Какие приспособления к изменениям температуры окружающей. Приспособления к низким температурам у животных

Температурные границы существования видов. Пути их приспособления к колебаниям температуры.

Температура отражает среднюю кинетическую скорость атомов и молекул в какой-либо системе. От температуры окружающей среды зависит температура организмов и, следовательно, скорость всех химических реакций, составляющих обмен веществ.

Поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0 до +50°С. Однако целый ряд организмов обладает специализированными ферментными системами и приспособлен к активному существованию при температуре тела, выходящей за указанные пределы.

Виды, предпочитающие холод, относят к экологической группе криофилов. Они могут сохранять активность при температуре клеток до -8…-10°С, когда жидкости их тела находятся в переохлажденном состоянии. Криофилия характерна для представителей разных групп наземных организмов: бактерий, грибов, лишайников, мхов, членистоногих и других существ, обитающих в условиях низких температур: в тундрах, арктических и антарктических пустынях, в высокогорьях, холодных морях и т. п. Виды, оптимум жизнедеятельности которых приурочен к области высоких температур, относят к группе термофилов. Термофилией отличаются многие группы микроорганизмов и животных, например нематод, личинок насекомых, клещей и других организмов, встречающихся на поверхности почвы в аридных районах, в разлагающихся органических остатках при их саморазогревании и т. д.

Температурные границы существования жизни намного раздвигаются, если учесть выносливость многих видов в латентном состоянии. Споры некоторых бактерий выдерживают в течение нескольких минут нагревание до + 180°С. В лабораторных экспериментальных условиях семена, пыльца и споры растений, нематоды, коловратки, цисты простейших и ряд других организмов после обезвоживания переносили температуры, близкие к абсолютному нулю (до -271,16°С), возвращаясь затем к активной жизни. В этом случае цитоплазма становится тверже гранита, все молекулы находятся в состоянии почти полного покоя и никакие реакции невозможны. Приостановка всех жизненных процессов организма носит название анабиоза. Из состояния анабиоза живые существа могут возвратиться к нормальной активности только в том случае, если не была нарушена структура макромолекул в их клетках.

Существенную экологическую проблему представляет нестабильность, изменчивость температур окружающей организмы среды. Изменения температуры приводят также к изменениям сте-реохимической специфичности макромолекул: третичной и четвертичной структуры белков, строения нуклеиновых кислот, организации мембран и других структур клетки.

Повышение температуры увеличивает количество молекул, обладающих энергией активации. Коэффициент, показывающий во сколько раз изменяется скорость реакций при изменении температуры на 10 °С, обозначают Q10. Для большинства химических реакций величина этого коэффициента равна 2-3 (закон Вант-Гоффа). Сильное понижение температуры вызывает опасность такого замедления обмена веществ, при котором окажется невозможным осуществление основных жизненных функций. Излишнее усиление метаболизма при повышении температуры также может вывести организм из строя еще задолго до теплового разрушения ферментов, так как резко возрастают потребности в пище и кислороде, которые далеко не всегда могут быть удовлетворены.

Так как величина Кю для разных биохимических реакций различна, то изменения температуры могут сильно нарушить сбалансированность обмена веществ, если скорости сопряженных процессов изменятся различным образом.

В ходе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается двумя путями: 1) различными биохимическими и физиологическими перестройками (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т. д.); 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды, что позволяет не слишком нарушать сложившийся ход биохимических реакций.

Источником теплообразования в клетках являются два экзотермических процесса: окислительные реакции и расщепление АТФ. Энергия, освобождающаяся при втором процессе, идет, как известно, на осуществление всех рабочих функций клетки, а энергия окисления - на восстановление АТФ. Но и в том и в другом случае часть энергии, согласно второму закону термодинамики, рассеивается в виде тепла. Тепло, вырабатываемое живыми организмами как побочный продукт биохимических реакций, может служить существенным источником повышения температуры их тела.

Однако представители большинства видов не обладают достаточно высоким уровнем обмена веществ и не имеют приспособлений, позволяющих удерживать образующееся тепло. Их жизнедеятельность и активность зависят прежде всего от тепла, поступающего извне, а температура тела - от хода внешних температур. Такие организмы называют пойкилотермными. Пойкилотер-мия свойственна всем микроорганизмам, растениям, беспозвоночным животным и значительной части хордовых.

Гомойотермные животные способны поддерживать постоянную оптимальную температуру тела независимо от температуры среды.

Гомойотермия характерна только для представителей двух высших классов позвоночных - птиц и млекопитающих. Частный случай гомойотермии - гегерогерлшя - свойствен животным, впадающим в неблагоприятный период года в спячку или оцепенение. В активном состоянии они поддерживают высокую температуру тела, а в неактивном - пониженную, что сопровождается замедлением обмена веществ. Таковы суслики, сурки, ежи, летучие мыши, сони, стрижи, колибри и др. У разных видов механизмы, обеспечивающие их тепловой баланс и температурную регуляцию, различны. Они зависят как от эволюционного уровня организации группы, так и от образа жизни вида.

Эффективные температуры развития пойкилотермных организмов. Зависимость темпов роста и развития от внешних температур для растений и пойкилотермных животных дает возможность рассчитать скорость прохождения их жизненного цикла в конкретных условиях. После холодового угнетения нормальный обмен веществ восстанавливается для каждого вида прк определенной температуре, которая называется температурным порогом развития. Чем больше температура среды превышает пороговую, тем интенсивнее протекает развитие и, следовательно, тем скорее завершается прохождение отдельных стадий и всего жизненного цикла организма.

Таким образом, для осуществления генетической программы развития пойкилотермным организмам необходимо получить извне определенное количество тепла. Это тепло измеряется суммой эффективных температур. Под эффективной температурой понимают разницу между температурой среды и температурным порогом развития организмов. Для каждого вида она имеет верхние пределы, так как слишком высокие температуры уже не стимулируют, а тормозят развитие.

И порог развития, и сумма эффективных температур для каждого вида свои. Они зависят от исторической приспособленности вида к условиям жизни. Для семян растений умеренного климата, например гороха, клевера, порог развития низкий: их прорастание начинается при температуре почвы от 0 до +1 °С; более южные культуры - кукуруза и просо - начинают прорастать только при + 8…+ 10°С, а семенам финиковой пальмы для начала развития нужно прогревание почвы до +30°С.

Сумму эффективных температур рассчитывают по формуле:

где X - сумма эффективных температур, Г -температура окружающей среды, С - температура порога развития и t - число часов или дней с температурой, превышающей порог развития.

Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины - до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Ленинградом, например, сумма эффективных температур равна 77, кислицы - 453, земляники - 500, а желтой акации -700 °С.

Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница древесной растительности приблизительно совпадает с июльскими изотермами + 10… + 12°С. Севернее уже не хватает тепла для развития деревьев и зона лесов сменяется безлесными тундрами.

Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.

Большой размах температурных колебаний - отличительная черта наземной среды. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Даже в условиях влажных тропиков, где средние месячные температуры изменяются в течение года не более чем на 1-2°С, суточные различия значительно выше. В бассейне Конго они составляют в среднем 10- 12°С (максимум +36, минимум +18СС). Особенно значительны изменения температуры воздуха в приполярных континентальных районах и в пустынях. В окрестностях Якутска среднеянварская температура воздуха -43°С, среднеиюльская +19°С, а годовой размах от -64 до +35°С, т. е. около 100°С. Сезонный размах температуры воздуха в пустынях Средней Азии 68-77 °С, а суточный 25-38 °С. Еще значительнее эти колебания на поверхности почвы.

Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитании протекает их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными.

