Расчет зависимостей дистанции выстрела и скорости пули. Способ определения внешнебаллистических характеристик полета пуль и снарядов. А. зимин до последнего снаряда

Пуля и воздух

Что воздух мешает полету пули, знают все, но лишь немногие представляют себе ясно, насколько велико это тормозящее действие воздуха. Большинство людей склонно думать, что такая нежная среда, как воздух, которого мы обычно даже и не чувствуем, не может сколько-нибудь заметно мешать стремительному полету ружейной пули.

Рис. 28. Полет пули в пустоте и в воздухе. Большая дуга изображает путь, какой описала бы пуля, если бы не существовало атмосферы. Маленькая дуга слева - действительный путь пули в воздухе.

Но взгляните на рис. 28, и вы поймете, что воздух является для пули препятствием чрезвычайно серьезным. Большая дуга на этом чертеже изображает путь, который пролетела бы пуля, если бы не существовало атмосферы. Покинув ствол ружья (под углом 45°, с начальной скоростью 620 м/сек), пуля описала бы огромную дугу в 10 км высотой; дальность полета пули составила бы почти 40 км. В действительности же пуля при указанных условиях описывает сравнительно небольшую дугу и дальность ее полета составляет 4 км. Изображенная на том же чертеже дуга эта почти незаметна рядом с первой; таков результат противодействия воздуха! Не будь воздуха, из винтовки можно было бы обстреливать неприятеля с расстояния 40 км, взметая свинцовый дождь на высоту 10 км.

Сверхдальняя стрельба

Обстреливать противника с расстояния в сотню и более километров впервые начала германская артиллерия к концу империалистической войны (1918 г.), когда успехи французской и английской авиации положили конец воздушным налетам немцев. Германский штаб избрал другой, артиллерийский, способ поражать столицу Франции, удаленную от фронта не менее чем на 110 км.

Рис. 29. Как изменяется дальность полета снаряда с изменением угла наклона сверхдальнобойного орудия; при угле 1 снаряд падает в Р", при угле 2 - в Р"", при угле же 3 дальность стрельбы сразу возрастает во много раз, так как снаряд залетает в слои разреженной атмосферы.

Способ этот был совершенно новый, никем еще не испытанный. Наткнулись на него немецкие артиллеристы случайно. При стрельбе из крупнокалиберной пушки под большим углом возвышения неожиданно обнаружилось, что вместо дальности в 20 км достигается дальность в 40 км. Оказалось, что снаряд, посланный круто вверх с большой начальной скоростью, достигает тех высоких разреженных слоев атмосферы, где сопротивление воздуха весьма незначительно; в такой слабо сопротивляющейся среде снаряд пролетает значительную часть своего пути и затем круто опускается на землю. Рис. 29 наглядно показывает, как велико различие в путях снарядов при изменении угла возвышения.

Рис. 30. Немецкая пушка «Колоссаль». Внешний вид.

Это наблюдение и положено было немцами в основу проекта сверхдальнобойной пушки для обстрела Парижа с расстояния 115 км. Пушка была успешно изготовлена и в течение лета 1918 г. выпустила по Парижу свыше трехсот снарядов.

Вот что стало известно об этой пушке впоследствии. Это была огромная стальная труба в 34 м длиной и в целый метр толщиной; толщина стенок в казенной части 40 см. Весило орудие 750 тонн. Его 120-килограммовые снаряды имели метр в длину и 21 см в толщину. Для заряда употреблялось 150 кг пороха; развивалось давление в 5000 атмосфер, которое и выбрасывало снаряд с начальной скоростью 2000 м/сек. Стрельба велась под углом возвышения 52°; снаряд описывал огромную дугу, высшая точка которой лежала на уровне 40 км над землей, т. е. далеко в стратосфере. Свой путь от позиции до Парижа - 115 км - снаряд проделывал в 3,5 минуты, из которых 2 минуты он летел в стратосфере.

Такова была первая сверхдальнобойная пушка, прародительница современной сверхдальнобойной артиллерии.

Чем больше начальная скорость пули (или снаряда), тем сопротивление воздуха значительнее: оно возрастает не пропорционально скорости, а быстрее, пропорционально второй и более высокой степени скорости, в зависимости от величины этой скорости.

Почему взлетает бумажный змей?

Пытались ли вы объяснить себе, почему бумажный змей взлетает вверх , когда его тянут за бечевку вперед ?

Если вы сможете ответить на этот вопрос, вы поймете также, почему летит аэроплан, почему носятся по воздуху семена клена и даже отчасти уясните себе причины странных движений бумеранга. Все это - явления одного порядка. Тот самый воздух, который составляет столь серьезное препятствие для полета пуль и снарядов, обусловливает полет не только легкого плода клена или бумажного змея, но и тяжелого самолета с десятками пассажиров.

Рис. 31. Какие силы действуют на бумажный змей?

Чтобы объяснить поднятие бумажного змея, придется прибегнуть к упрощенному чертежу. Пусть линия MN (рис. 31) изображает у нас разрез змея. Когда, запуская змей, мы тянем его за шнур, он движется из-за тяжести хвоста в наклонном положении. Пусть это движение совершается справа налево. Обозначим угол наклона плоскости змея к горизонту через а. Рассмотрим, какие силы действуют на змей при этом движении. Воздух, конечно, должен мешать его движению, оказывать на змей некоторое давление. Это давление изображено на рис. 31 в виде стрелки ОС; так как воздух давит всегда перпендикулярно к плоскости, то линия ОС начерчена под прямым углом к MN. Силу ОС можно разложить на две, построив так называемый параллелограмм сил; получим вместо силы ОС две силы, OD и ОР. Из них сила OD толкает наш змей назад и, следовательно, уменьшает первоначальную его скорость. Другая же сила, ОР, увлекает аппарат вверх; она уменьшает его вес и, если достаточно велика, может преодолеть вес змея и поднять его. Вот почему змей поднимается вверх, когда мы тянем его за веревочку вперед.

