача служит для того, чтобы выбрасывать использованную гильзу и перезаряжать оружие.

Реактивная артиллерия

Можно совсем не бороться с отдачей, а использовать ее: ведь действие и реакция (отдача) равносильны, равноправны, равновелики, так пусть же реактивное действие пороховых газов , вместо того чтобы отталкивать назад ствол орудия, посылает снаряд вперед в цель. Так была создана реактивная артиллерия . В ней струя газов бьет не вперед, а назад, создавая в снаряде направленную вперед реакцию.

Для реактивного орудия оказывается ненужным дорогой и тяжелый ствол. Для направления полета снаряда прекрасно служит более дешевая, простая железная труба. Можно обойтись вовсе без трубы, а заставить снаряд скользить по двум металлическим рейкам.

По своему устройству реактивный снаряд подобен фейерверочной ракете, он только размерами побольше. В его головной части вместо состава для цветного бенгальского огня помещается разрывной заряд большой разрушительной силы. Середина снаряда наполняется порохом, который при горении создает мощную струю горячих газов, толкающих снаряд вперед. При этом сгорание пороха может длиться значительную часть времени полета, а не только тот короткий промежуток времени, пока обычный снаряд продвигается в стволе обычной пушки. Выстрел не сопровождается таким громким звуком.

Реактивная артиллерия не моложе обыкновенной артиллерии, а может быть, даже старше ее: о боевом применении ракет сообщают старинные китайские и арабские книги, написанные более тысячи лет назад.

В описаниях сражений более поздних времен нет-нет, да и промелькнет упоминание о боевых ракетах. Когда английские войска покоряли Индию, индийские воины-ракетчики своими огнехвостыми стрелами наводили ужас на захватчиков-англичан, порабощавших их родину. Для англичан в то время реактивное оружие было в диковинку.

Ракетными гранатами, изобретенными генералом К. И. Константиновым , мужественные защитники Севастополя в 1854-1855 годах отбивали атаки англо-французских войск.

Ракета

Огромное преимущество перед обыкновенной артиллерией - отпадала необходимость возить за собой тяжелые пушки - привлекло к реактивной артиллерии внимание военачальников. Но столь же крупный недостаток мешал ее усовершенствованию.

Дело в том, что метательный, или, как раньше говорили, форсовый, заряд умели делать только из черного пороха. А черный порох опасен в обращении. Случалось, что при изготовлении ракет метательный заряд взрывался, и гибли рабочие. Иногда ракета взрывалась при запуске, и гибли артиллеристы. Изготовлять и употреблять такое оружие было опасно. Поэтому оно и не получило широкого распространения.

Начатые успешно работы, однако, не привели к постройке межпланетного корабля. Немецкие фашисты подготовили и развязали кровопролитную мировую войну.

Реактивный снаряд

Недостаток при изготовлении ракет устранили советские конструкторы и изобретатели. В годы Великой Отечественной войны они дали нашей армии превосходное реактивное оружие. Были построены гвардейские минометы - «катюши» и изобретены РС («эрэс») - реактивные снаряды .


Реактивный снаряд

По своему качеству советская реактивная артиллерия превзошла все иностранные образцы и причиняла врагам громадный урон.

Защищая Родину, советский народ был вынужден поставить все достижения ракетной техники на службу обороны.

В фашистских государствах многие ученые и инженеры еще до войны усиленно разрабатывали проекты бесчеловечных орудий разрушения и массовых убийств. Это они считали целью науки.

Самоуправляющиеся самолеты

Во время войны гитлеровские инженеры построили несколько сот самоуправляющихся самолетов : снарядов «ФАУ-1» и реактивных снарядов «ФАУ-2». То были сигарообразные снаряды, имевшие в длину 14 метров и в диаметре 165 сантиметров. Весила смертоносная сигара 12 тонн; из них 9 тонн - топливо, 2 тонны - корпус и 1 тонна - взрывчатое вещество. «ФАУ-2» летели со скоростью до 5500 километров в час и могли подниматься в высоту на 170-180 километров.