Температурные адаптации наземных растений. Растения, будучи организмами неподвижными, должны существовать при том тепловом режиме, который создается в местах их произрастания. Высшие растения умеренно холодного и умеренно теплого поясов эвритермны. Они переносят в активном состоянии колебания температур, достигающие 60 °С. Если учесть и латентное состояние, то эта амплитуда может увеличиться до 90 °С и более. Например, даурская лиственница выдерживает близ Верхоянска и Оймякона зимние морозы до - 70 °С. Растения дождевых тропических лесов стенотермны. Они не переносят ухудшения теплового режима и даже положительные температуры +5…+8°С для них губительны. Еще более стенотермны некоторые криофильные зеленые и диатомовые водоросли в полярных льдах и на снежных полях высокогорий, которые живут только при температуре около 0°С.

Тепловой режим растений весьма изменчив. Основные пути адаптации к температурным изменениям среды у растений - это биохимические, физиологические и некоторые морфологические перестройки. Растения отличаются очень слабыми возможностями регуляции собственной температуры. Тепло, образующееся в процессе обмена веществ, благодаря трате его на транспирацию, большой излучающей поверхности и несовершенным механизмам регуляции быстро отдается окружающей среде. Основное значение в жизни растений имеет тепло, получаемое извне. Однако совпадение температур тела растения и среды скорее надо считать исключением, чем правилом, из-за разницы скоростей получения и отдачи тепла.

Температура растения вследствие нагревания солнечными лучами может быть выше температуры окружающего его воздуха и почвы. Иногда эта разница доходит до 24 °С, как, например, уподушковидного кактуса Tephrocactus floccosus, растущего в перуанских Андах на высоте около 4000 м. При сильной транспирации температура растения становится ниже температуры воздуха. Транспирация через устьица - регулируемый растением процесс. При повышении температуры воздуха она усиливается, если возможна быстрая подача необходимого количества воды к листьям. Это спасает растение от перегрева, понижая его температуру на 4-6, а иногда на 10-15 °С.

Температура разных органов растения различна в зависимости от их расположения относительно падающих лучей и разных по степени нагретости слоев воздуха. Тепло поверхности почвы и приземного слоя воздуха особенно важно для тундровых и высокогорных растений. Приземистость, шпалерные и подушковидные формы роста, прижатость листьев розеточных и полурозеточных побегов к субстрату у арктических и высокогорных растений можно рассматривать как адаптацию их к лучшему использованию тепла в условиях, где его мало.

В дни с переменной облачностью надземные органы растений испытывают резкие перепады температуры. Например, у дубравного эфемероида пролески сибирской, когда облака закрывают солнце, температура листьев может упасть с +25…+ 27 до + 10… + 15_°С, а затем, когда растения снова освещаются солнцем, поднимается до прежнего уровня. В пасмурную погоду температура листьев и цветков близка к температуре окружающего воздуха, а часто бывает на несколько градусов ниже. У многих растений разница температур заметна даже в пределах одного листа. Обычно верхушка и края листьев холоднее, поэтому при ночном охлаждении в этих местах в первую очередь конденсируется роса и образуется иней.

Чередование более низких ночных и более высоких дневных температур (термопериодизм) благоприятно для многих видов. Растения континентальных областей лучше всего растут, если амплитуда суточных колебаний составляет 10-15 °С, большинство растений умеренной зоны - при амплитуде в 5-10°С, тропические- при амплитуде всего в 3° С, а некоторые из них (шерстяное дерево, сахарный тростник, арахис) - без суточного ритма температур.

В разные фазы онтогенеза требования к теплу различны. В умеренном поясе прорастание семян происходит обычно при более низких температурах, чем цветение, а для цветения требуется более высокая температура, чем для созревания плодов.

По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы:

1) нехолодостойкие растения - сильно повреждаются или гибнут при температурах выше точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей;

2) неморозостойкие растения - переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитоплазме, что понижает точку замерзания до -5…-7°С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические виды. В период вегетации все листостебельные растения неморозостойки;

3) льдоустойчи вые, или морозоустойчивые, растения - произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность.

Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках Сахаров (до 20-30%), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягиваемся образующимися в тканях кристаллами льда. Ультраструктуры и ферменты перестраиваются таким образом, что клетки переносят обезвоживание, связанное с образованием льда.

Оттепели в середине, а особенно в конце зимы вызывают быстрое снижение устойчивости растений к морозам. После окончания зимнего покоя закалка утрачивается. Весенние заморозки, наступившие внезапно, могут повредить тронувшиеся в рост побеги и особенно цветки даже у морозоустойчивых растений.

По степени адаптации к высоким температурам можно выделить следующие группы организмов:

1) нежаростойкие виды - повреждаются уже при + 30… + 40°С (эукариотические водоросли, водные цветковые, наземные мезофиты);

2) жаровыносливые э у к а р и о т ы - растения сухих местообитаний с сильной инсоляцией (степей, пустынь, саванн, сухих субтропиков и т. п.); переносят получасовое нагревание до + 50… + 60°С;

3) жароустойчивые прокариоты - термофильные бактерии и некоторые виды сине-зеленых водорослей, могут жить в горячих источниках при температуре +85… + 90°С.

Некоторые растения регулярно испытывают влияние пожаров, когда температура кратковременно повышается до сотен градусов. Пожары особенно часты в саваннах, в сухих жестколистных лесах и кустарниковых зарослях типа чапарраля. Там выделяют группу растений пирофитов, устойчивых к пожарам. У деревьев саванн на стволах толстая корка, пропитанная огнеупорными веществами, надежно защищающая внутренние ткани. Плоды и семена пирофитов имеют толстые, часто одревесневшие покровы, которые растрескиваются, будучи опалены огнем.

Наиболее общие адаптации, позволяющие избегать перегрева,- повышение термоустойчивости протопласта в результате закаливания, охлаждение тела путем повышенной транспирации, отражение и рассеивание падающих на растение лучей благодаря глянцевитой поверхности листьев или густому опушению из светлых волосков, уменьшение тем или иным способом нагреваемой площади. У многих тропических растений из семейства бобовых при температуре воздуха выше +35°С листочки сложного листа складываются, чем вдвое сокращается поглощение радиации. У растений жестколистных лесов и кустарниковых группировок, растущих при сильной летней инсоляции, листья повернуты ребром к полуденным лучам солнца, что помогает избегать перегревания.

Температурные адаптации животных. В отличие от растений животные, обладающие мускулатурой, производят гораздо больше собственного, внутреннего тепла. При сокращении мышц освобождается значительно больше тепловой энергии, чем при функционировании любых других органов и тканей, так как КПД использования химической энергии для совершения мышечной работы относительно низок. Чем мощнее и активнее мускулатура, тем больше тепла может генерировать животное. По сравнению о растениями животные обладают более разнообразными возможностями регулировать, постоянно или временно, температуру собственного тела. Основные пути температурных адаптации у животных следующие:

1) химическая терморегуляция - активное увеличение теплопродукции в ответ на понижение температуры среды;

2) физическая терморегуляция - изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток. Физическая терморегуляция осуществляется благодаря особым анатомическим и морфологическим чертам строения животных: волосяному и перьевому покровам, деталям устройств кровеносной системы, распределению жировых запасов, возможностям испарительной теплоотдачи и т. п.;

3) поведение организмов. Перемещаясь в пространен ве или изменяя свое поведение более сложным образом, животные могут активно избегать крайних температур. Для многих животных поведение является почти единственным и очень эффективным способом поддержания теплового баланса.

Пойкилотермные животные отличаются более низким уровнем обмена веществ по сравнению с гомойотермными даже при одинаковой температуре тела. Например, пустынная игуана при температуре + 37 °С потребляет кислорода в 7 раз меньше, чем грызуны такой же величины. Из-за пониженного уровня обмена собственного тепла у пойкилотермных животных вырабатывается мало и, следовательно, возможности химической терморегуляции у них ничтожны. Физическая терморегуляция развита также слабо. Для пойкилотермных особенно сложно противостоять недостатку тепла. С понижением температуры среды все процессы жизнедеятельности сильно замедляются и животные впадают в оцепенение. В таком неактивном состоянии они обладают высокой холодоустойчивостью, которая обеспечивается в основном биохимическими адаптациями. Чтобы перейти к активности, животные сначала должны получить определенное количество тепла извне.