В статье (Аливердиев А.А. Точный расчет дистанции выстрела в сверхзвуковом диапазоне изменения скорости движения снаряда // Актуальные проблемы теории и практики судебной экспертизы: Доклады и сообщения на международной конференции «Восток-Запад: партнерство в судебной экспертизе». — М.: РФЦСЭ, С. 97-100.) нами показано, что в сверхзвуковом диапазоне изменения скорости движения снаряда (от 340 м/с до 1000 м/с) можно точно рассчитать для ряда снарядов дистанцию выстрела в зависимости от конечной скорости снаряда и его баллистического коэффициента. В основе этих расчетов лежит предположение о том, что сила сопротивления воздуха, приходящаяся на единицу массы снаряда F(v), может быть представлена в виде (Определение расстояния выстрела: Методическое пособие для экспертов. — М.: РФЦСЭ, 1995. Вып. 1. — 154 с.) (Определение расстояния выстрела: Методическое пособие для экспертов. — М.: РФЦСЭ, 1995. Вып. 2. — 180 с.):

  • C — баллистический коэффициент снаряда;
  • H(y) — функция плотности воздуха (для нормальных условий, при стрельбе параллельно горизонтальной плоскости H(y) = 1);
  • Fc(v) — сила сопротивления воздуха, приходящаяся на единицу массы, для снаряда Сиаччи.

Логика расчетов в основывалась на том, что анализ табличных данных значений Fc(v), приведенных в (Сташенко Е.И. Способ расчета скорости снарядов (пуль) на различных расстояниях от дульного среза оружия // Экспертная техника. 1981. — Вып. 69. с. 59-77.), показывает, что изменение dFc (v) в сверхзвуковом диапазоне изменения скорости (от 340 м/с до 1000 м/с) пропорционально изменению скорости dv. Поэтому функциональная зависимость Fc(v) в указанном диапазоне изменения скорости — прямолинейная, вследствие чего ее можно представить в виде:

  • kc = 0,3625 с -1 , Bc = 258 м/с — постоянные.

Данные константы имеют следующий физико-математический смысл:

  • kc — тангенс угла наклона прямой относительно оси скоростей;
  • Bc — точка пересечения этой прямой с данной осью.

Экспериментальные и рассчитанные по формуле (2) значения Fc(v) даны в табл. 1. Как видно из приведенных данных, относительная погрешность расчетных и экспериментальных данных не превышает 0,7%. Если учесть, что в экспериментальных исследованиях погрешность измерения Fc(v) не может быть меньше 1%, то можно считать, что расчетные и экспериментальные данные практически совпадают.

Прямолинейность функции Fc(v) обусловлена физическим процессом поглощения энергии движущегося снаряда средой (воздухом) посредством звуковой волны, поэтому следует ожидать, что аналогичные зависимости (в этом диапазоне изменение скорости)


будут иметь место и для других (отличающихся между собой геометрической формой, размерами и массой) снарядов:

Из сравнения формул (2) и (3) следует, что условие (1) будет выполняться только для тех снарядов, для которых константа B = Bc = 258 м/с. В случае же неравенства констант B и Bc баллистический коэффициент С (отношение F(v) к Fс(v) при H(y) = const зависит от скорости) является функцией скорости. Поэтому уравнение (2) (при равенстве B = Bc = 258 м/с) является только частным случаем уравнения (3).

Сила сопротивления среды существенно зависит от геометрической формы движущегося в ней тела, то есть от констант k и В. В статье нами рассмотрено движение двух остроконечных пуль: от промежуточного патрона, выстреленной из 7,62-мм самозарядного карабина Симонова, и от винтовочного патрона, выстреленной из 7,62-мм станкового пулемета конструкции Горюнова. Для этих пуль B = Bс = 258 м/с. Поэтому, в общем случае, необходимо рассмотреть движение пули, геометрическая форма которой отличается от остроконечной формы. С точки зрения судебной баллистики на сегодняшний день наибольший интерес представляет собой движение пули МЖВ13 от промежуточного патрона М74, выстреленной из 5,45-мм автомата Калашникова АК-74.

Поэтому нами были поставлены следующие задачи:

  • рассмотреть общий случай движения снаряда в сверхзвуковом диапазоне изменения скорости;
  • в качестве конкретного примера рассмотреть движение пули МЖВ13 от промежуточного патрона М74, выстреленной из 5,45-мм автомата Калашникова АК- С74У (АКС74У Н2).

Полагая, что функциональную зависимость F(v) можно представить в виде (3), рассчитаем дистанцию выстрела из энергетических соображений. Первоначально отметим, что во время полета из-за наличия силы тяжести снаряд притягивается к земле. Поэтому траектория полета снаряда всегда баллистическая. Однако при сравнительно коротких дистанциях выстрела (малом промежутке времени полета снаряда) сила тяжести несущественно влияет на движение снаряда, вследствие чего траектория полета практически прямолинейная. В этом случае силу тяжести можно не учитывать. Критерий необходимости учета силы тяжести нами будет дан ниже.

С учетом сделанного замечания допустим, что снаряд движется по прямолинейной траектории, параллельной горизонтальной плоскости (угол бросания равен нулю, H(y)=1). Из закона сохранения энергии следует, что энергия, необходимая на преодоление силы сопротивления среды (воздуха), тратится за счет уменьшения ки-нетической энергии движущегося снаряда, при этом сила сопротивления среды, при-ходящаяся на единицу массы снаряда F(v), численно равна ускорению торможения снаряда. Так как работа по перемещению снаряда массой m на величину dx должна быть равна изменению кинетической энергии данного снаряда, то закон сохранения энергии в дифференциальной форме запишется в виде:

Подставляя значение F(v) в (4) и проводя разделение переменных, получим интегральное уравнение:


Решая уравнение (5), получим значение дистанции выстрела, как функцию от начальной и конечной скорости снаряда:


Следует отметить, что решение (6) уравнения (5) — точное. Уравнение (6) получено из закона сохранения энергии. Поэтому проблема определения дистанции выстрела для плоской (зависящей от одной координаты) траектории движения снаряда в сверхзвуковом диапазоне изменения скоростей, при выполнении условия (3), разрешена полностью, а необходимость в использовании приближенных, ко всему еще и громоздких, расчетных методов, рекомендованных в, отпадает. Точность расчета дистанции выстрела по формуле (6) зависит только от точности определения констант В и k для данного вида снаряда, а также его начальной и конечной скорости.