Точностью попадания эти средства разрушения не отличались и были пригодны только для обстрела таких крупных мишеней, как большие и густонаселенные города. Немецкие фашисты выпускали «ФАУ-2» за 200-300 километров от Лондона в расчете, что город велик, - куда-нибудь да попадет!

Вряд ли Ньютон мог предполагать, что его остроумный опыт и открытые им законы движения лягут в основу оружия, созданного звериной злобой к людям, и целые кварталы Лондона обратятся в развалины и станут могилами людей, захваченных налетом слепых «ФАУ».

Космический корабль

Уже много веков люди лелеяли мечту о полетах в межпланетном пространстве, о посещении Луны, загадочного Марса и облачной Венеры. На эту тему было написано множество научно-фантастических романов, повестей и рассказов. Писатели отправляли своих героев в заоблачные дали на дрессированных лебедях, на воздушных шарах, в пушечных снарядах или еще каким-нибудь невероятным образом. Однако все эти способы полета основывались на выдумках, не имевших опоры в науке. Люди только верили, что они когда-нибудь сумеют покинуть нашу планету, но не знали, как это им удастся осуществить.

Замечательный ученый Константин Эдуардович Циолковский в 1903 году впервые дал научную основу идее космических путешествий . Он доказал, что люди могут покинуть земной шар и транспортным средством для этого послужит ракета, потому что ракета - единственный двигатель, который не нуждается для своего движения в какой-либо внешней опоре. Поэтому ракета способна летать в безвоздушном пространстве.

Ученый Константин Эдуардович Циолковский — доказал, что люди могут покинуть земной шар на ракете

По своему устройству космический корабль должен быть подобен реактивному снаряду, только в его головной части поместится кабина для пассажиров и приборов, а все остальное пространство будет занято запасом горючей смеси и двигателем.

Чтобы придать кораблю нужную скорость, требуется подходящее топливо. Порох и другие взрывчатые вещества ни в коем случае не пригодны: они и опасны и слишком быстро сгорают, не обеспечивая длительного движения. К. Э. Циолковский рекомендовал применять жидкое топливо: спирт, бензин или сжиженный водород, горящие в струе чистого кислорода или какого-либо другого окислителя. Правильность этого совета признали все, потому что лучшего топлива тогда не знали.

Первая ракета с жидким горючим, весившая шестнадцать килограммов, была испытана в Германии 10 апреля 1929 года. Опытная ракета взлетела в воздух и скрылась из вида раньше, чем изобретатель и все присутствующие сумели проследить, куда она полетела. Найти ракету после опыта не удалось. На следующий раз изобретатель решил «перехитрить» ракету и привязал к ней веревку длиной четыре километра. Ракета взвилась, волоча за собой веревочный хвост. Она вытянула два километра веревки, оборвала ее и последовала за своей предшественницей в неизвестном направлении. И эту беглянку также не удалось найти.

Подробности Категория: Человек и небо Опубликовано 10.06.2014 18:24 Просмотров: 8274

«Земля – колыбель человечества. Но нельзя вечно жить в колыбели». Это высказывание принадлежит русскому изобретателю, выдающемуся учёному-самоучке Константину Эдуардовичу Циолковскому.

Циолковского называют отцом космонавтики. Ещё в 1883 г. в своей рукописи "Свободное пространство" он высказывал мысль о том, что в космосе можно передвигаться с помощью ракеты. Но теорию ракетного движения он обосновал гораздо позже. В 1903 г. была опубликована первая часть труда учёного, который назывался «Исследование мировых пространств реактивными приборами». В этом труде он привёл доказательства того, что ракета является аппаратом, способным совершать космический полёт.