В известных пределах пойкилотермные животные способны регулировать поступление в тело наружного тепла, ускоряя нагревание или, наоборот, избегая перегрева. Основные способы регуляции температуры тела у пойкилотермных поведенческие - перемена позы, активный поиск благоприятных микроклиматических условий, смена мест обитания, целый ряд специализированных форм поведения, направленных на поддержание условий окружающей среды и создание нужного микроклимата (рытье нор, сооружение гнезд и т. д.).

Переменой позы животное может усилить или ослабить нагревание тела за счет солнечной радиации. Например, пустынная саранча в прохладные утренние часы подставляет солнечным лучам широкую боковую поверхность тела, а в полдень - узкую спинную. В сильную жару животные прячутся в тень, скрываются в норах. В пустынях днем, например, некоторые виды ящериц и змей взбираются на кусты, избегая соприкосновения с раскаленной поверхностью почвы. К зиме многие животные ищут убежища, где ход температур более сглажен по сравнению с открытыми местами обитания. Еще более сложны формы поведения общественных насекомых: пчел, муравьев, термитов, которые строят гнезда с хорошо регулируемой внутри них температурой, почти постоянной в период активности насекомых.

У отдельных видов отмечена способность и к химической терморегуляции. Многие пойкилотермные животные способны поддерживать оптимальную температуру тела за счет работы мышц, однако с прекращением двигательной активности тепло перестает вырабатываться и быстро рассеивается из организма по причине несовершенства механизмов физической терморегуляции. Например, шмели разогревают тело специальными мышечными сокращениями- дрожью - до +32… + 33°С, что дает им возможность взлетать и кормиться в прохладную погоду.

У некоторых видов существуют также приспособления к уменьшению или усилению теплоотдачи, т. е. зачатки физической терморегуляции. Ряд животных избегает перегревания, усиливая потерю тепла через испарение. Лягушка за час при +20°С теряет на суше 7770 Дж, что в 300 раз больше ее собственной теплопродукции. Многие рептилии при приближении температуры к верхней критической начинают тяжело дышать или держать рот открытым, усиливая отдачу воды со слизистых оболочек.

Гомойотермия развилась из пойкилотермии путем усовершенствования способов регуляции теплообмена. Способность к такой регуляции слабо выражена у детенышей млекопитающих и птенцов и полностью проявляется лишь во взрослом состоянии.

Взрослые гомойотермные животные отличаются настолько эффективной регуляцией поступления и отдачи тепла, что это позволяет им поддерживать постоянную оптимальную температуру тела во все времена года. Механизмы терморегуляции у каждого вида множественны и разнообразны. Это обеспечивает большую надежность механизма поддержания температуры тела. Такие обитатели севера, как песец, заяц-беляк, тундряная куропатка, нормально жизнедеятельны и активны даже в самые сильные морозы, когда разница температуры воздуха и тела составляет свыше 70 °С.

Чрезвычайно высокая сопротивляемость гомойотермных животных перегреванию была блестяще продемонстрирована около двухсот лет назад в опыте доктора Ч. Блэгдена в Англии. Вместе с несколькими друзьями и собакой он провел 45 мин в сухой камере при температуре +126°С без последствий для здоровья. В то же время кусок мяса, взятый в камеру, оказался сваренным, а холодная вода, испарению которой препятствовал слой масла, нагрелась до кипения.

У теплокровных животных очень высокая способность к химической терморегуляции. Они отличаются высокой интенсивностью обмена веществ и выработкой большого количества тепла.

В противоположность пойкилотермным при действии холода в организме гомойотермных животных окислительные процессы не ослабевают, а усиливаются, особенно в скелетных мышцах. У многих животных отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Кроме того, клетки мышечной и многих других тканей выделяют тепло и без осуществления рабочих функций, приходя в состояние особого терморегуляционного тонуса. Тепловой эффект мышечного сокращения и терморегуляционного тонуса клеток резко возрастает при снижении температуры среды.

При продуцировании дополнительного тепла особенно усиливается обмен липидов, так как нейтральные жиры содержат основной запас химической энергии. Поэтому жировые запасы животных обеспечивают лучшую терморегуляцию. Млекопитающие обладают даже специализированной бурой жировой тканью, в которой вся освобождающаяся химическая энергия, вместо того чтобы переходить в связи АТФ, рассеивается в виде тепла, т. е. идет на обогревание организма. Бурая жировая ткань наиболее развита у животных холодного климата.

Поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные при усилении химической терморегуляции либо нуждаются в большом количестве пищи, либо тратят много жировых запасов, накопленных ранее. Например, бурозубка крошечная имеет исключительно высокий уровень обмена. Чередуя очень короткие периоды сна и активности, она деятельна в любые часы суток, не впадает в спячку зимой и в день съедает корма в 4 раза больше собственной массы. Частота сердцебиения у бурозубок до 1000 ударов в минуту. Также и птицам, остающимся на зиму, нужно много корма; им страшны не столько морозы, сколько бескормица. Так, при хорошем урожае семян ели и сосны клесты зимой даже выводят птенцов.

Усиление химической терморегуляции, таким образом, имеет свои пределы, обусловленные возможностью добывания пищи.

При недостатке корма зимой такой тип терморегуляции экологически невыгоден. Он, например, слабо развит у всех животных, обитающих за полярным кругом: песцов, моржей, тюленей, белых медведей, северных оленей и др. Для обитателей тропиков химическая терморегуляция также не характерна, поскольку у них практически не возникает необходимости в дополнительном продуцировании тепла.

Физическая терморегуляция экологически более выгодна, так как адаптация к холоду осуществляется не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного. Кроме того, возможна защита от перегрева путем усиления теплоотдачи во внешнюю среду. В филогенетическом ряду млекопитающих- от насекомоядных к рукокрылым, грызунам и хищникам - механизмы физической терморегуляции становятся все более совершенными и разнообразными. К ним следует отнести рефлекторное сужение и расширение кровеносных сосудов кожи, меняющие ее теплопроводность, изменение теплоизолирующих свойств меха и перьевого покрова, противоточный теплообмен при кровоснабжении отдельных органов, регуляцию испарительной теплоотдачи.

Густой мех млекопитающих, перьевой и особенно пуховый покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшить теплоизлучение во внешнюю среду. Теплоотдача регулируется наклоном волос и перьев, сезонной сменой меха и оперения. Исключительно теплый зимний мех животных Заполярья позволяет им в холода обходиться без повышения обмена веществ и снижает потребность в пище. Например, песцы на побережье Северного Ледовитого океана зимой потребляют пищи даже меньше, чем летом.

У животных холодного климата слой подкожной жировой клетчатки распределен по всему телу, так как жир - хороший тепло-изолятор. У животных жаркого климата подобное распределение жировых запасов приводило бы к гибели от перегрева из-за невозможности выведения избытка тепла, поэтому жир у них запасается локально, в отдельных частях тела, не мешая теплоизлучению с общей поверхности (верблюды, курдючные овцы, зебу и др.).

Системы противоточного теплообмена, помогающие поддерживать постоянную температуру внутренних органов, обнаружены в лапах и хвостах у сумчатых, ленивцев, муравьедов, полуобезьян, ластоногих, китов, пингвинов, журавлей и др.