Зная явный вид функции, описывающей силу сопротивления воздуха, можно рассчитать время пролета снаряда. Из закона сохранения количества движения (импульса силы), записанного в дифференциальной форме, следует:

Подставляя значение F(v) в (7) и проводя разделение переменных, получим интегральное уравнение:


Решая уравнение (8), получим значение времени пролета снаряда, как функцию от значений начальной и конечной скорости:


Решение (9) уравнения (8) точное. Уравнение (9) получено из закона сохранения количества движения. Следовательно, точность расчетного времени пролета снаряда зависит только от точности измерения начальной и конечной его скорости, разумеется, при выполнении условия (3).

Из формулы (9) следует, что конечная скорость снаряда связана со временем его пролета соотношением:

Следовательно, для расчета значений конечной скорости и дистанции выстрела достаточно знать начальную скорость снаряда и время его пролета. Формула (6), с учетом сделанного замечания, может быть преобразована к виду:

За время t, как указывалось выше, вследствие силы тяжести снаряд отклонится к Земле в вертикальном направлении на величину h = gt 2 /2. Поэтому, строго говоря, угол бросания Θ не может быть равен нулю. Однако расчеты по формулам (6), (9), (10) и (11) можно считать достоверными, если учет силы тяжести не превышает экспериментального разброса скорости снаряда (по крайней мере, не превышает 0,1% от скорости снаряда), что во всем сверхзвуковом диапазоне изменения скорости всегда будет выполнено, если

где максимально возможное значение угла Θ равно величине:

Расчетные скорости в этом случае определены с точностью не менее 99,9%.

Для практического применения формул (6) — (11) необходимо знать точные значения констант k и В. Данные константы в общем случае не могут быть рассчитаны теоретически. Однако их можно найти путем сравнения теории и эксперимента. В частности, зная начальную скорость снаряда, два промежутка времени и (соответствующие им) значения конечных скоростей, константу В можно определить, например, из формулы (9) путем деления одного промежутка времени на другой. В этом случае константа k исключается и имеет место логарифмическое уравнение с одним неизвестным — константой В. Далее, подставляя значение константы В в формулу (9), можно найти константу k.

В качестве конкретного примера приведем значения констант B и k для пули МЖВ13 от промежуточного патрона М74, выстреленной из 5,45-мм автомата Калашникова АКС-74У: B = 180 м/с, k = 1,17 с -1 . Значения данных констант получены в результате анализа экспериментальных данных, приведенных в (Руководство по 5,45-мм автомату Калашникова Укороченному АКС74У (АКС74У Н2). — М.: Воен. издат., 1992. — 160с.). Время пролета пули экспериментально измерялось с точностью до 0,01 с. Поэтому с целью уменьшения относительной погрешности измерения для промежутка времени, соответствующего 100 м дистанции выстрела, данное время пролета при оценке констант полагалось равным 0,145 с, а не 0,15 с. Значения данных констант оценивались по времени пролета и дистанции выстрела, то есть по формулам (6) и (9). Расчетные и экспериментальные данные приведены в табл. 2. Как видно из таблицы, расчетные и экспериментальные данные по крайней мере находятся в удовлетворительном согласии. Следует особо подчеркнуть, что конечная скорость полета пули экспериментально измеряется с точностью только до третьей значащей цифры, поэтому и дистанция выстрела рассчитана по формуле (6) с такой же точностью. Учитывая, что относительная погрешность между расчетными и экспериментально измеренными значениями дистанции выстрела составляет менее трех процентов, можно считать, что указанные константы оценены точно.

Необходимость учета силы тяжести снаряда, то есть достоверность расчетов, можно установить по формуле (12). Для этого необходимо рассчитать значения: дистанции выстрела и времени пролета снаряда для скорости, равной величине: v = 340 м/с. Подставляя значения: начальной скорости — vo = 735м/с и конечной скорости — v = 340 м/с, в формулы (6) и (9), соответственно получим: х = 528,4 м и t = 1,06 с. Из формулы (13) следует, что угол бросания равен величине: Θ = 0,01 рад.



Подставляя значение Θ = 0,01 рад в формулу: gt sinΘ, получим 0,109 м/с, что меньше значения 0,34 м/с. Следовательно, силу тяжести в расчетах можно не учитывать.

Таким образом, расчеты (без учета силы тяжести) по формулам (10) и (11) можно считать достоверными. Расчетные значения дистанции выстрела и скорости пули в зависимости от времени пролета снаряда приведены в таблице 3. Экспериментальные данные цитируются из. Как видно из приведенных данных, расчетные и экспериментально измеренные величины дистанции выстрела и конечной скорости практически совпадают (относительная погрешность между экспериментально измеренными и расчетными величинами менее одного процента), что однозначно свидетельствует о справедливости логики изложенных рассуждений.

Таким образом, условие (3) в сверхзвуковом диапазоне изменения скорости для снарядов, выстреленных из стрелкового оружия, выполняется, что позволяет рассчитать дистанцию выстрела, при этом расчеты будут настолько точными, насколько точно известны начальная скорость снаряда, а также время пролета или же конечная скорость снаряда.

А. А. Аливердиев — зам. начальника Дагестанской ЛСЭ Минюста России, зав. отделом криминалистических исследований, к.ф.-м.н.


Расчет зависимостей дистанции выстрела и скорости пули

Как известно, далеко не каждый стрелок — снайпер. Но каждый снайпер, безусловно, стрелок. Какие факторы ему необходимо учесть, чтобы пуля попала именно туда, куда нужно?