Научными разработками в области воздухоплавания и аэродинамики Циолковский занимался и ранее. В 1892 г. в работе «Теория и опыт аэростата» он описал управляемый дирижабль с оболочкой из металла. В те времена оболочки делали из прорезиненной ткани. Понятно, что дирижабль Циолковского мог служить гораздо дольше. Кроме того, он был оснащён системой подогрева газа и имел переменный объём. А это позволяло сохранять постоянную подъёмную силу при различных температурах окружающей среды и на различной высоте.

В 1894 г. учёный опубликовал статью «Аэростат или птицеподобная (авиационная) летательная машина», в которой описал летательный аппарат тяжелее воздуха – аэроплан с металлическим каркасом. В статье были даны расчёты и чертежи цельнометаллического самолёта с одним изогнутым крылом. К сожалению, в то время идеи Циолковского не были поддержаны в научном мире.

Многие поколения учёных мечтали о полётах за пределы Земли – на Луну, Марс и другие планеты. Но как будет двигаться летательный аппарат в космосе, где абсолютная пустота и нет опоры, оттолкнувшись от которой он получит ускорение? Циолковский предложил использовать для этой цели ракету, приводимую в движение реактивным двигателем.

Как устроен ракетный двигатель

В космическом пространстве нет ни твёрдой, ни жидкой, ни газообразной опоры. И ускорение космическому кораблю может сообщить только реактивная сила . Для появления этой силы внешние воздействия не нужны. Она возникает, когда продукты сгорания вытекают из сопла ракеты с некоторой скоростью относительно самой ракеты.

Основная часть ракетного двигателя – камера сгорания . В ней и происходит процесс сгорания топлива. В одной из стенок этой камеры есть отверстие, называемое реактивным соплом . Вот через это отверстие и выбрасываются газы, образуемые при сгорании.

Продукты сгорания топлива в двигателях называют рабочим телом. Вообще, рабочее тело – это некое условное материальное тело, расширяющееся при нагреве и сжимающееся при охлаждении. В каждом типе двигателя оно разное. Так, в тепловых двигателях, рабочее тело – это продукты сгорания бензина, дизельного топлива и др. В ракетных – продукты сгорания ракетного топлива. А топливо для ракетных двигателей также бывает разным. И в зависимости от его вида различают ядерные ракетные двигатели, электрические ракетные двигатели, химические ракетные двигатели.

В ядерном ракетном двигателе рабочее тело нагревается за счёт энергии, которая выделяется при ядерных реакциях.

В электрических ракетных двигателях источником энергии служит электрическая энергия.

Химические ракетные двигатели , в которых топливо (горючее и окислитель) состоит из веществ, находящихся в твёрдом состоянии, называются твёрдотопливными (РДТТ). А в жидкостных ракетных двигателях (ЖРД) компоненты топлива хранятся в жидком агрегатном состоянии.

Циолковский предложил использовать для полётов в космосе жидкостные ракетные двигатели. Такие двигатели преобразуют химическую энергию топлива в кинетическую энергию выбрасываемой из сопла струи. В камерах сгорания этих двигателей происходит экзотермическая (с выделением теплоты) реакция горючего и окислителя. В результате этой реакции продукты сгорания нагреваются, расширяются и, разгоняясь в сопле, истекают из двигателя с огромной скоростью. А ракета, согласно закону сохранения импульса, получает ускорение, направленное в другую сторону.

И в наше время для полётов в космосе применяют ракетные двигатели. Конечно, существуют и другие проекты двигателей, например, космический лифт или солнечный парус , но все они находятся в стадии разработки.

Первая ракета Циолковского

Люди придумали ракеты очень давно.

В конце III века до нашей эры человечество изобрело порох. А сила, возникающая при взрыве пороха, могла приводить в движение различные предметы. И пиротехнические средства стали использовать для фейерверков. Позже были созданы пушки и мушкеты. Их снаряды могли летать на вполне приличное расстояние. Но ракетами их всё-таки назвать нельзя было, так как они не имели собственного топлива. Но с их появлением возникли предпосылки для создания настоящих ракет.