Эффективным механизмом регуляции теплообмена служит испарение воды путем потоотделения или через влажные слизистые оболочки полости рта и верхних дыхательных путей. Так как теплота парообразования воды велика (2,3-106 Дж/кг), таким путем выводится из организма много избыточного тепла. Способность к образованию пота у разных видов очень различна. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая тепло в десятикратном количестве по сравнению с нормой. Выделяемая вода, естественно, должна возмещаться через питье. У некоторых животных испарение идет только через слизистые оболочки рта. У собаки, для которой одышка- основной способ испарительной терморегуляции, частота дыхания при этом доходят до 300-400 вдохов в минуту. Регуляция температуры через испарение требует траты организмом воды и поэтому возможна не во всех условиях существования.

Немаловажное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как в конечном счете масштабы продуцирования тепла зависят от массы животного, а теплообмен идет через его покровы.

Связь размеров и пропорций тела животных с климатическими условиями их обитания была подмечена еще в XIX в. Согласно правилу К. Бергмана, если два близких вида теплокровных отличаются размерами, то более крупный обитает в более холодном, а мелкий - в теплом климате. Бергман подчеркивал, что эта закономерность проявляется лишь в том случае, если виды не различаются другими приспособлениями к терморегуляции.

Д. Аллен в 1877 г. подметил, что у многих млекопитающих и птиц северного полушария относительные размеры конечностей и различных выступающих частей тела (хвостов, ушей, клювов) увеличиваются к югу. Терморегуляционное значение отдельных участков тела далеко не равноценно. Выступающие части имеют большую относительную поверхность, которая выгодна в условиях жаркого климата. У многих млекопитающих, например, особое значение для поддержания теплового баланса имеют уши, снабженные, как правило, большим количеством кровеносных сосудов. Огромные уши африканского слона, маленькой пустынной лисички фенека, американского зайца превратились в специализированные органы терморегуляции.

При адаптации к холоду проявляется закон экономии поверхности, так как компактная форма тела с минимальным отношением площади к объему наиболее выгодна для сохранения тепла. В некоторой степени это свойственно и растениям, образующим в северных тундрах, полярных пустынях и высоко в горах плотные подушечные формы с минимальной поверхностью теплоотдачи.

Поведенческие способы регуляции теплообмена для теплокровных животных не менее важны, чем для пойкилотермных, и также чрезвычайно разнообразны - от изменения позы и поисков укрытий до сооружения сложных нор, гнезд, ближних и дальних миграций.

В норах роющих животных ход температур сглажен тем сильнее, чем больше глубина норы. В средних широтах на расстоянии 150 см от поверхности почвы перестают ощущаться даже сезонные колебания температуры. В особенно искусно построенных гнездах также поддерживается ровный, благоприятный микроклимат. В войлокообразном гнезде синицы-ремеза, имеющем лишь один узкий боковой вход, тепло и сухо в любую погоду.

Особый интерес представляет групповое поведение животных в целях терморегуляции. Например, некоторые пингвины в сильный мороз и бураны сбиваются в плотную кучу, так называемую «черепаху». Особи, оказавшиеся с краю, через некоторое время пробиваются внутрь, и «черепаха» медленно кружится и перемешается. Внутри такого скопления температура поддерживается около +37 СС даже в самые сильные морозы. Обитатели пустынь верблюды в сильную жару также сбиваются вместе, прижимаясь друг к другу боками, но этим достигается противоположный эффект- предотвращение сильного нагревания поверхности тела солнечными лучами. Температура в центре скопления животных равна температуре их тела, +39°С, тогда как шерсть на спине и боках крайних особей нагревается до +70°С.

Сочетание эффективных способов химической, физической и поведенческой терморегуляции при общем высоком уровне окислительных процессов в организме позволяет гомойотермным животным поддерживать свой тепловой баланс на фоне широких колебаний внешней температуры.

Экологические выгоды пойкилотермии и гомойотермии. лотермные животные из-за общего низкого уровня обменных процессов достаточно активны только вблизи от верхних температурных границ существования. Обладая лишь отдельными терморгуляторными реакциями, они не могут обеспечить постоянства теплообмена. Поэтому при колебаниях температуры среды актив ность пойкилотермных прерывиста. Овладение местообитаниями с постоянно низкими температурами для холоднокровных животных затруднительно. Оно возможно только при развитии холодо-вой стенотермии и доступно в наземной среде лишь мелким формам, способным использовать преимущества микроклимата.

Подчинение температуры тела температуре среды имеет, однако, ряд преимуществ. Снижение уровня обмена при действии холода экономит энергетические затраты, резко уменьшает потребность в пище.

В условиях сухого жаркого климата пойкилотермность позволяет избегать излишних потерь воды, так как практическое отсутствие различий между температурами тела и среды не вызывает дополнительного испарения. Высокие температуры пойкилотерм-ные животные переносят легче и с меньшими энергетическими затратами, чем гомойотермные, которые тратят много энергии на удаление избытка тепла из тела.

Организм гомойотермного животного всегда функционирует только в узком диапазоне температур. За этими пределами для гомойотермных невозможно не только сохранение биологической активности, но и переживание в угнетенном состоянии, так как выносливость к значительным колебаниям температуры тела ими потеряна. Зато, отличаясь высокой интенсивностью окислительных процессов в организме и обладая мощным комплексом терморегуляционных средств, гомойотермные животные могут поддерживать для себя постоянный температурный оптимум при значительных отклонениях внешних температур.

Работа механизмов терморегуляции требует больших энергетических затрат, для восполнения которых животное нуждается в усиленном питании. Поэтому единственно возможным состоянием животных с регулируемой температурой тела является состояние постоянной активности. В холодных районах ограничивающим фактором в их распространении является не температура, а возможность регулярного добывания пищи.

В природе одним из важных лимитирующих факторов среды является температура. Влияние температуры на большинство организмов проявляется в регулировании биохимических и физиологических процессов жизнедеятельности. Температура может влиять на характер поведения и географическое распределение организмов. Для температурного фактора характерны широкие географические, сезонные и суточные колебания. Пределами толерантности для любого вида являются температуры, при которых наступает денатурация белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. Диапазон переносимых температур у разных видов сильно варьирует, но, как правило, находится в пределах от 0 до +50 °C.

Пойкилотермные и гомойотермные организмы

В зависимости от способа терморегуляции выделяют две группы организмов: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos — изменчивый, меняющийся, therme — тепло) — организмы, температура тела которых непостоянна и изменяется вместе с температурой окружающей среды. К ним относятся все растения, грибы, протисты, беспозвоночные животные, рыбы, земноводные и пресмыкающиеся.

Гомойотермные организмы (от греч. homoios — одинаковый, сходный, therme — тепло) — организмы, способные поддерживать относительно постоянную температуру тела при изменении температуры окружающей среды. К ним относятся птицы и млекопитающие (в том числе человек). Гомойотермные организмы способны сохранять активность в широком диапазоне температур. Пойкило термные организмы впадают в оцепенение при низких температурах, а некоторые обитатели пустынь — и при высоких температурах.

Всегда ли гомойотермные организмы поддерживают постоянную температуру тела? Известно, что некоторые виды млекопитающих и птиц способны впадать в оцепенение, внешне сходное с холодовым оцепенением пойкилотермных животных. При этом температура их тела снижается практически до уровня температуры окружающей среды. Нерегулярное оцепенение наблюдается у ласточек, стрижей, многих грызунов, некоторых сумчатых в связи с резким похолоданием, дождями или снегопадами. Сезонное оцепенение, которое принято называть зимней спячкой , характерно для сурков, сусликов, ежей, летучих мышей, бурых медведей. Вышеназванные виды птиц и млекопитающих выделяют в отдельную группу гетеротермных животных (от греч. heteros — иной, другой, therme — тепло).

Адаптации растений к различным температурным условиям

Жизнедеятельность растений в значительной степени зависит от температуры окружающей среды. По потребности к количеству тепла их разделяют на три экологические группы: теплолюбивые, мезотермные и холодостойкие.