Советы снайперу 1. Ствол не должен соприкасаться ни с чем! 2. Нажимать на спусковой крючок следует наиболее чувствительной частью подушечки указательного пальца. 3. Для установки положения ложа стоит положить под приклад мешочек с песком. Надавливая на него свободной от стрельбы рукой, можно производить тонкую регулировку по высоте. 4. Следует точно выдерживать такое расстояние между глазом и окуляром, чтобы полностью и без искажений видеть все зрительное поле. Обычно эта величина составляет 7–10 см. 5. Если позволяет время, необходимо закрепить положение винтовки с помощью ремня. 6. Не допускать сваливания оружия. 7. В качестве упора лучше использовать не штатную сошку, а мешок с песком.

Невооруженному глазу может показаться, что оптический прицел на винтовке параллелен стволу. На самом деле это не так. Ось ствола и оптическая ось прицела образуют угол, который называется углом прицеливания. И траектория пули, разумеется, не прямая, да и цель находится не всегда на одном уровне с винтовкой — зачастую приходится стрелять со значительными углами возвышения или склонения. В полете на пулю действуют сила тяжести и различные аэродинамические силы, которые нужно учитывать при прицеливании.


Для максимальной реализации возможностей высокоточных снайперских винтовок требуются боеприпасы повышенной кучности, так называемые патроны матчевого класса. Они производятся на прецизионном оборудовании с минимальными допусками. Особо следует обратить внимание на конструкцию пули. Ее отличает коническая хвостовая часть в форме «лодочной кормы» и не заполненная свинцом полость в носовой части оболочки. На фото — стандартная гильза.

Гравитация

Влияние гравитации на полет пули оценивается довольно просто. За определенное время (или на определенном расстоянии) пуля снижается, и это снижение в зависимости от дистанции стрельбы можно вычислить с помощью баллистического калькулятора или по таблицам, а затем внести поправки с помощью соответствующего маховика прицела. Как правило, маховики градуированы в углах — на Западе приняты угловые минуты (minutes of angle, MOA), в России — тысячные доли дистанции, или миллирадианы (поперечный размер в 1 м на расстоянии в 1000 м, 1 мрад = 3,43 МОА). Для облегчения задачи маховики иногда градуируются в метрах дистанции (такая поправка будет работать для конкретного боеприпаса в стандартных условиях).


Классическая снайперская пуля «матчевого» класса Sierra BTHP Mate MatchKing

Дистанция

Правильное определение дистанции исключительно важно для точной стрельбы. Для этого существует множество методик — от использования лазерного дальномера или сравнения прицельной сетки с известными размерами предметов до основных примет типа «движения рук и ног человека различимы с 500−600 м». Существует также ряд ситуаций, которые затрудняют правильное визуальное определение расстояния. Чем больше дистанция стрельбы, тем больше ошибка в определении расстояния будет влиять на конечный результат — возможность поражения цели.


Ветер

Сопротивление воздуха тормозит летящую пулю, и это необходимо учитывать при расчете поправок (особенно в нестандартных ситуациях — например, в условиях горной местности, когда воздух разрежен). Влияют также влажность и температура воздуха. Но гораздо более важен аэродинамический снос пули боковым ветром. Дело в том, что при стрельбе на большие расстояния (несколько сотен метров) вдоль траектории полета пули ветер может поменяться несколько раз — как по силе, так и по направлению. В городе высотные здания создают мощные потоки воздуха, серьезно затрудняющие работу полицейских снайперов во время спецопераций. Скорость и направление ветра приходится определять по колебаниям восходящих потоков воздуха — миражей — или даже вовсе предугадывать. Снайперская поговорка гласит: «Новички изучают баллистические таблицы, а бывалые снайперы — ветер».


При дыхании важно не нарушить стабильное положение винтовки. Поэтому правильнее всего выполнять выстрел на выдохе, при опустошенных легких, когда снайпер может «застыть» на несколько секунд. Чтобы продлить паузу между вдохами, стрелок должен перед выстрелом два раза глубоко вдохнуть, чтобы насытить кровь кислородом. Однако когда счет идет на секунды, у снайпера может просто не хватить времени на два глубоких вдоха. Тогда применяется техника «застывания» — при легких, заполненных наполовину или на три четверти.

Деривация

Точка приложения силы тяжести к пуле (центр масс) не совпадает с точкой приложения аэродинамических сил (центр давления, расположен впереди центра масс). В результате действия этих сил возникает опрокидывающий момент в плоскости траектории. Но поскольку пуля вращается и представляет собой гироскоп, ее ось вращения отклоняется перпендикулярно плоскости. То есть, если пуля вращается вправо, происходит отклонение вправо и возникает прецессия — колебания оси вращения пули. Ось этой прецессии будет отклонена вправо, аэродинамические силы отклоняют полет пули в том же направлении. Это явление называется деривацией. Она зависит от скорости пули и скорости ее вращения, массы и формы. Обычно этот эффект начинает сказываться на точности стрельбы только на достаточно больших дистанциях (где он скорее всего «потеряется» на фоне гораздо более значительного сноса ветром).


Схема стрельбы под углом к горизонту Штриховой линией показано абсолютное снижение пули на заданной дистанции. Без внесения специальных поправок пуля будет попадать выше цели.

Эффект Магнуса

Поскольку пуля вращается в полете, при боковом ветре на нее может влиять эффект Магнуса, заключающийся в том, что при обтекании вращающегося тела потоком воздуха на тело действует сила, направленная перпендикулярно движению потока. С той стороны пули, где направление вращения совпадает с направлением обтекающего потока, скорость движения воздуха увеличивается, с другой — уменьшается. От разницы давлений возникает сила, направленная в сторону, где направление вращения и направление потока воздуха совпадают. На практические результаты стрельбы эффект Магнуса заметного влияния не оказывает, поэтому им обычно пренебрегают.