Китайские «огненные стрелы», к которым прикреплялись трубки из плотной бумаги, заполненные горючим веществом и открытые с заднего конца, вылетавшие из лука при поджигании заряда, уже можно было считать ракетами.

В конце XIX века ракеты уже были на вооружении в артиллерии. Циолковский же предложил ракету – летательный аппарат, который передвигается в космическом пространстве за счёт действия реактивной тяги.

Как же выглядела первая ракета Циолковского? Это был летательный аппарат в виде металлической продолговатой камеры (формы наименьшего сопротивления), внутри которого располагались 2 отсека: жилой и двигательный. Жилой отсек предназначался для экипажа. А в двигательном отсеке находился жидкостный ракетный двигатель, работающий на водородно-кислородном топливе. Жидкий водород служил топливом, а жидкий кислород – окислителем, необходимым для горения водорода. Газы, образующиеся при сгорании топлива, имели очень высокую температуру и текли по трубам, расширяющимся к концу. Разредившись и охладившись, они вырывались из раструбов с огромной относительно ракеты скоростью. На выбрасываемую массу действовала сила со стороны ракеты. А согласно третьему закону Ньютона (закон равенства действия и противодействия) такая же сила, называемая реактивной, действовала и на ракету со стороны выбрасываемой массы. Эта сила сообщала ракете ускорение.

Формула Циолковского

Формула для вычисления скорости ракеты, обнаружена в математических трудах Циолковского, написанных им в 1897 г.

,

V - скорость летательного аппарата после выработки всего топлива:

I – отношение тяги двигателя к расходу топлива в секунду (величина, называемая удельным импульсом ракетного двигателя). Для теплового ракетного двигателя u = I.

M 1 – масса летательного аппарата в начальный момент полёта. Она включает массу самой конструкции ракеты, массу топлива и массу полезной нагрузки (например, космического корабля, который выводится ракетой на орбиту).

M 2 – масса летательного аппарата в конечный момент полёта. Так как топливо к этому времени уже израсходовано, то это будет масса конструкции + масса полезной нагрузки.

С помощью формулы Циолковского можно рассчитать количество топлива, необходимое ракете для получения заданной скорости.

Из формулы Циолковского получаем отношение начальной массы ракеты к её конечной массе:

Обозначим:

M o – масса полезного груза

M k - масса конструкции ракеты

M t - масса топлива

Масса конструкции зависит от массы топлива. Чем больше топлива необходимо ракете, тем больше резервуаров потребуется для его транспортировки, а значит, большей будет и масса конструкции.

Отношение этих масс выражается формулой:

где k – коэффициент, который показывает количество топлива на единицу массы конструкции ракеты.

Этот коэффициент может быть разным в зависимости от того, какие материалы использованы в конструкции ракеты. Чем легче и прочнее эти материалы, тем меньшим будет коэффициент, и легче конструкция. Кроме того, он зависит и от плотности топлива. Чем плотнее топливо, тем меньшие по объёмы ёмкости потребуются для его транспортировки, и тем выше значение k .

Подставив в формулу Циолковского выражения начальной и конечной массы ракеты через массы конструкции, груза и топлива, получим:

Из этого выражения следует, что величина массы топлива равна:

Зная значение удельного импульса топлива и массу полезного груза, можно рассчитать скорость ракеты.

Эта формула имеет смысл только в том случае, если

или

Если это условие не выполняется, ракета никогда не сможет достигнуть заданной скорости.

Многоступенчатая ракета

Чтобы преодолеть притяжение Земли, летательный аппарат должен развить горизонтальную скорость около 7,9 км/сек. Эта скорость называется первой космической скоростью . Получив такую скорость, он будет двигаться вокруг Земли по концентрической орбите и станет искусственным спутником Земли. При меньшей скорости он упадёт на Землю.

Чтобы покинуть орбиту Земли, аппарат должен обладать скоростью 11,2 км/сек. Эта скорость называется второй космической скоростью . А космический аппарат, получивший такую скорость, становится спутником Солнца.