Теплолюбивые растения произрастают в тропическом, субтропическом поясах и хорошо прогреваемых местообитаниях умеренного пояса. У теплолюбивых растений выработались адаптации к действию высоких температур. Мезотермные и холодостойкие растения , населяющие умеренный и холодный пояса, вынуждены адаптироваться к низким температурам. Все адаптации растений к температуре можно разделить на три типа: биохимические, физиологические и морфологические.

Биохимические адаптации

При высокой температуре в цитоплазме клеток теплолюбивых растений увеличивается содержание защитных веществ (органических кислот, солей, слизи). Они препятствуют свертыванию цитоплазмы и нейтрализуют токсичные вещества.

У холодостойких растений при низких температурах происходит накопление углеводов (в основном глюкозы) в клеточном соке, что снижает точку замерзания воды.

Физиологические адаптации

Эффективной защитой растений от перегрева служит усиленная транспирация (испарение воды) благодаря большому количеству устьиц.

У растений пустынь и степей короткий цикл развития позволяет избегать действия высоких температур. Вся вегетация у них происходит ранней весной. А летнюю жару они переживают в состоянии покоя. Однолетние растения, у которых состояние покоя проходит в виде семян, называют эфемерами (мак). Многолетники, переживающие неблагоприятный период в виде луковиц, клубней или корневищ, называют эфемероидами (тюльпан).

Крайней мерой в борьбе с холодом или жарой является переход растений в состояние анабиоза (обратимая приостановка жизненных процессов) вследствие обезвоживания. Например, мхи и лишайники могут длительное время находиться в таком состоянии.

Морфологические адаптации

Действие высоких температур на растения субтропического и тропического поясов снижается за счет усиления отражения солнечных лучей и уменьшения светопоглощающей поверхности.

Повышению отражения солнечного света способствует светлая окраска листьев, их блестящая или опушенная поверхность.

Уменьшение поглощения света достигается благодаря видоизменению листовых пластинок. Это могут быть колючки (кактусы) или мелкие (саксаул), рассеченные (пальмы), свернутые (ковыль) листья.

Противодействует перегреву растений вертикальное по отношению к солнечным лучам расположение листьев. Изменение угла их наклона может происходить при повороте листовой пластинки.

Адаптации у растений холодного климата проявляются в виде формирования карликовых жизненных форм (березы, ивы). Встречаются также стелющиеся (кедровый стланик, можжевельник туркестанский) и подушковидные (высокогорные и арктические растения-подушки) жизненные формы. Такие растения меньше подвержены воздействию ветра, лучше укрыты снегом зимой, полнее используют тепло почвы летом.

Адаптации животных к различным температурным условиям

Разнообразие адаптаций животных к неблагоприятным температурным условиям объясняется разными способами терморегуляции у пойкилотермных и гомойотермных организмов. Все адаптации животных по механизму действия разделяют на биохимические, физиологические, морфологические и поведенческие.

Биохимические адаптации

У пойкилотермных животных при переохлаждении происходит накопление «биологических антифризов» (веществ, понижающих точку замерзания воды) в жидкостях тела. Такими веществами у рыб являются гликопротеиды, у насекомых — глицерин, высокие концентрации глюкозы.

У арктических и антарктических рыб отмечается повышенное содержание ненасыщенных жирных кислот в составе жиров, что снижает температуру их затвердевания.

У гомойотермных организмов борьба с переохлаждением происходит за счет повышения интенсивности обмена веществ. У млекопитающих усиливается расщепление особой жировой ткани (бурого жира). Она богата митохондриями и пронизана многочисленными кровеносными сосудами.

Физиологические адаптации

У пойкилотермных организмов регуляция теплообмена происходит благодаря особенностям строения кровеносной системы.

Большое значение для терморегуляции у пойкилотермных животных имеет наличие артериовенозных «теплообменников». Сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи. Кровь кожи согревает кровь мышц, и в глубь тела она поступает теплой. Отдав свое тепло, охлажденная мышечная кровь вновь направляется к поверхности тела. При увеличении температуры окружающей среды у ящериц, например, увеличивается скорость тока крови по сосудам.

При высоких температурах как у пойкилотермных, так и у гомойотермных организмов теплоотдача усиливается за счет испарения влаги с поверхности тела (потоотделение). Влага может испаряться через слизистые оболочки ротовой полости и верхние дыхательные пути (тепловая одышка и др.).

В случае воздействия низких температур у животных может возникнуть мышечная дрожь. Они могут также впадать в спячку.

У млекопитающих с короткой и редкой шерстью важную роль в терморегуляции играют сосудистые реакции. Расширение или сужение мелких поверхностных сосудов кожи усиливает или снижает теплоотдачу.

Морфологические адаптации

Уменьшению потерь тепла у организмов способствуют теплоизолирующие покровы. Пресмыкающиеся имеют роговой покров, птицы — перьевой, млекопитающие — волосяной. Сохранению тепла способствует подкожный жир, особенно выраженный у обитателей холодного климата (ластоногие и китообразные).

Поведенческие адаптации

У пойкилотермных животных существует два типа поведенческих адаптаций. Это активный выбор мест с наиболее благоприятным температурным режимом и смена поз.

В первом случае насекомые, пресмыкающиеся и земноводные активно отыскивают освещенные солнцем места. Получив необходимое количество тепла, животные перемещаются в тень или прячутся в норах и поддерживают температуру за счет мышечных сокращений. У водных животных перемещение происходит между мелководными, хорошо прогреваемыми зонами и более глубоководными прохладными участками.

Смена поз позволяет изменять поверхность тела, прогреваемую солнечными лучами. Например, морские игуаны на Галапагосских островах рано утром или в пасмурную погоду принимают «распростертые» позы, всем телом прижимаясь к субстрату. Это обеспечивает максимальную поверхность обогрева солнцем. При перегреве они принимают «приподнятую» позу. Их грудь и передняя часть тела подняты над субстратом. Это уменьшает поверхность обогрева, и тело обдувается ветром.

Для гомойотермных животных также характерно адаптивное поведение. Оно проявляется в виде выбора мест для защиты от холода или жары, сезонных миграций. Животные могут зарываться в снег, образовывать тесные скопления особей для снижения энергозатрат на терморегуляцию и т. д.

Температура может оказывать лимитирующее действие на организмы вследствие денатурации белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. В зависимости от способа терморегуляции организмы разделяют на пойкилотермные и гомойотермные. По отношению к разным температурным условиям среды у организмов выработались биохимические, физиологические, морфологические, а у животных еще и поведенческие адаптации.

Приспособление организмов к среде

Организмы в течение жизни испытывают влияние факторов, сильно удаляющихся от оптимума. Им приходится переносить жару, засуху, морозы, голод. Приспособления.

1. анабиоз (мнимая смерть). Почти полная остановка обмена веществ. – мелкие организмы. При анабиозе организмы теряют до ½ или даже ¾ заключённой в тканях воды У беспозвоночных часто наблюдается явление диапаузы – пережидание неблагоприятных температурных условий, остановившись в своём развитии (стадия яйца, куколки у насекомых и т.д.).

2. скрытая жизнь. Высшие растения не могут выжить, в случае если клетка высохнет. В случае если частичное обезвоживание – выживет. (зимний покой растений, спячка животных, семена в почве,

3. Постоянство внутренней среды, несмотря на колебания внешней среды. Постоянная температура тела, влаги (кактусы). Но много тратится энергии.

4. Избегание неблагоприятных условий. (гнезда, зарываются в снег, перелœет птиц)

Примеры: Семена лотоса в торфе 2000лет., бактерии в льдах Антарктиды. У пингвинов температура 37-38, у северных оленей 38-39. кактусы. Мокрицы в Среднеазиатских сухих степях, Суслик серцебиение 300 ударов и 3.