1. Ствол не должен соприкасаться ни с чем! 2. Нажимать на спусковой крючок следует наиболее чувствительной частью подушечки указательного пальца. 3. Для установки положения ложа стоит положить под приклад мешочек с песком. Надавливая на него свободной от стрельбы рукой, можно производить тонкую регулировку по высоте. 4. Следует точно выдерживать такое расстояние между глазом и окуляром, чтобы полностью и без искажений видеть все зрительное поле. Обычно эта величина составляет 7−10 см. 5. Если позволяет время, необходимо закрепить положение винтовки с помощью ремня. 6. Не допускать сваливания оружия. 7. В качестве упора лучше использовать не штатную сошку, а мешок с песком.

Вверх и вниз

В качестве отдельного случая стоит рассмотреть стрельбу с поправкой на угол места цели. Такая ситуация встречается в горах или в городе, где снайперы оборудуют позиции на крышах зданий. При стрельбе по цели, находящейся выше или ниже стрелка, нужно обязательно делать поправку, которая зависит от угла места, но не зависит от того, положительный это угол или отрицательный, — в обоих случаях при введении обычной поправки пуля пройдет выше цели. Стрельба под углом к горизонту требует введения поправки меньше обычной. Дело в том, что абсолютное снижение траектории полета пули к линии ствола всегда считается перпендикулярным к горизонту, а относительное снижение (траектория полета пули к линии прицеливания) — перпендикулярным к линии прицеливания.


Гравитация действует на летящую пулю таким же образом, как и на любой падающий предмет. За время полета пуля значительно снижается, что может привести к промаху. Снижение можно рассчитать по таблицам или с помощью баллистического калькулятора, но нужно точно определить дистанцию.

Сквозь стекло

Довольно часто полицейским снайперам приходится сталкиваться с ситуацией, когда террорист, захвативший заложников, находится за прозрачной преградой — стеклом. Прицелиться в него можно, но вот удастся ли попасть? Казалось бы, стекло — хрупкий материал, но он может существенно повлиять на результат стрельбы. На этот счет снайперы высказывают несколько соображений. Во‑первых, все зависит от толщины и материала стекла. Во‑вторых, не стоит использовать экспансивные пули, склонные при прохождении сквозь твердые преграды менять траекторию непредсказуемым образом. В-третьих, выстрел перпендикулярно стеклу меньше влияет на траекторию пули. Некоторые типы стекол дают множество острых осколков, которые могут нанести вред не только террористу, но и заложникам. Часто применяется способ, когда один из полицейских снайперов выстрелом разбивает стекло, а его коллеги почти без паузы бьют по цели.


Чем стрелять?

Свойства патрона и пули значат в снайперском деле не меньше, чем достоинства ствола или прицела. Поэтому, говоря о высокоточном стрелковом оружии, мы подразумеваем систему «винтовка-боеприпас». Существует множество разновидностей боеприпасов для снайперского оружия, отличающихся калибром, длиной патрона, конструкцией пули и характеристиками порохового заряда, однако настоящей «рабочей лошадкой» следует признать патрон калибра.308 Winchester, известный также как 7,62 NATO. Речь идет о патронах «матчевого» класса, произведенных на прецизионном оборудовании с минимальными допусками. Пули, используемые в этом типе боеприпасов, обозначают английской аббревиатурой BTHP (Boat-Tail Hollow Point).


Существует ряд ситуаций, когда визуальное определение дистанции даже тренированным глазом может давать ошибку. В некоторых случаях предметы могут казаться ближе: в низине, скрытой за холмами, при взгляде сверху вниз, вдоль длинных прямых ориентиров типа рельсов или на контрастном равномерном фоне вроде снега или песка. В других случаях предметы могут казаться дальше, чем они расположены на самом деле: на фоне крупных предметов и сооружений, при взгляде снизу вверх, в узком пространстве или в видимой низине.

Термин boat-tail («лодочная корма») обозначает характерную коническую хвостовую часть пули. Хвостовой конус, уменьшая ведущую часть пули, тем самым улучшает ее аэродинамические характеристики, снижает потерю скорости и повышает сопротивление боковому ветру. Пуля также имеет полость в головной части (hollow point) — это усиливает убойное действие. 168-грановые снайперские патроны калибра.308 Winchester с пулей BTHP выпускаются компаниями Remington, Hornady, Lapua, Norma, Federal и др. В снайперском деле также используются патроны калибра.223, .300 и даже полудюймового калибра.50 (для крупнокалиберных винтовок).


Исследование полета снаряда

Баллистика -- военно-техническая наука, основывающаяся на комплексе физико-математических дисциплин, рассматривающая движение артиллерийских снарядов, пуль, мин и т. п. Процессы, протекающие внутри канала ствола при выстреле, изучает внутренняя баллистика. Внешняя баллистика занимается процессами, которые протекают от момента вылета снаряда из канала ствола до момента ее встречи с целью. Внешняя баллистика основывается на законах механики, тесно связана с аэродинамикой, гравиметрией и теорией фигуры Земли. Баллистический расчет дает все основные данные о траектории и характеристиках движения снаряда, исходя из которых можно судить о необходимых для оружия параметрах.

Полет снаряда. Рассмотрим теперь, что происходит со снарядом после того, как он покинет канал ствола.

На снаряд, вылетевший из канала ствола, действуют две силы:

· сила земного притяжения, которая зависит от величины массы снаряда -- силы тяжести снаряда;

· сила сопротивления воздуха.

Сила тяжести направлена вертикально вниз и постепенно снижает траекторию снаряда. Воздушная среда оказывает сопротивление движению снаряда, отражающееся на его скорости.

Причины, вызывающие появление силы сопротивления:

· снаряд при движении раздвигает частицы воздуха, следовательно, часть его энергии расходуется на преодоление сил сцепления частиц воздуха;

· при движении снаряда часть его энергии расходуется на приведение в движение частиц воздуха впереди головной части снаряда;

· частицы воздуха во время движения снаряда скользят по его поверхности; при этом возникает сила трения, на преодоление которой тоже расходуется часть энергии снаряда;

· позади снаряда во время ее движения получается разреженное пространство, увеличивающее силу сопротивления воздуха.