Каждое небесное тело имеет свои значения космических скоростей. Например, для Солнца вторая космическая скорость равна 617,7 км/сек.

Вес топлива, необходимого для получения даже первой космической скорости, по расчётам превышает вес самой ракеты. А ведь кроме топлива, она должна нести ещё и полезный груз: экипаж, приборы и т.п. Понятно, что такую ракету построить невозможно. Но Циолковский нашёл решение и этой задачи. А что если механически скрепить вместе несколько ракет? Учёный предложил направлять в космическое пространство целый «ракетный поезд». Каждая ракета в таком «поезде» называлась ступенью, а сам «поезд» - многоступенчатой ракетой.

Двигатель первой, самой большой ступени, включается при старте. Она получает ускорение и сообщает его всем остальным ступеням, которые по отношению к ней являются полезной нагрузкой. Когда всё топливо выгорит, эта ступень отделяется от ракеты и сообщает свою скорость второй ступени. Далее таким же образом разгоняется вторая ступень, которая также отделится от ракеты, когда закончится топливо. И так будет до тех пор, пока не закончится топливо в двигателе последней ступени ракеты. Тогда и эта ступень отделится от космического корабля, а он займёт свое место на космической орбите.

Современные межконтинентальные ракеты, способные транспортировать ядерные заряды, и ракеты-носители, выводящие на околоземную орбиту космические летательные аппараты, имеют истоки в эпохе изобретения пороха в Поднебесной и использовании его для услаждения взоров императоров красочными фейерверками. Какой была первая ракета и кто был создатель ракеты, никто никогда не узнает, но то, что она имела форму трубки с одним открытым концом, из которого вылетала струя горючего состава, подтверждено документально.

Популярный предсказатель - писатель-фантаст Жюль Верн самым подробным образом в романе "Из пушки на Луну" описал устройство ракеты, способной преодолеть земное притяжение и, даже достоверно указал массу корабля Аполлон, который первым достиг орбиты земного спутника.

А если всерьез, создание первой ракеты в мире связывают с российским гением К.Э. Циолковским, который разработал проект этого удивительного устройства в 1903 году. Чуть позже в 1926 году американец Роберт Годдард смог создать полноценный ракетный двигатель на жидком топливе (смесь бензина и кислорода) и запустил ракету.

Это событие вряд ли может послужить ответом на вопрос: "Когда была создана первая ракета?", просто в силу того, что высота, которую удалось тогда взять, составляла всего 12 метров. Но это было несомненным прорывом, обеспечивающим развитие космонавтики и военной техники.

Самая первая отечественная ракета, которая в 1936 году достигла высоты 5 км, была разработана в рамках экспериментов по созданию зенитных орудий. Как известно, реализация именно этого проекта под кодовым названием ГИРД решило судьбу Великой отечественной войны, когда "Катюши" повергали немецких захватчиков в панику.

О том, кто изобрел ракету, отправившую в космос в 1957 году первый искусственный спутник Земли знают сейчас даже маленькие дети. Это советский конструктор С.П. Королев, с которым связаны самые выдающиеся достижения космонавтики.

До недавнего времени принципиальных открытий в ракетной области не происходило. И вот 2004 год стал известен, как год создания и испытаний паровых ракет (иначе "система внешнего сгорания"), которые непригодны для преодоления земного притяжения, но могут быть успешными для межпланетной транспортировки грузов.


Очередной прорыв в ракетной отрасли случился, как водится, в военной отрасли. В 2012 году американские инженеры заявили, что ими создана самая первая персональная ракета-пуля, которая при стендовых испытаниях показала удивительные результаты точности попадания (20 см отклонения на километр расстояния против 10 метров обычной пули). При длине порядка 10 см этот боеприпас нового поколения оснащен оптическим сенсором и 8-битным процессором. В полете такая пуля не вращается, а её траектория напоминает маленькую крылатую ракету.