Эволюционная адаптация

Виды адаптации:

Морфологические (защита от вымерзания: эпифиты – растут на других растениях, фанерофиты- почки защищены яешуйками (деревья, кустарники), криптофиты почки в почве, терофиты – однолетние растения. У животных – запасы жира, масса.

Физиологическая адаптация . : акклиматизация, высвобождение воды из жиров.

Поведенческая – выбор предпочтительного положения в пространстве.

Физическая – регулирование теплоотдачи. Химическая поддержание температуры тела.

Эволюционная адаптация растений и животных к разным факторам среды легла в основу классификации видов.

1) По отношению к физическиме факторам среды

а) влияние температуры на организмы

Пределами толерантности для любого вида являются минимальная и максимальная летальные температуры. Большинство живых существ способно жить при температуре от 0 до 50ºС, что обусловлено свойствами клеток и межклеточной жидкости. Адаптация животных к температуре среды шла в 2 направлениях:

пойкилотермные животные (холоднокровные) – их температура тела меняется в широких пределах исходя из температуры окружающей среды (беспозвоночные, рыбы, земноводные, пресмыкающиеся). Их приспособлением к изменениям температуры является впадение в анабиоз.

гомойотермные животные (теплокровные) – животные, имеющие постоянную температуру тела (птицы (около 40ºС) и млекопитающие, в т.ч. человек (36–37ºС)). Гомойотермные животные могут выдерживать температуру ниже 0ºС. Для этих организмов характерно явление теплорегуляции .

Теплорегуляция (терморегуляция) – способность человека, млекопитающих и птиц поддерживать температуру мозга и внутренних органов в узких определённых границах, несмотря на значительные колебания температуры внешней среды и собственную теплопродукцию.При перегревании – происходит расширение кожных капилляров, и с поверхности тела происходит теплоотдача,– увеличивается потоотделœение, за счёт испарения температура тела охлаждается (человек, обезьяны, непарнокопытные),– у непотеющих животных происходит тепловая одышка (испарение влаги происходит с поверхности ротовой полости и языка).При охлаждении– происходит сужение кожных сосудов, теплоотдача от них уменьшается,– поднимаются перья и волосы и шерсть на поверхности тела, в результате увеличивается воздушная прослойка между ними, являющаяся теплоизолирующей.

Вместе с тем, для теплокровных животных характерны постоянные приспособления к повышенным или пониженным температурам:

1) Варьирование размеров тела. В соответствии с правилом Бергмана : у теплокровных животных размер тела особей в среднем больше у популяций, живущих в более холодных частях ареала распространения вида. Это связано с уменьшением отношения:

.

Чем меньше это отношение, тем меньше теплоотдача.

2) Наличие шерстного и перьевого покрова. У животных, живущих в более холодных областях, увеличивается количество подшерстка, пуха, пуховых перьев у птиц. В условиях сезонности возможна линька, когда в зимнем шерстном покрове больше пуха и подшёрстка, а в летнем – только остевые волосы.

3) Жировая прослойка. Является теплоизолирующей. Особенно распространена у морских животных, обитающих в холодных морях (моржи, тюлени, киты и т.д.)

4) Жировой покров . Покров перьев водоплавающих птиц специальным водонепроницаемым покровом, препятствующим проникновению воды и слипанию перьев, ᴛ.ᴇ. сохраняется воздушная теплоизолирующая прослойка между перьями.

5) Зимняя спячка. Спячка – состояние пониженной жизнедеятельности и обмена веществ, сопровождающееся торможением нервных реакций. Перед впадением в спячку животные накапливают в организме жир и укрываются в убежищах. Спячка сопровождается замедлением дыхания, сердцебиения и др.
Размещено на реф.рф
процессов. Температура тела снижается до 3–4ºС. Некоторые животные (медведи) сохраняют нормальную t тела (это зимний сон ). В отличие от анабиоза холоднокровных животных, во время спячки теплокровные животные сохраняют способность контролировать физиологическое состояние с помощью нервных центров и поддерживать гомеостаз на новом уровне.

6) Миграции животных (характерны для и теплокровных, и холоднокровных) – сезонное явление. Примером являются перелёты птиц.

Адаптация растений к температуре. Большинство растений может существовать при температуре от 0 до 50ºС. При этом активная жизнедеятельность осуществляется при температурах от 10 до 40 ºС. В этом диапазоне температур может происходить фотосинтез. Вегетационный период растений – период со среднесуточными температурами выше +10ºС.

По способу адаптации к изменениям температуры растения делятся на 3 группы:

фанерофиты (деревья, кустарники, лианы) – сбрасывают всœе зелёные части на холодный период, а их почки остаются зимой над поверхностью снега и защищаются покровными чешуйками;

криптофиты (геофиты) – также теряют всю видимую растительную массу на холодный период, сохраняя почки в клубнях, луковицах или корневищах, скрытых в почве.

терофиты – однолетние растения, отмирающие с наступлением холодного сезона, выживают лишь семена или споры.

б) влияние освещённости на организмы

Свет - ϶ᴛᴏ первичный источник энергии, без которого невозможна жизнь на Земле. Свет участвует в фотосинтезе, обеспечивая создание органических соединœений из неорганических веществ растительностью Земли. По этой причине влияние света в большей степени важно для растений. В фотосинтезе участвует часть спектра (от 380 до 760 нм) – область физиологически активной радиации.

По отношению к освещённости выделяются 3 группы растений:

светолюбивые – для таких растений оптимумом является яркий солнечный свет – травянистые растения степей и лугов, древесные растения верхних ярусов.

тенелюбивые – для этих растений оптимумом является слабая освещённость – растения нижних ярусов таёжных ельников, лесостепных дубрав, тропических лесов.

теневыносливые – растения, имеющие широкий диапазон толерантности к свету и могут развиваться как при яркой освещённости, так и в тени.

Свет имеет большое сигнальное значение и является основой фотопериодизма.

Фотопериодизм - ϶ᴛᴏ реакция организма на сезонные изменения длины дня. От фотопериодизма зависит время зацветания и плодоношения у растений, начало периода спаривания у животных, время начала миграции у перелётных птиц. Фотопериодизм широко используется в с/х.

в) влияние условий увлажнения на организмы

Условия увлажнения зависят от двух факторов:– количество осадков; – испаряемость (количество влаги, ĸᴏᴛᴏᴩᴏᴇ может испариться при данной температуре)

По отношению к влаге всœе растения делятся на 4 группы:

гидатофиты – водные растения целиком или большей частью погруженные в воду. Οʜᴎ бывают прикреплены корнями к грунту (кувшинка), другие не прикреплены (ряска);

гидрофиты – водные растения, прикреплённые к почве и погруженные в воду только нижними своими частями (рис, рогоз);

гигрофиты – растения влажных местообитаний. Не имеют приспособлений, ограничивающих расход воды (травянистые растения лесной зоны);

мезофиты – растения, переносящие незначительную засуху (большинство древесных растений, злаковые растения степей);

ксерофиты – растения сухих степей и пустынь, имеющие приспособления к недостатку влаги:

а) склерофиты – растения с большой корневой системой, способной всасывать влагу из почвы с большой глубины, и с мелкими листьями или листьями, преобразованными в колючки, что способствует снижению площади испарения (верблюжья колючка);

б) суккуленты – растения, способные накапливать влагу в мясистых листьях и стеблях (кактусы, молочаи).

эфемеры – растения, проходящие свой жизненный цикл за очень короткий срок (период дождей или таяния снегов) и к периоду засухи образующие семена (маки, ирисы, тюльпаны).

Приспособления животных к засухе:

– поведенческие способы (миграция) – характерны для животных саванн в Африке, Индии, Южной Америке;

– образование защитных покровов (раковины улиток, роговые покровы рептилий);

– впадение в анабиоз (рыбы, земноводные в африканских и австралийских пересыхающих водоёмах);

– физиологические способы – образование метаболической воды (воды, образующейся в результате обмена веществ за счёт переработки жиров) – верблюды, черепахи, овцы.