Совокупность влияний на снаряд перечисленных факторов составляет силу сопротивления воздуха, действующую на снаряд во время полёта.

Сила сопротивления воздуха зависит от скорости полета снаряда, от его формы, массы, калибра, поверхности, плотности воздуха.

От увеличения плотности воздуха, калибра снаряда и ее скорости сопротивление воздуха возрастает, а чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха. Для нарезного оружия, имеющего сверхзвуковые скорости, у снарядов оптимальной формой является форма с удлиненной головной частью, а форма хвостовой части не имеет значения. При дозвуковой скорости целесообразно иметь удлиненную хвостовую часть, сужающуюся к концу. Рассмотрим теперь, как ведет себя снаряд при полете в воздушном пространстве. Введем два понятия -- равнодействующую всех сил, образующих сил сопротивления воздуха, и точку ее приложения к пуле -- центр сопротивления. Если бы пуля двигалась все время головной частью вперед, то сила сопротивления была бы направлена по оси пули от головной ее части к хвостовой. Такой случай на практике будет, когда пуля выстрелена вертикально вверх.

Продолговатый невращающийся снаряд при вылете из канала ствола под действием вылетающих вслед за ним газов, получив от них толчок, будет двигаться так, что его ось несколько отклонится от направления движения (от касательной к траектории). В результате одна сторона окажется более подверженной силе сопротивления воздуха, чем другая. Так как центр сопротивления лежит впереди центра тяжести, то снаряд будет опрокидываться. Чтобы избежать этого, ему придают вращение с помощью нарезов. В этом случае происходит следующее. Сила сопротивления воздуха стремится повернуть снаряд головной частью вверх и назад. Но головная часть снаряда в результате быстрого вращения отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть снаряда отклонится вправо, изменится направление силы сопротивления воздуха -- она стремится повернуть головную часть снаряда вправо и назад, но поворот головной части снаряда произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно снаряда меняется с каждым отклонением оси пули, то головная часть снаряда описывает окружность, а его ось - конус вокруг касательной к траектории с вершиной в центре тяжести, и пуля летит головной частью вперед. В результате вращательного движения пули и действия на нее силы сопротивления воздуха и силы тяжести происходит отклонение пули от плоскости стрельбы в сторону ее вращения. Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Исследования траектории пули в воздухе показывают:

· восходящая ветвь траектории длиннее и отложе нисходящей ветви;

· угол падения больше угла бросания;

· скорость пули в точке падения меньше начальной;

· наименьшая скорость полета пули при стрельбе под большими углами бросания -- на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания -- в точке падения;

· угол наибольшей дальности меньше 45°;

· время движения пули по восходящей ветви меньше времени движения по нисходящей ветви траектории;

· траектория вращающейся пули под действием силы тяжести и деривации представляет собой линию двоякой крутизны. В плоскости стрельбы имеет две ветви и первую крутизну, при виде сверху (в плане), в силу деривации -- отлогую кривую, обращенную выпуклостью в сторону к плоскости стрельбы;

Аналитическое решение. Идеализация модели

1. Земля плоская

2. Не учитываем возможное влияние ветра

3. Считаем значения плотности воздуха и ускорения свободного падения не зависящими от высоты

4. Не учитываем вращение снаряда в полете, а следовательно и деривацию

Переменные

Масса снаряда

Его начальная скорость

Ее проекции

Угол бросания (угол возвышения орудия)

Ускорение свободного падения

Сила сопротивления воздуха

Сила тяжести

Аэродинамический (баллистический) коэффициент

Площадь поперечного сечения снаряда

Плотность воздуха

Уравнения связи

Напишем второй закон Ньютона для нашего снаряда:

Распишем:

То же самое в проекциях на OX и OY:

Распишем силы:

причем знак минус показывает что вектор силы (и ускорения) направлен противоположно вектору скорости.

Подставим их в проекции:

причем знак минус перед mg появился из-за того что a x направлен вверх, а g - вниз.

Поделив на m получим выражения для проекций ускорения:

Учтем что:

Возьмем интеграл для составляющей OX:

Взятие интеграла для составляющей OY аналогично, но полученное выражение будет отличаться от выражения для OX на величину

В результате получены выражения удобные для обработки с помощью ODE в MATLAB

Проверка корректности

Вначале убедимся в корректности нашего метода (построим 3 траектории: с помощью явного задания уравнений движения, с помощью ODE без сопротивления воздуха и с помощью ODE с учетом сопротивления (но с зануленным баллистическим коэффициентом)). Кроме того необходимо сказать что данные масса, калибр, начальная скорость и баллистический коэффициент взяты для снаряда 76-мм дивизионной пушки образца 1939 года (УСВ): m-файл:

global Cx S Pv m a V0 g y

m = 6.3; % масса снаряда

cal = 76; % калибр (в мм)

Cx = 0; % аэродинамический(баллистический) коэффициент

% проверка (явное задание)

x = V0 * cosd(a) * tp;

y = V0 * sind(a) * tp - g .* tp.^2 / 2;

plot (x, y, "r*")

%без сопротивления

Ode45(@Simple, , NU);

plot(Y(:, 1), Y(:, 2), "b")

%с сопротивлением

plot(Y2(:, 1), Y2(:, 2), "g.")

axis()

function Simple = Simple(t, x)

Simple = [ V0 * cosd(a) ; V0 * sind(a) - g * t ];

global Cx S Pv m a V0 g

Complex = [ (2*m*V0*cosd(a)) / (Cx*S*Pv*V0*cosd(a).*t + 2*m) ;

(2*m*V0*sind(a)) / (Cx*S*Pv*V0*sind(a).*t + 2*m) - g.*t ];

Графическая интерпретация:


Увеличим:


Как видно из графиков, снаряд данного орудия в отсутствии сопротивления воздуха способен пролететь 45 км. Однако добавление сопротивления среды катастрофически сказывается на дальности:


Получаем вполне реалистичную картину, дальность полета данного снаряда (при угле возвышения 45 градусов) составляет около 5.5 км.