Глубина звездного неба по-прежнему манит человека, и хотелось бы, что бы последующие достижения в области ракетных двигателей и баллистики были связаны только с научным и практическим интересом, а не с военным противостоянием.

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Кто же придумал ракету?

Ракета была известна давно. Очевидно, она появилась много веков назад на Востоке, возможно, в Древнем Китае - родине пороха. Ракеты (см. ниже) использовали во время народных празднеств, устраивали фейерверки, зажигали в небе огненные дожди, фонтаны, колёса.

Древнекитайская ракета:

1 - ствол-направляющая;

2 - пороховой заряд орудия;

3 - пыж;

4 - ракета;

5 - пороховой заряд ракеты.

Ракеты применяли в военном деле. Долгое время ракета была одновременно и оружием, и игрушкой. При Петре I была создана и применялась однофунтовая сигнальная ракета образца 1717 года (см. ниже), остававшаяся на вооружении до конца XIX века. Она поднималась на высоту до \(1\) километра.

Некоторые изобретатели предлагали использовать ракету для воздухоплавания. Научившись подниматься на воздушных шарах, люди были беспомощны в воздухе. Первым, кто предложил использовать ракету как средство передвижения, был российский изобретатель, революционер Николай Иванович Кибальчич, осуждённый на казнь за покушение на царя.

За десять дней до смерти в Петропавловской крепости он завершил работу над своим изобретением и передал адвокату не просьбу о помиловании или жалобу, а «Проект воздухоплавательного прибора» (чертежи и математические расчёты ракеты). Именно ракета, считал он, откроет человеку путь в небо.

Про свой аппарат (см. выше) он написал: «Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов... цилиндр должен подняться наверх».

Какая же сила применима к воздухоплаванию? - ставит вопрос Н.И. Кибальчич и отвечает. - Такой силой, по моему мнению, является медленно горящие взрывчатые вещества... Применить энергию газов, образующихся при воспламенении взрывчатых веществ к какой-либо продолжительной работе возможно только под тем условием, если та громадная энергия, которая образуется при горении взрывчатых веществ, будет образовываться не сразу, а в течение более или менее продолжительного промежутка времени. Если мы возьмём фунт зернистого пороху, вспыхивающего при зажигании мгновенно, спрессуем его под большим давлением в форму цилиндра, то увидим, что горение не сразу охватит цилиндр, а будет распространяться довольно медленно от одного конца к другому и с определённой скоростью... На этом свойстве прессованного пороха основано устройство боевых ракет.

Изобретатель имеет здесь в виду старинные (первой половины XIX века) ракеты, которые перекидывали 50-килограммовые бомбы на \(2-3\) километра при заряде в \(20\) кг. Н.И. Кибальчич вполне ясно и совершенно правильно представлял себе механизм действия ракеты.

Конструкцию космической ракеты с жидкостным реактивным двигателем впервые предложил в \(1903\) году русский учёный Константин Эдуардович Циолковский.

Он разработал теорию движения космических ракет и вывел формулу для расчёта их скорости.

Рассмотрим вопрос об устройстве и запуске так называемых ракет-носителей, т.е. ракет, предназначенных для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.

В любой ракете, независимо от её конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления, который мощной струёй устремляется наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

С какой целью увеличивают скорость выхода струи газа? Дело в том, что от этой скорости зависит скорость ракеты. Это можно показать с помощью закона сохранения импульса.

Поскольку до старта импульс ракеты был равен нулю, то по закону сохранения суммарный импульс движущейся оболочки и выбрасываемого из неё газа тоже должен быть равен нулю. Отсюда следует, что импульс оболочки и направленный противоположно ему импульс струи газа должны быть равны по модулю:

p оболочки = p газа

m оболочки v оболочки = m газа v газа.

v оболочки = m газа v газа m оболочки.

Значит, чем с большей скоростью вырывается газ из сопла или чем меньше масса оболочки ракеты, тем больше будет скорость оболочки ракеты.