г) влияние движения воздуха на организмы. Движение воздушных масс должна быть в виде их вертикального перемещения – конвекции, или в виде ветра, т. е. горизонтального перемещения. Движение воздуха способствует расселœению спор, пыльцы, семян, микроорганизмов. Анемохоры – приспособления для распространения ветром (парашутики одуванчика, крылья семян клёна и т.д.). Угнетающее действие ветер может оказывать на птиц и других летающих животных

д) влияние движения воды на организмы. Основные виды движения воды – волны и течения.Учитывая зависимость отскорости течения:

– в спокойных водах – у рыб сплюснутое с боков тело (лещ, плотва)

– в быстротекущих водах – тело рыб округлое в сечении (форель).

Вода – плотная среда, в связи с этим в целом всœе водные животные имеют обтекаемую форму тела: как рыбы, так и млекопитающие (тюлени, киты, дельфины), и даже моллюски (кальмары, осьминоги). Самая совершенная морфологическая адаптация к движению в воде – у дельфина, в связи с этим он может развивать в воде очень большие скорости и выполнять сложные маневры.

2) химические факторы среды

а) Химические факторы воздушной среды

Состав атмосферы:‣‣‣ азот –78,08%;‣‣‣ кислород – 20,95 %;‣‣‣ аргон, неон и другие инœертные газы – 0,93 %;‣‣‣ углекислый газ – 0,03 %;‣‣‣ прочие газы 0,01.

Лимитирующим фактором является содержание углекислого газа и кислорода. В приземном слое атмосферы содержание углекислого газа находится в минимуме толерантности, а кислорода – в максимуме толерантности растений по этим факторам.

Адаптация к недостатку кислорода:

а) У почвенных животных и животных, живущих в глубоких норах.

б) У высокогорных животных: – повышение объёма крови,– увеличенное количество эритроцитов (кровяных клеток, переносящих кислород),– повышенное содержание гемоглобина в эритроцитах,– повышенное сродство гемоглобина к кислороду, ᴛ.ᴇ. 1 молекула гемоглобина может переносить больше молекул кислорода, чем у равнинных животных.(ламы, альпаки, горные козлы, снежные барсы, яки, горные куропатки, фазаны).

в) У ныряющих и полуводных животных: – повышенный относительный объём лёгких,– больше объём и давление воздуха в лёгких при вдыхании,– приспособления, характерные для горных животных.(дельфины, киты, тюлени, каланы, морские змеи и черепахи, опуши).

г) у водных животных (гидробионтов) - ϶ᴛᴏ приспособления к использованию кислорода из водного раствора: – наличие жаберного аппарата͵ имеющего большую площадь поверхности,– густая сеть кровеносных сосудов в жабрах, обеспечивающих наиболее полное всасывание кислорода из раствора,– увеличенная поверхность тела, которая является у многих беспозвоночных важным каналом диффузионного поступления кислорода.Рыбы, моллюски, ракообразные).

б) Химические факторы водной среды

а) содержание СО 2 (повышенное содержание углекислого газа в воде может привести к гибели рыб и др.
Размещено на реф.рф
водных животных; с другой стороны при растворении в воде СО 2 , образуется слабая угольная кислота , легко образующая карбонаты (соли угольной кислоты), являющиеся основой скелœетов и раковин водных животных);

б) кислотность среды (инструментом поддержания кислотности являются карбонаты, водные организмы имеют очень узкий диапазон толерантности к этому показателю)

в) солёность воды – содержание растворенных сульфатов, хлоридов, карбонатов, измеряется в промилле ‰ (грамм солей на литр воды). В океане 35 ‰. Максимальная солёность в Мёртвом море (270 ‰). Пресноводные виды не могут обитать в морях, а морские – в реках. При этом, такие рыбы, как лосось, сельдь всю жизнь проводят в море, а для нереста поднимаются в реки.

3. Эдафические факторы – почвенные условия произрастания растений.

а) физические:– водный режим,– воздушный режим,– тепловой режим,– плотность,– структура.

б) химические:– реакция почвы,– элементарный химический состав почвы, – бменная способность.

Важнейшее свойство почвы – плодородие - ϶ᴛᴏ способность почвы удовлетворять потребность растений в питательных веществах, воздухе, биотической и физико-химической среде и на этой базе обеспечивать урожай сельскохозяйственных структур, а также биогенную продуктивность диких форм растительности.

Приспособление растений к засолению:

Солеустойчивые растения называют галофитами (солерос, полыни, солянки) – эти растения произрастают на солонцах и солончаках.

Приспособление организмов к среде - понятие и виды. Классификация и особенности категории "Приспособление организмов к среде" 2017, 2018.

Термический гомеостаз является важнейшим условием нормального функционирования животного организма.

В первую очередь это относится к теплокровным животным. Ферментные системы организма теплокровных животных сохраняют свою активность в строго определенном диапазоне температур с оптимумом, близким к физиологической температуре тела. Для большинства теплокровных животных зоны умеренного климата температуры тела свыше 40° С губительны. Именно с этого уровня температур начинается процесс денатурации белков, в который раньше других вовлекаются белки со свойствами катализаторов, т. е. ферменты. По отношению к понижению температур эти вещества более терпимы. После охлаждения до 4° С и последующего восстановления температурных условий ферменты восстанавливают свою активность.

Однако отрицательные температуры губительны для теплокровного организма по другой причине. Основной составной частью организма животных (не менее 50% от живой массы) является вода. Так, у рыб содержание воды в теле достигает 75%, у птиц - 70%, быков на откорме - около 60%. Даже тело человека примерно на 63-68% состоит из воды.

Поскольку протоплазма клеток представляет собой водную фазу, то при отрицательных температурах вода из жидкого состояния переходит в твердое. Образование кристаллов воды в составе протоплазмы клеток и в межклеточной жидкости оказывает повреждающее воздействие на клеточные и субклеточные мембраны. Животные тем лучше переносят воздействие отрицательных температур, чем меньше в их теле воды, и прежде всего свободной, не связанной с белками воды.

Как правило, с приближением зимы относительное содержание воды в теле животных уменьшается. Особенно заметны эти изменения у пойкилотермных животных. Их зимостойкость осенью существенно возрастает. Например, жужелица Pterostichus brevicornis с Аляски в зимнее время выдерживает температуру -87° С в течение нескольких часов. В летнее время эти жуки погибают уже при температуре -6…-7 С.

Другим способом адаптации пойкилотермных к отрицательным температурам является накопление антифризов в биологических жидкостях.

Исследования крови костистых рыб, обитающих за полярным кругом, показали, что одного глицерина недостаточно для активной жизни холоднокровных животных в условиях Арктики. У этих рыб имеет место высокая осмоляльность крови (300-400 миллиосмоль). Последнее обстоятельство понижает температуру замерзания крови до -0,8°С. Однако температура воды в Северном Ледовитом океане в зимнее время составляет -1,8°С. Поэтому одной осмоляльности крови для выживания в таких условиях также недостаточно.

В составе тела арктических рыб обнаружены и выделены специфические гликопротеины со свойствами антифриза. В концентрации 0,6% гликопротеины в 500 раз более эффективно предотвращают образование льда в воде по сравнению с хлористым натрием.

У гомойотермных животных понятие температурного постоянства достаточно условно. Так, колебания температуры тела у млекопитающих представляют существенную величину, превышающую у отдельных представителей 20°С.

Обращает на себя внимание то, что относительно широкий диапазон колебаний температуры тела свойствен по большей части животным, обитающим в теплом климате. У северных животных гомойотермия имеет более жесткий характер.