В дальнейшем не будем строить проверочные графики.

Влияние различных факторов на дальность полета снаряда и его траекторию

Начальная скорость


Графики наглядно иллюстрируют, что удвоение начальной скорости не приводит к аналогичному увеличению дальности, кроме того, можно отметить снижение воздействия сопротивления воздуха при уменьшении скоростей (график для малой скорости ближе к параболе)

Баллистический коэффициент снаряда


Баллистический коэффициент оказывает куда большее влияние на полет снаряда, с его уменьшением на 25% дальность возрастает 1.2 км. Однако его уменьшение технически весьма проблематично. Выходом может являться уменьшение калибра снаряда, но это скорее всего приведет к снижению массы, что негативно скажется на дальности. Таким образом улучшение аэродинамических характеристик снаряда является как наиболее эффективным средством увеличения дальности, так и наиболее сложным в техническом плане.


Угол возвышения орудия


Мы получили экспериментальное подтверждение того, что угол наибольшей дальности менее 45 градусов и составляет порядка 30-35 градусов

Масса снаряда


Зависимость от массы очень похожа на зависимость от баллистического коэффициента (БК), например увеличение массы вдвое эквивалентно уменьшению вдвое БК. Однако при этом необходимо помнить что для придания снаряду большей массы той же начальной скорости что и снаряду стандартной массы необходимо увеличение количества взрывчатого вещества (пороха) в снаряде (здесь под снарядом подразумевается не только "болванка", полет которой мы изучаем, но и гильза, ВВ и т.п.). Кроме того скорее всего потребуется упрочнение орудия, что может быть признано нерациональным для орудия данной категории и калибра.

баллистика снаряд траектория программа

Листинг (m-файл)

global Cx S Pv m a V0 g y

V0 = 680; % начальная скорость

a = 45; % угол бросания (возвышения орудия)

g = 9.8; % ускорение свободного падения

m = 6.3; % масса снаряда

cal = 76; % калибр (в мм)

S = pi * (cal / 1000) ^ 2 % площадь поперечного сечения снаряда (мидель)

Cx = 0.2; % аэродинамический(баллистический) коэффициент

Pv = 1.225; % плотность воздуха (на уровне моря)

NU = ; % координаты в начальный момент времени

t = 100; % время, в течение которого ведется расчет

colour = ["r" "g" "b" "c" "m"] % цвета графиков

kV0 = % начальная скорость

ka = % угол бросания (возвышения орудия)

kCx = % аэродинамический(баллистический) коэффициент

km = % масса снаряда

% Зависимость от Vo

Ode45(@Complex, , NU);

title "Зависимость от Vo"

xlabel "Дальность"

ylabel "Высота"

legend "Vo = 340" "Vo = 580" "Vo = 680" "Vo = 780" "Vo = 1360"

axis()

% Зависимость от a

Ode45(@Complex, , NU);

plot(Y2(:, 1), Y2(:, 2), colour(i))

title "Зависимость от a"

xlabel "Дальность"

ylabel "Высота"

legend "a = 25" "a = 35" "a = 45" "a = 55" "a = 65"

axis()

% Зависимость от Cx

Ode45(@Complex, , NU);

plot(Y2(:, 1), Y2(:, 2), colour(i))

title "Зависимость от Cx"

xlabel "Дальность"

ylabel "Высота"

legend "Cx = 0.1" "Cx = 0.15" "Cx = 0.2" "Cx = 0.25" "Cx = 0.3"

axis()

% Зависимость от m

Ode45(@Complex, , NU);

plot(Y2(:, 1), Y2(:, 2), colour(i))

title "Зависимость от m"

xlabel "Дальность"

ylabel "Высота"

legend "m = 3.15" "m = 5.3" " m = 6.3" "m = 7.3" "m = 12.6"

axis()

function Complex = Complex(t, x)

global Cx S Pv m a V0 g

Complex = [ (2*m*V0*cosd(a)) / (Cx*S*Pv*V0*cosd(a).*t + 2*m) ; (2*m*V0*sind(a)) / (Cx*S*Pv*V0*sind(a).*t + 2*m) - g.*t ];

Способы стабилизации полёта снаряда

Для того чтобы обеспечить правильный полет снаряда в воздухе - головной частью навстречу набегающему потоку воздуха, его надо стабилизировать.

Под стабилизацией полета снаряда понимается предотвращение опрокидывания снаряда и придание ему такого положения, чтобы он «следил» за траекторией.

Во время движения снаряда (рис. 3) на него действуют сила тяжести и аэродинамическая сила . Сила тяжести направлена к земной поверхности и сообщает снаряду ускорение, направленное вертикально вниз. Так как снаряд представляет собой тело сложной геометрической формы, то её точкой приложения является центр масс снаряда. Положение центра масс зависит от формы снаряда и распределения масс внутри него.

Аэродинамическая сила относительно вектора скорости снаряда традиционно разбивается на две составляющие - силу сопротивления среды , направленную точно против вектора скорости и подъёмную (или прижимающую) силу в поперечном направлении к вектору скорости. Последняя компонента не оказывает заметного влияния на полёт снаряда и на практике ею можно пренебречь (так как снаряд имеет симметричную форму, а угол атаки α снаряда весьма невелик). Точкой приложения этой силы к снаряду является так называемый центр давления, обычно не совпадающий с центром масс. Положение центра давления зависит только от формы снаряда. Как следствие возникает момент сил, стремящийся опрокинуть снаряд и заставить его кувыркаться в воздухе. Кувыркание снаряда на несколько порядков повышает силу сопротивления среды и резко уменьшает дальность стрельбы. Для борьбы с этим явлением применяются следующие методы: оснащение снаряда оперением, придание снаряду вращения вдоль оси симметрии или изготовление снаряда в форме шара. Последнее широко применялось в артиллерии XIV-XVIII веков - сферическая форма снаряда сама по себе исключает кувыркание, а сила сопротивления движению не зависит от ориентации снаряда в пространстве. Однако сферическая форма очень невыгодна с аэродинамической точки зрения - большая сила сопротивления движению сводит на нет преимущества от отсутствия кувыркания.