В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

Из закона сохранения импульса следует: чтобы разогнаться, надо что-то оттолкнуть назад.

Например, когда человек разбегается, он ногами толкает назад дорогу; автомобиль толкает назад дорогу вращающимися ведущими колесами; гребец веслом толкает назад воду.

А что можно оттолкнуть назад, когда вокруг ничего нет – как у ракеты в открытом космосе?

В таком случае надо брать с собой то, что можно будет потом отталкивать назад. Так, лодку можно разогнать и без весел, если запастись, например, большим количеством мячей и бросать их из лодки назад (рис. 27.1).

Подобным же образом приходит в движение и пушка при отдаче во время выстрела: толкая ядро, пушка согласно закону сохранения импульса и сама получает толчок.
Движение, при котором тело изменяет свою скорость, отбрасывая свою часть, называют реактивным .

Принцип действия ракеты

Наиболее важный практический пример реактивного движения представляет собой движение ракеты.

Вы можете сами сделать простейшую модель ракеты – для этого достаточно взять обыкновенный воздушный шарик.

Поставим опыт
Надуйте шарик и, не завязывая его, отпустите. Воздух будет выходить из шарика, и он полетит в сторону, противоположную направлению струи воздуха (рис. 27.2).

Движение шарика объясняется законом сохранения импульса .

В начальный момент шарик с содержащимся в нем воздухом покоился относительно земли. Согласно закону сохранения импульса суммарный импульс шарика и вышедшего из него воздуха должен оставаться равным нулю. Поэтому выходящий из шарика воздух и шарик должны двигаться в противоположных направлениях.

Ракета сходна в этом отношении с детским воздушным шариком. Подобно воздуху, выходящему из шарика, из сопла ракеты с огромной скоростью вылетают назад продукты сгорания топлива (раскаленный газ). При этом согласно закону сохранения импульса ракете сообщается импульс, направленный вперед (рис. 27.3).

Выберем инерциальную систему отсчета, в которой в начальный момент ракета покоилась, причем ее двигатель был выключен. Пусть при включении двигателя из сопла ракеты вылетела порция газа массой m г со скоростью г относительно выбранной системы отсчета.

Согласно закону сохранения импульса суммарный импульс ракеты и газа в этой системе отсчета остался равным нулю. Поэтому

Здесь m р – масса ракеты (оставшаяся после выброса порции газа), р – скорость, которую приобрела ракета в выбранной системе отсчета (в которой ее начальная скорость равна нулю). Следовательно, р – это изменение скорости ракеты в этой системе отсчета.

1. Докажите, что изменение скорости ракеты прямо пропорционально массе выброшенного газа и его скорости относительно ракеты и обратно пропорционально массе ракеты.

Ракеты используют для запуска искусственных спутников Земли, обслуживания орбитальных станций, межпланетных полетов.

В головной части ракеты расположена кабина космонавтов. В начале полета на эту часть приходится всего несколько процентов от общей массы ракеты. Основную же массу ракеты в начале полета составляет запас топлива.

В современных ракетах скорость вылетающего газа (относительно ракеты) составляет несколько километров в секунду (в несколько раз больше скорости пули). Как следует из соотношения (1), для того чтобы даже при такой огромной скорости вылетающего газа ракета приобрела первую космическую скорость (около 8 км/с), необходимо, чтобы масса топлива в несколько раз превышала массу полезного груза.

Однако весь газ нельзя выбрасывать из ракеты сразу! Дело в том, что ускорение ракеты было бы при этом настолько большим, что возникшую перегрузку не смогли бы выдержать не только космонавты, но и приборы.

Почему ракеты делают многоступенчатыми?

Чтобы избежать больших перегрузок, ракета должна разгоняться в течение достаточно длительного промежутка времени. А при длительном разгоне вылетающий из сопла ракеты газ должен разгонять не только саму ракету, но и весь огромный запас топлива, который ракета несет в своем корпусе. В результате расход топлива многократно увеличивается.