Популяции животных, принадлежащих к одному виду, но обитающих в разных климатических условиях, имеют ряд отличительных особенностей. Животные из высоких широт имеют большие размеры тела по сравнению с представителями того же вида, но обитающими в районах с жарким климатом. Это общебиологическое правило, и оно хорошо просматривается в пределах многих видов (кабаны, лисы, волки, зайцы, олени, лоси и др.). Географический диморфизм продиктован тем, что увеличение размеров тела приводит к относительному уменьшению поверхности тела и, следовательно, к снижению потерь тепловой энергии. Более мелкие представители того же вида демонстрируют более высокий относительный обмен веществ и энергии, большую относительную площадь тела. Поэтому на единицу массы тела они затрачивают больше энергии и больше энергии теряют через покровы тела. В умеренном и жарком климате мелкие и средние животные имеют преимущества перед своими более крупными собратьями.

Обитатели пустынь, саванн и джунглей экваториальной зоны адаптированы к жизни при чрезвычайно высоких температурах. В пустынях экваториальной зоны песок нагревается до 100°С. Но и в таких экстремальных температурных условиях можно наблюдать активную жизнь животных.

Пауки и скорпионы сохраняют пищевую активность при температуре воздуха до 50°С. Сырная муха Piophila casei выдерживает температуру 52°С. Пустынная саранча выживает и при более высоких температурах - вплоть до 60°С.

В более высоких широтах имеются экологические ниши с температурой среды, существенно превышающей температуру воздуха. В горячих источниках Исландии и Италии при температуре 45-55°С обитают многоклеточные (личинка мухи Scatella sp.), коловратки и амебы. Еще большую устойчивость к высоким температурам демонстрируют яйца артемии (Artemia saliva). Они сохраняют жизнеспособность после 4-часового нагревания до 83°С.

Из представителей класса рыб лишь карпозубик (Cyprinodon nevadensis) проявляет широкие адаптивные способности к экстремальным температурам. Он живет в горячих источниках Долины Смерти (штат Невада), где вода имеет температуру 42°С. В зимнее время он попадается в водоемах, где вода остывает до 3°С.

Однако больше всего поражают своими адаптивными способностями к воздействию экстремальных температур коловратки и тихоходки. Эти представители животного царства выдерживают нагревание до 15°С и охлаждение до -273°С. Адаптационные механизмы уникальной резистентности к высоким температурам у беспозвоночных не изучены.

Приспособленность позвоночных животных к высоким температурам среды не столь высока, как у беспозвоночных. Тем не менее в безводной пустыне обитают представители всех классов этого типа позвоночных, за исключением рыб. У большинства пустынных пресмыкающихся фактически имеет место гомойотермия. Их температура тела в течение суток изменяется в узком диапазоне. Например, у сцинка средняя температура тела равна 33°С (±1°), у воротниковой ящерицы Crataphytus collaris - 38°С, а у игуаны еще выше - 39-40°С.

Летальными температурами тела для этих жителей пустыни являются такие значения: для сцинка - 43°С, для воротниковой ящерицы - 46,5°С, для игуаны - 42°С. Активность дневных и ночных животных приходится на разные температурные диапазоны. Поэтому физиологическая температура тела и летальная температура тела у этологически различающихся групп животных неодинаковы. Для ночных видов критическим уровнем температуры тела является температура в 43-44°С, для дневных - на 5-6°С выше.

Считается, что летальные температуры у рептилий приводят в начале к нарушениям функций нервной системы, а затем к гипоксии вследствие неспособности гемоглобина крови связывать и транспортировать кислород.

У птиц - обитателей пустыни - температура тела при активных действиях на солнце повышается на 2-4°С и доходит до 43-44°С. В состоянии физиологического покоя она составляет 39-40°С. Такая динамика температуры тела выявлена при температуре воздуха 40°С и выше у воробья, кардинала, козодоя, страуса.

Млекопитающие, несмотря на наличие совершенного механизма терморегуляции, также манипулируют температурой собственного тела. Верблюд в состоянии покоя имеет довольно низкую ректальную температуру - около 33°С. Однако в экстремальных условиях (физическая работа на фоне температуры среды свыше 45°С) температура тела животного поднимается до 40°С, т. е. на 7°С, без заметного влияния на его физиологическое состояние и поведение.

Способность приспосабливаться к меняющимся условиям среды - одна из важнейших особенностей живых существ. Их распространение, численность и биоразнообразие в значительной мере определяются эффективностью адаптационных механизмов. Именно они позволяют организмам существовать в условиях, часто малопригодных для жизни, а иногда несовместимых, на первый взгляд, с нею. Из всего многообразия адаптаций к отдельным экологических факторам (температуре, содержанию кислорода в среде, солености воды, освещенности, влажности) или к иным типам природной среды (высокогорью, морским глубинам, жизни в пещерах, в пустынях и др.) особенно интересны температурные. Ведь этот фактор воздействует на все живые существа; окружающая температура постоянно меняется, ее перепады в определенных районах бывают весьма значительными, и организмы, в особенности холоднокровные, должны к этому приспосабливаться. Жизнь при экстремальных температурах привела к формированию адаптационных механизмов, которые значительно расширили ее «температурные пределы» и позволили отдельным видам занять экологические ниши, практически непригодные для существования. Эти механизмы не позволяют кристаллам льда образовываться в теле личинок насекомых и разрушать их при -50°С. Напротив, термофильные бактерии - обитатели гидротермальных источников - живут при +110°С и их белки при этом не денатурируют. Вместе с тем температура среды - один из важных факторов, влияющих на распределение, численность и разнообразие видов в различных климатических зонах Земли.

Биоразнообразие и распространение видов. Известно, что разнообразие и суммарная численность организмов снижается от экватора к полюсам. Эта зависимость установлена для многих видов. Ее можно проиллюстрировать на примере рыб, населяющих крупные озера, реки и моря в разных широтах. По некоторым данным в тропических озерах Виктория, Танганьика и Ньяса обитает 180, 214 и 250 видов рыб соответственно, а в северных озерах Онежском и Ладожском - 39 и 44. В южных морях Средиземном и Японском насчитывается примерно 500 и 600 видов рыб, тогда как в арктических Карском, Чукотском и море Лаптевых - 61, 38 и 31. Наиболее богатый видовой состав рыб в тропических реках: Амазонке - 1300 видов, Конго - 560, а в Волге и Оби их только 77 и 47.

Разные организмы отличаются устойчивостью к перепадам температур. Большинство видов (эвритермные) легко переносят такие колебания. Они заселяют территории с большим диапазоном суточных и сезонных температурных колебаний. Другие виды (стенотермные) способны существовать лишь в узком диапазоне. К ним относятся обитатели влажных тропических лесов, морских глубин, пещер, а также жители высоких широт, где температура среды почти не меняется.

Механизмы температурных адаптаций. Какие механизмы лежат в основе приспособлений организма или отдельных его систем к неблагоприятным температурам? На молекулярном уровне они связаны с важнейшими внутриклеточными структурами и процессами. Речь идет об устойчивости белков и нуклеиновых кислот к экстремальным температурам, поддержании определенного агрегатного состояния биологических мембран, в первую очередь мембранных липидов, накоплении специфических соединений, предотвращающих образование кристаллов льда в клетках при отрицательных температурах, и др. Разнообразные приспособления на всех уровнях организации живого - от молекулярного до экосистемного - формируются при помощи генотипического и фенотипического механизмов, которые обычно тесно переплетены. Генотипические адаптации складываются на протяжении множества поколений и связаны с естественным отбором - они «записаны» в геноме. В ходе эволюции наиболее серьезная защита возникла от холода, поскольку даже небольшие отрицательные температуры могут губительно сказаться на организме теплокровных. Основные механизмы адаптации обусловлены действием биологических антифризов, поддержанием определенного агрегатного состояния мембранных липидов, а также мутациями, приводящими к аминокислотным заменам, которые обеспечивают необходимую гибкость белков.