Итак, стабилизация снарядов в полете обеспечивается двумя способами:

§ хвостовым оперением снаряда и

§ путем приданием снаряду быстрого вращательного движения вокруг его оси.

Оперением стабилизируются с наряды гладкоствольных орудий, мины, противотанковые управляемые ракеты (ПТУР) и реактивные снаряды, а также снаряды, не получающие быстрого вращения при выстреле из нарезного оружия, стабилизируются на полете хвостовым оперением.

Стабилизация снарядов хвостовым оперением достигается (рис. 4) за счет того, что центр сопротивления (ЦС) у них находится сзади за центром тяжести (ЦТ). Вследствие этого сила сопротивления воздуха (R )создает стабилизирующий момент, который возвращает ось снаряда к направлению касательной к траектории при любом случайном ее отклонении.

Это происходит следующим образом: в тот момент, когда ось оперенного снаряда точно совпадает с направлением касательной к траектории, сила сопротивления воздуха имеет направление назад по оси снаряда. Снаряд испытывает только торможение. В случае отклонения оси снаряда и головной части вверх или вниз сила сопротивления (R ) будет приложена в точке ЦС и направлена назад под некоторым углом к оси снаряда. Кроме этой силы на снаряд действует также сила тяжести, приложенная к центру тяжести.

Не нарушая действия этих сил, приложим к центру тяжести взаимно уравновешивающиеся силы R 1 и R 2 . Теперь сразу видно, что сила R 1 тормозит движение снаряда, сила тяжести заставляет его непрерывно опускаться, а пара сил R и R 2 будет поворачивать снаряд до тех пор, пока его ось не совместится с касательной к траектории. Сила сопротивления воздуха совпадет с осью снаряда, и снаряд займет устойчивое положение.

То же самое будет происходить и при отклонении оси снаряда вправо или влево. Благодаря этому обеспечивается стабилизация оперенного снаряда на полете.

Вращением стабилизируются снаряды дальнобойных орудий и пули всех образцов стрелкового оружия.

Снаряд будет стабилизироваться на полете, если он быстро вращается вокруг своей оси. Для стабилизации полета снаряда скорость вращения должна быть тем больше, чем меньше его масса. Так, например, скорость вращения 152-мм снаряда равна 150 об/с, 122-мм снаряда равна 180 об/с, 100-мм снаряда-300 об/с, а 7,62-мм пули-3500 об/с.

Придание снаряду быстрого вращательного движения обеспечивается винтовой нарезкой канала ствола оружия. У современных образцов вооружения направление нарезки правое , и снаряд при виде сзади имеет вращение по ходу часовой стрелки.

Устойчивость вращающегося снаряда объясняется свойствами гироскопа - снаряд подобен волчку, который не падает, пока имеет достаточную скорость вращения.

Однако механизм взаимодействия снаряда с набегающим потоком воздуха более сложный, чем волчка с опорой.

При полете быстровращающегося снаряда (рис. 5) в воздухе в случае появления угла отклонения оси снаряда от касательной к траектории δ в вертикальной плоскости сила сопротивления воздуха стремится повернуть снаряд головной частью вверх и назад. Но головная часть и ось снаряда благодаря свойствам гироскопа стремятся сохранить прежнее положение в вертикальной плоскости и будут отклоняться не вверх, а на некоторый угол в правую сторону, если смотреть на снаряд сзади. Как только головная часть снаряда отклонится вправо, изменится направление действия силы сопротивления воздуха - она будет действовать слева и стремиться повернуть головную часть снаряда вправо, что приведет к повороту головной части вниз, и т. д.

Так как действие силы сопротивления воздуха непрерывно, головная часть снаряда описывает круг, а ось снаряда - конус с вершиной в центре тяжести. Происходит так называемое медленное коническое (прецессионное) движение , благодаря чему случайный угол отклонения оси δ не увеличивается и снаряд как бы следит за изменением кривизны траектории, т. е. всегда летит головой вперед.

Ось медленного конического движения несколько отстает от касательной к траектории, находясь выше и правее ее. Следовательно, снаряд с набегающим потоком воздуха больше сталкивается нижней и левой частями, вследствие чего возникают некоторая подъемная сила и боковая составляющая сила, которая вызывает смещение центра тяжести и всего снаряда вправо. Смещение вращающегося снаряда при полете в воздухе в сторону вращения (боковой уход) называется деривацией.



Деривация искривляет траекторию (рис.6) в горизонтальной плоскости. Величина деривации зависит от скорости вращения снаряда. С увеличением скорости вращения увеличивается и деривация. Она увеличивается с дальностью стрельбы и для настильных траекторий пропорциональна квадрату времени полета снаряда. При навесной стрельбе с увеличением угла бросания до 70° деривация увеличивается, а при больших углах уменьшается. При угле бросания 90° деривация отсутствует.

Таким образом, деривация возникает как побочное явление при стабилизации снарядов вращением. Причинами ее являются вращательное движение снаряда, сопротивление воздуха и кривизна траектории. При отсутствии хотя бы одной из этих причин деривации не будет. Деривация - учитывается при стрельбе на большие дистанции путём внесения заранее затабулированных поправок в угол доворота орудия.

Оперённые снаряды гладкоствольных орудий свободны от этого недостатка, для них баллистическая кривая при спокойной атмосфере является плоской.

При стабилизации вращением можно изготавливать снаряды с наивыгоднейшей формой и существенно уменьшить силу сопротивления воздуха на полете. Это дает возможность получить выигрыш в дальности стрельбы и уменьшить рассеивание снарядов.