Например, чтобы без чрезмерных перегрузок разогнать ракету до первой космической скорости, масса топлива должна в десятки раз превышать массу полезного груза. Поэтому ракету делают многоступенчатой.

Первая и вторая ступени ракеты представляют собой емкости с топливом, камерами сгорания и соплами. Когда топливо, содержащееся в первой ступени, сгорает, она отделяется от ракеты, в результате чего масса ракеты значительно уменьшается. Затем то же происходит со второй ступенью, после чего включаются двигатели третьей ступени, завершающие разгон ракеты до расчетной скорости.

Расчет передаваемого ракете импульса

Рассмотрим несколько упрощенный пример расчета скорости движения ракеты.

2. При работе двигателя из сопла ракеты массой 100 т ежесекундно выбрасывается 100 кг газа со скоростью 4 км/с относительно ракеты. Считайте, что изменением массы ракеты за рассматриваемый промежуток времени можно пренебречь.
а) Чему равен импульс выброшенного за 1 с газа в инерциальной системе отсчета, в которой ракета в начальный момент покоилась?
б) Чему равно изменение импульса ракеты за 1 с в той же системе отсчета?
в) Какая сила действовала на ракету со стороны газа?
г) Чему равно ускорение ракеты в упомянутой системе отсчета?

2. Развитие ракетостроения и освоение космоса

Основы теории реактивного движения заложил Константин Эдуардович Циолковский.

После перенесенной в детстве скарлатины он практически оглох и не мог посещать школу. Но он оказался гениальным самоучкой и стал одним из самых просвещенных людей своего времени.

Исследования, положившие начало космической эры человечества, Константин Эдуардович проводил, работая учителем калужской гимназии.
Он предложил использовать многоступенчатые ракеты, разработал принципы систем жизнеобеспечения экипажа.

К. Э. Циолковскому принадлежит знаменитое изречение: «Земля – колыбель разума, но нельзя вечно жить в колыбели».

Мечту Циолковского о космических полетах первыми осуществили наши соотечественники под руководством Сергея Павловича Королева.

Первый искусственный спутник Земли был запущен в СССР 4 октября 1957 года. Первым космонавтом Земли стал Юрий Алексеевич Гагарин. Его космический полет состоялся 12 апреля 1961 года.


Современное состояние космических исследований

Со времени первых космических полетов ракеты были значительно усовершенствованы, и сегодня на околоземные орбиты с их помощью выводятся большие космические станции, на которых постоянно работают космонавты.

Ракеты выводят на орбиты сотни спутников связи, которые обеспечивают передачи тысяч телевизионных программ и миллионов телефонных разговоров, благодаря чему вся планета окутана сегодня «паутиной» надежных систем связи.

Запущены исследовательские ракеты на Венеру, Марс и другие планеты Солнечной системы. На спутниках устанавливают мощные телескопы, с помощью которых ученые заглядывают все дальше и дальше в глубины Вселенной.

Россия принимает активное участие в международных космических проектах, в частности с помощью международных космических станций.

На рисунке 27.4 приведена полученная из космоса фотография международной космической станции на фоне Земли.


Дополнительные вопросы и задания

3. Расскажите, в чем состоит принцип действия ракеты.

4. Как связаны скорость ракеты и скорость выбрасываемого ракетой газа?

5. Объясните, почему нельзя доставить груз на орбитальную станцию самолетом.

6. Для чего ракеты делают многоступенчатыми?

7. Используя Интернет, подготовьте вместе с одноклассниками иллюстрированную презентацию о современных космических исследованиях.

8. Двигатель ракеты выбрасывает газ равными порциями с одинаковыми скоростями относительно ракеты. Как будут изменяться приращения скорости ракеты при выбрасывании очередной порции газа?

9. Изготовьте сегнерово колесо (рис. 27.5) и объясните принцип его действия. В какую сторону будет вращаться ведерко, изображенное на рисунке?